【文献】
VAKILI M. et al.,Studying the Effects of SiO2 Specifications and Properties of (SiO2/MgCl2/TEOS/TiCl4/AlEt3) Catalyst System on Kinetic Behavior and Hydrogen Responsibility of Ethylene Slurry Polymerization,Journal of Applied Polymer Science,米国,Wiley,2010年11月15日,Vol.118,pp.2216-2224
(58)【調査した分野】(Int.Cl.,DB名)
ペルオキシドはtert−ブチルヒドロペルオキシド、エチルベンジルヒドロペルオキシド及びジクミルヒドロペルオキシドからなる群から選択される、請求項12に記載の方法。
メタノール、エタノール、イソプロパノール及びtert−ブタノールからなる群より選択される溶媒を反応混合物に添加する段階をさらに含む、請求項12に記載の方法。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、触媒及びその製造方法を提供する。一部の実施形態では、触媒は、チタンシルバー触媒であり、これらの触媒の製造方法が開示される。また、他の態様では、本発明は、エポキシドを生成するために、タチン/シリカ触媒を利用する方法を提供する。
【課題を解決するための手段】
【0006】
一部の態様では、本発明は下記段階を含む遷移金属エポキシド化触媒の製造方法を提供する。
a)固体シリカ担体を取得する段階、及び
b)固体シリカ担体を、下記化学式のシリコンアルコキシドと反応させる段階:
SiX
Y
前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルケニルオキシレート
(C≦12)、アルキニルオキシレート
(C≦12)、アリールオキシレート
(C≦12)、ヘテロアリールオキシレート
(C≦12)、アラルキルオキシレート
(C≦12)、アルアルケニルオキシレート
(C≦12)、ヘテロシクロアルキルオキシレート
(C≦12)、アシルオキシレート
(C≦12)、または実効負電荷を有するこれらの基のうち、任意の置換されたバージョンであり、YはSiの酸化状態と同様である、及び
c)チタン供給源からのチタンを固体シリカ担体上に沈着させて触媒を形成する段階。
【0007】
一部の実施形態では、固体シリカ担体は多孔性物質である。一部の実施形態では、固体担体は、平均粒子の大きさが約0.1μm〜約1.5cmである。一部の実施形態では、固体担体は、平均粒子の大きさが約0.7mm〜約3.0mmである。一部の実施形態では、固体シリカ担体は、表面積が約20m
2/g〜約1500m
2/gである。一部の実施形態では、固体シリカ担体は、表面積が約300m
2/g〜約1100m
2/gである。一部の実施形態では、固体シリカ担体は、気孔容積が約0.1mL/g〜約4.5mL/gである。一部の実施形態では、固体シリカ担体は、気孔容積が約0.5mL/g〜約3.0mL/gである。一部の実施形態では、固体シリカ担体は無定形物質である。一部の実施形態では、固体シリカ担体はゼオライトである。一部の実施形態では、シリコンの酸化状態は、正の酸化状態である。一部の実施形態では、シリコン担体は、下記化学式を有する成分を含有する:
SiX
4
前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルアルコキシレート
(C≦12)、アリールオキシレート
(C≦12)、またはこれらの基のうちいずれか一つの置換されたバージョンである。一部の実施形態では、Xはアルコキシレート
(C≦12)である。一部の実施形態では、Xはメトキシレート、エトキシレート、イソプロポキシレートまたはtert−ブトキシレートである。一部の実施形態では、Xはイソプロポキシレートである。一部の実施形態では、チタン供給源は、液体または気体である。一部の実施形態では、チタン供給源は、チタントリハライド、チタンテトラハライドまたはチタンテトラアルコキシレートである。
【0008】
一部の実施形態では、チタン供給源は、チタンテトラクロライドである。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約0.1重量%〜約10重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約0.5重量%〜約8重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは触媒の約1重量%〜約6重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約5重量%を含む。一部の実施形態では、前記方法は、さらに触媒を約250℃〜約1000℃の温度で加熱することを含む。一部の実施形態では、温度は約600℃〜約900℃である。一部の実施形態では、温度は約700℃である。一部の実施形態では、触媒は約0.5〜約12時間の間加熱される。一部の実施形態では、段階c)は、酸素を含む環境で行われる。一部の実施形態では、酸素は周囲の大気から来る。他の実施形態では、段階c)は、不活性気体を含む環境で行われる。一部の実施形態では、不活性気体は窒素である。一部の実施形態では、前記方法は、さらに不活性気体を含む環境で段階c)を行った後、酸素を含む環境で段階c)を再び行うことを含む。
【0009】
他の実施形態では、本発明は、オレフィンをエポキシド化してエポキシドを生産する方法であって、下記段階を含む方法を提供する:
a)遷移金属エポキシド化触媒を取得する段階、及び
b)エポキシドを生産するのに十分な条件下で、遷移金属エポキシド化触媒を反応混合物中のアルケン
(C≦20)またはアルアルケン
(C≦20)及びペルオキシドと接触させる段階。
【0010】
一部の実施形態では、アルケン
(C≦20)はアルケン
(C≦12)である。一部の実施形態では、アルケン
(C≦12)は、エチレン、プロピレン、ブチレン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネンまたはデセンである。一部の実施形態では、アルケン
(C≦12)はプロピレンまたはオクテンである。一部の実施形態では、アルケン
(C≦12)はプロピレンである。一部の実施形態では、前記方法は、反応混合物を約50℃〜約250℃の温度で加熱することをさらに含む。一部の実施形態では、反応は約50℃〜約100℃の温度で加熱される。一部の実施形態では、反応は約70℃で加熱される。一部の実施形態では、反応は約80℃で加熱される。一部の実施形態では、ペルオキシドはtert−ブチルヒドロペルオキシド、エチルベンジルヒドロペルオキシドまたはクミルヒドロペルオキシドである。一部の実施形態では、ペルオキシドはtert−ブチルヒドロペルオキシドである。一部の実施形態では、エポキシド化は、約1:2〜約1:15のペルオキシド対アルケン
(C≦20)のモル比を含む。一部の実施形態では、前記方法はさらに反応混合物に溶媒を添加することを含む。一部の実施形態では、溶媒は有機溶媒である。一部の実施形態では、溶媒はアルコール
(C≦12)である。一部の実施形態では、溶媒はメタノール、エタノール、イソプロパノール及びtert−ブタノールである。一部の実施形態では、前記方法は、ペルオキシド転換率が30%を超える。一部の実施形態では、ペルオキシド転換率は50%を超える。一部の実施形態では、前記方法は、ペルオキシド選択性が50%を超える。一部の実施形態では、ペルオキシド選択性は75%を超える。一部の実施形態では、ペルオキシド選択性は90%を超える。一部の実施形態では、ペルオキシド選択性は95%を超える。
【0011】
他の態様では、本発明は、下記の段階を含む方法により生産された遷移金属エポキシド化触媒を提供する:
a)固体担体を取得する段階、
b)固体担体を、下記化学式のシリコンオキサイドと反応させる段階、
SiX
Y
前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルケニルオキシレート
(C≦12)、アルキニルオキシレート
(C≦12)、アリールオキシレート
(C≦12)、ヘテロアリールオキシレート
(C≦12)、アラルキルオキシレート
(C≦12)、アルアルケニルオキシレート
(C≦12)、ヘテロシクロアルキルオキシレート
(C≦12)、アシルオキシレート
(C≦12)、または実効負電荷を有するこれらの基のうちいずれか一つの置換されたバージョンであり、YはSiの酸化状態と同様である、及び
c)固体担体上にチタン供給源からのチタンを沈着させる段階。
【0012】
一部の実施形態では、固体担体は多孔性物質である。一部の実施形態では、固体担体は、固体シリカ担体を含む。一部の実施形態では、固体担体は平均粒子の大きさが約0.1μm〜約1.5cmである。一部の実施形態では、固体担体は平均粒子の大きさが約0.7mm〜約3.0mmである。一部の実施形態では、固体担体は表面積が約20m
2/g〜約1500m
2/gである。一部の実施形態では、固体担体は、表面積が約300m
2/g〜約1100m
2/gである。一部の実施形態では、固体担体は、気孔容積が約0.1mL/g〜約4.5mL/gである。一部の実施形態では、固体担体は、気孔容積が約0.5mL/g〜約3.0mL/gである。一部の実施形態では、固体担体はゼオライトである。一部の実施形態では、固体担体は、無定形物質である。一部の実施形態では、シリコンの酸化状態は、正の酸化状態である。一部の実施形態では、シリコンオキサイドは、下記化学式を有する:
SiX
4
前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルアルコキシレート
(C≦12)、アリールオキシレート
(C≦12)、またはこれらの基のうちいずれかの一つの置換されたバージョンである。一部の実施形態では、Xはアルコキシレート
(C≦12)である。一部の実施形態では、Xはメトキシレート、エトキシレート、イソプロポキシレート、tert−ブトキシレートである。一部の実施形態では、Xはイソプロポキシレートである。一部の実施形態では、チタン供給源は、液体または気体である。一部の実施形態では、チタン供給源は、チタントリハライド、チタンテトラハライドまたはチタンアルコキシレートである。一部の実施形態では、チタン供給源は、チタンテトラクロライドである。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約0.1重量%〜約10重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約0.5重量%〜約8重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは触媒の約1重量%〜約6重量%を含む。一部の実施形態では、チタン供給源から沈着されたチタンは、触媒の約5重量%を含む。一部の実施形態では、前記方法は、さらに触媒を約250℃〜約1000℃の温度で加熱することを含む。一部の実施形態では、温度は約600℃〜約900℃である。一部の実施形態では、温度は約700℃である。一部の実施形態では、触媒は約0.5〜約12時間の間加熱される。一部の実施形態では、段階c)は、酸素を含む環境で行われる。一部の実施形態では、酸素は周囲の大気から来る。
【0013】
多数の実施形態が開示されているが、下記の詳細な説明からさらに他の実施形態が当業者に明らかになるであろう。明らかなように、本明細書に開示された一部の実施形態は、本願に記載されたような請求範囲の思想と範囲を逸脱することなく、様々な明白な態様に変形が可能である。したがって、図面及び詳細な説明は、本質的に例示的なものであり制限しようとするものではない。
【発明を実施するための形態】
【0014】
I.アルケン及びアルアルケンエポキシド化反応
本発明の範囲を任意の特定の理論や理論などに、どのような方式にも制限することなく、炭素−炭素の二重結合は、一般的に触媒の存在下でハイドロゲンペルオキシドと反応してエポキシドを形成する。このような反応は、シス、トランスまたは末端の二重結合からエポキシドを生成するのに利用され得る。一部の実施形態では、本発明は、エポキシド化のためにアルケン
(C2−60)を用いる。一部の実施形態では、アルケン
(C2−20)がエポキシド化反応で用いられる。他の実施形態では、エポキシド化を引き起こすアルケンはプロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン及びそれらの異性体から選択される。下記に表される一般的な反応図式を介してエポキシドを誘導できる多くの条件が開発された:
【0016】
ここで、R'及びR”は、それぞれ独立に水素、アルキル
(C≦50)、置換されたアルキル
(C≦50)、アラルキル
(C≦50)、置換されたアラルキル
(C≦50)、アリール
(C≦50)、または置換されたアリール
(C≦50)である。一部の実施形態では、R'及びR”は、それぞれ独立に水素、アラルキル
(C≦24)、置換されたアラルキル
(C≦24)、アルキル
(C≦24)、または置換されたアルキル
(C≦24)ある。一部の実施形態では、R
1、R
2、R
3及びR
4は、水素、置換されるか或いは非置換されたアルキル
(C≦50)、または置換されるか或いは非置換されたアリール
(C≦50)である。一部の実施形態では、R
1、R
2、R
3またはR
4上のアルキル基は、C
2−C
50アルキルである。一部の実施形態では、R
1、R
2、R
3またはR
4上のアルキル基は、C
3−C
20アルキルである。他の実施形態では、R
1、R
2、R
3またはR
4上のアルキル基は、C
3−C
10アルキルである。
【0017】
また、一部の実施形態では、ペルオキシドは、アルケンのエポキシド化のために使用される。一部の実施形態では、ペルオキシドは、R'及び/又はR”がアルキルまたはアラルキル基である有機ペルオキシドである。一部の実施形態では、アルキルまたはアラルキル基は50個の炭素を有する。一部の実施形態では、アルキルまたはアラルキル基は、3〜20個の炭素を有する。一部の実施形態では、エポキシドを形成するためにアルケンの反応で使用される有機ペルオキシドは、例えば、エチルベンジルヒドロペルオキシド、tert−ブチルヒドロペルオキシド、tert−アミルヒドロペルオキシド、シクロヘキシルヒドロペルオキシド及びクミルヒドロペルオキシドを含むが、これに制限されない。付加的には、一部の実施形態では、ハイドロゲンペルオキシド(HOOH)がまた本明細書に提示されたエポキシド化反応で使用され得る。一部の実施形態では、アルケン対ペルオキシドのモル比は、約1:1〜約20:1の範囲であり得る。一部の実施形態では、前記範囲は、約2:1〜約15:1である。 他の実施形態では、ペルオキシドはオレフィンを含むエポキシド反応混合物の約1〜約50重量%の濃度で存在する。一部の実施形態では、オレフィン対ペルオキシドの比はペルオキシドの安定性に影響を与え得る反応混合物中の他の要因によって変化され得る。一部の実施形態では、エポキシド化反応は、不均一系チタン触媒を有する液体相で行われる。一部の実施形態では、有機ペルオキシドが反応で使用される場合、反応溶媒はペルオキシドの合成または分解の有機副産物を含む。非制限的な例にて、tert−ブチルヒドロペルオキシドが使用される場合、反応に使用される溶媒は、tert−ブタノールであるが、他の溶媒の使用が可能である。
【0018】
一部の実施形態では、触媒は遷移金属を含有する。触媒は、炭素−炭素の二重結合と反応して、これをペルオキシドを用いた攻撃に向かって活性化するために使用され得るか、またはペルオキシドがより反応性のある中間体に分解されることを促進するために使用され得る。また、触媒は、目的のエポキシド生成物形成の反応可能性を増加させるために使用され得る。一部の実施形態では、エポキシド化反応で使用される触媒はチタン触媒である。本発明の一部の実施形態では、チタン触媒は、触媒の反応性をより向上させる他の金属を含有することができる。一部の実施形態では、オレフィンのエポキシド化触媒は、適切な収率と選択性で必要な変換を起こすのに必要な触媒の最小濃度で使用される。一部の実施形態では、チタンは0.1wt%〜20wt%の濃度で存在する。一部の実施形態では、チタンは1wt%〜10wt%の濃度で存在する。
【0019】
一部の実施形態では、エポキシド化反応は、進行するために温和な温度と圧力が要求される。一部の実施形態では、反応温度は約0℃〜約200℃である。一部の実施形態では、エポキシド化反応は、昇温で行われる。昇温は約25℃〜約150℃であり得る。一部の実施形態では、エポキシド化反応の温度は70℃である。本発明の一部の実施形態では、反応は、周囲圧力で行われる。他の実施形態では、エポキシド化反応は、1〜100気圧の圧力で行われる。
【0020】
一部の実施形態では、反応は、液体相で、または2相(気体/液体)システムで行われ得る。付加的には、一部の実施形態では、触媒は固体であり、アルケン、ペルオキシド、生成されるエポキシド及び反応を促進するために使用される任意の溶媒との不均一な混合物を示す。したがって、一部の実施形態では、エポキシド化反応は、連続、バッチまたは半連続形態を含むが、これに制限されない適切な反応形態を利用して、商業規模で実施され得る。分別蒸留、選択的抽出、ろ過または他の方法を含むが、これに制限されない従来の生成物回収方法が反応混合物から目的の生成物を取得するために使用され得る。一部の実施形態では、触媒、反応器溶媒または未反応オレフィンまたはペルオキシドのような回収された物質は、再循環されて再利用され得る。一部の実施形態では、触媒は、流通式(Flow−through)反応器の形で固定相として使用される。
【0021】
反応は、示されるペルオキシド転換率及びペルオキシド選択性の程度に基づいて評価され得る。一部の実施形態では、本発明の方法におけるペルオキシド転換率は10%を超える。一部の実施形態では、本発明の方法におけるペルオキシド転換率は、約10%〜約99.5%である。一部の実施形態では、ペルオキシド転換率は、約80%〜約99.5%である。一部の実施形態では、ペルオキシド転換率は約99%である。一部の実施形態では、本発明の方法におけるペルオキシド選択性は、約90%〜約99.5%である。一部の実施形態では、ペルオキシド選択性は、約95%〜約99.5%である。一部の実施形態では、ペルオキシド選択性は98%超えである。一部の実施形態では、ペルオキシド転換率は50%超えであり、ペルオキシド選択性は90%超えである。
【0022】
本発明の触媒を構成する原子は、このような原子の全ての同位元素の形態を含む。本発明の触媒は、同位元素的に変形されるか或いは濃縮された一つ以上の原子を有するものを含む。本明細書で使用される場合、同位元素は、同様の原子番号を有するが異なる質量数を有する原子を含む。一般的な例としては、制限されるものではないが、水素の同位元素は、デューテリウム及びトリチウムを含み、炭素の同位元素は、
13C及び
14Cを含む。同様に、本発明の触媒の一つ以上の炭素原子が、シリコン原子によって置換され得ることが考慮される。また、本発明の触媒の一つ以上の酸素原子が硫黄またはセレニウム原子によって置換され得ることが考慮される。
【0023】
II.遷移金属エポキシド化触媒
エポキシド化反応は、さらに反応を促進することを助け、目的の生成物の収率を増加させる遷移金属触媒を利用することを含むことができる。一部の実施形態では、このような遷移金属触媒は、アルケンまたはアルアルケンとの反応性種を形成するチタン原子を含有する。触媒は、触媒の総重量に対して重量基準で0.01%〜20%のチタンを含有することができる。一部の実施形態では、触媒は、触媒の総重量に対して重量基準で0.1%〜10%のチタンを含有することができる。一部の実施形態では、触媒は、触媒の総重量に対して重量基準で1%〜7%のチタンを含有する。一部の実施形態では、触媒は、触媒の総重量に対して重量基準で3%〜7%のチタンを含有する。一部の実施形態では、不活性固体担体は、無定形シリカである。他の実施形態では、固体担体は、MCM−41のような、しかしこれに制限されないメソ多孔性シリカである。一部の実施形態では、固体担体は、シリカライトのような分子篩である。MWWファミリーのチタントッピングされたシリカ担体またはゼオライト及びそれらの合成は、従来技術で知られており、例えば、本願に参考として組み込まれる米国特許6,759,540号及び8,124,555号に知られている。一部の実施形態では、固体担体は、触媒の総重量の割合として約80〜99.99重量%の触媒を含む。一部の実施形態では、固体担体は、触媒の総重量の割合としておおよそ90〜99.99重量%の触媒を含む。一部の実施形態では、固体担体は、触媒の総重量の割合としておおよそ90〜99重量%の触媒を含む。一部の実施形態では、固体担体は、触媒の総重量の割合としておおよそ93%〜97重量%の触媒を含む。一部の実施形態では、固体担体は、約50℃〜約400℃の温度で乾燥される。一部の実施形態では、固体担体は、約100℃〜約250℃の温度で乾燥される。一部の実施形態では、固体担体は、約0.5時間〜約8時間の間乾燥される。一部の実施形態では、期間は約1時間〜約4時間である。
【0024】
本発明の一部の態様では、不活性固体担体は、けい酸質固体、アルミナ、無機オキサイド、炭素または有機重合体である。一部の実施形態では、固体担体は、合成多孔性シリカ、シリカ粉末、耐火性---酸化物、メソ多孔性分子篩は、本質的に純粋なシリカ及び他のケイ酸質固体を含むが、これに-制限されないケイ酸質固体であってもよい。一部の実施形態では、不活性固体担体は、シリコンダイオキサイド(SiO
2)から構成される。一部の実施形態では、不活性固体担体は、無定形のシリコンダイオキサイド(SiO
2)から構成される。
【0025】
一部の実施形態では、固体担体は、シリカゲルまたは沈殿されたシリカのような合成多孔性シリカである。一部の実施形態では、合成多孔性シリカは、構造全体にわたって存在する多くの気孔、空隙または小さい隙間を有する比較的稠密で、かつ密集しているコアを粒子が形成するように凝集したり、連結されている無定形シリカ粒子を含む。他の実施形態では、固体担体は、合成シリカ粉末である。一部の実施形態では、合成シリカ粉末は、シリコンハライドと水素及び酸素の反応からの燻蒸発熱性シリカを含むが、これに制限されない。一部の実施形態では、合成シリカ粉末は、容易に崩壊される緩くて密集していない凝集体内に無定形シリカ粒子を含む。他の実施形態では、固体担体は、シリカ−アルミナ、シリカ−マグネシア、シリカ−ジルコニア、シリカ−アルミナ−ボリア、シリカ−アルミナ−マグネシア及び類似の化合物を含むが、これに制限されない耐火性酸化物である。一部の実施形態では、これらのオキサイド化合物は、かなりの重量パーセントのシリカを含有する。他の実施形態では、固体担体は、MCM−41、MCM−48、M41S、ZSM−5、XSM−11及びMWWクラス分子篩を含むが、これに制限されない分子篩である。他の実施形態では、固体担体は、純粋なシリカであり、純粋なシリカは、少なくとも95重量%のシリカであると定義される。一部の実施形態では、純粋なシリカの量は97%超えのシリカである。一部の実施形態では、純粋なシリカの量は99%超えのシリカである。本質的に純粋なシリカは、商業的に取得することができる。一部の実施形態では、適した純粋なシリカは、ダビシル(Davisil)(登録商標)643のようなダビシル(登録商標)によって販売される適したシリカ及びMS−3050シリカをはじめとするPQコーポレーション(PQ Corporation)によって販売される微小球体シリカゲルを含むが、これに制限されない。他の実施形態では、固体担体は、ハイドロタルシート、関数マグネシウムシリケート及び粘土鉱物は、例えば、ヘクトライト、カオリン及びベントナイトを含むが、これに制限されない自然発生鉱物のシリカを含む。
【0026】
一部の実施形態では、不活性固体は表面積が約10〜約1500m
2/gである。一部の実施形態では、不活性固体は表面積が約200m
2/g〜約1100m
2/gである。一部の実施形態では、不活性固体は表面積が少なくとも1000m
2/gである。一部の実施形態では、不活性固体は気孔容積が0.5〜8.0mL/gの範囲である。一部の実施形態では、気孔容積は約1.0mL/g〜約4.0mL/gである。一部の実施形態では、気孔容積は1.0mL/g〜約3.0mL/gである。不活性固体粒子の大きさは、他の反応条件に応じて変化され得る一方、一部の実施形態では、平均粒子の大きさは、約0.1μm〜約1.5cmである。付加的には、一部の実施形態では、触媒物質の気孔直径は変化することはあるが、不活性固体の平均気孔の大きさは、1〜約1000Åである。一部の実施形態では、不活性固体の平均気孔の大きさは、約50〜500Åである。
【0027】
本発明の一部の態様では、固体担体は、粉末、フレーク、顆粒、球及びペレットを含むが、これに制限されない様々な異なる物理的形態である。一部の実施形態では、固体担体は、一つの形態から始まり、その形態で使用され得るか或いは固体担体は、当業者に知られている技術を介して他の形態に転換される。このような従来の技術は、押出、ペレット化及び粉砕を含むが、これに制限されない。
【0028】
一部の実施形態では、触媒的活性チタン原子の沈着のためのチタン供給源は、チタンハライド、チタンアルコキシドまたはその混合物である。一部の実施形態では、チタン供給源は、チタン金属が4
+の酸化状態であるチタンハライドまたはチタンアルコキシドである。一部の実施形態では、不活性固体内へ組み込まれるためのチタン供給源は、チタンテトラハライドである。一部の実施形態では、チタン供給源は、チタンテトラクロライドである。一部の実施形態では、チタンテトラクロライドは、気体として、または適切な溶媒を有する溶液の一部として利用される。適切な溶媒は、炭化水素または芳香族溶媒を含む。追加の実施形態では、購入可能なチタンテトラクロライド溶液がチタンの供給源として使用され得る。
【0029】
本発明の一部の態様では、不活性固体はまた、化学式SiX
Yのシリコン化合物と反応する:前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルケニルオキシレート
(C≦12)、アルキニルオキシレート
(C≦12)、アリールオキシレート
(C≦12)、ヘテロアリールオキシレート
(C≦12)、アラルキルオキシレート
(C≦12)、アルアルケニルオキシレート
(C≦12)、ヘテロシクロアルキルオキシレート
(C≦12)、アシルオキシレート
(C≦12)、または実効負電荷を有するこれらの基のうち、いずれかの置換されたバージョンであり、YはSiの酸化状態と同様である。一部の実施形態では、シリコン化合物は、化学式SiX
4を有し、前記式において、Xはそれぞれ独立にハライド、アルコキシレート
(C≦12)、アルアルコキシレート
(C≦12)、アリールオキシレート
(C≦12)、またはこれらの基のうち、いずれかの置換されたバージョンである。一部の実施形態では、不活性固体はチタン化される前に、シリコン化合物で処理される。一部の実施形態では、不活性固体はチタン化と同時にシリコン化合物で処理される。一部の実施形態では、不活性固体はチタン化の後にシリコン化合物で処理される。一部の実施形態では、不活性固体は、溶媒の存在下で、シリコン化合物と反応される。一部の実施形態では、溶媒は、炭化水素
(C≦12)である。一部の実施形態では、溶媒はヘキサンである。一部の実施形態では、シリコン化合物との反応は、不活性大気下である。一部の実施形態では、不活性大気は非活性気体、窒素、二酸化炭素、またはC
1−C
8炭化水素である。一部の実施形態では、不活性大気は窒素である。
【0030】
本発明の一部の態様では、不活性固体は、チタンを組み込む前に、後に、またはその間にか燃される。一部の実施形態では、不活性固体は、約500℃〜約1000℃の温度でか燃される。一部の実施形態では、か燃は、約600℃〜約800℃の温度で行われる。付加的には、一部の実施形態では、か燃は、不活性大気下で起こり得る。一部の実施形態では、不活性大気はヘリウム、アルゴン、ネオンまたは窒素下である。一部の実施形態では、不活性大気は窒素である。一部の実施形態では、不活性大気でのか燃後には、空気中でのか燃が続く。一部の実施形態では、か燃は、約0.1〜約24時間の間行われる。一部の実施形態では、か燃は、約1〜18時間の間行われる。一部の実施形態では、か燃は、約1〜4時間の間である。一部の実施形態では、か燃は、与えられた触媒システムで与えられた触媒のペルオキシド転換パーセントまたは選択性を変化させる。一部の実施形態では、か燃は、与えられた反応のペルオキシド転換率とペルオキシド選択性を増加させる。
【0031】
一部の実施形態では、遷移金属触媒は、チタンに加えて追加の金属または半金属を含む。使用され得る金属はゲルマニウム、ガリウム、シリコン及び類似の遷移金属及び半金属である。
【0032】
III.工程規模の拡大
前記方法は、当業者が適用する工程化学の原理と技術を用いて、バッチまたは連続の製造、パイロット-または大-規模生産のためにさらに変形され、最適化され得る。そのような原理と技術は、例えば、本願に参考として組み込まれるPractical Process Research & Development(2012)で教示される。
【0033】
IV.定義
化学基の脈略で使用される場合、「水素」は−Hを意味し、「ヒドロキシ」は、−OHを意味し、「オキソ」は、=Oを意味し、「カルボニル」は、−C(=O)を意味し、「カルボキシ」は、−C(=O)OH(−COOHまたは−CO
2Hとも記載される)を意味し、「ハロ」は、独立に−F、−Cl、−Brまたは−Iを意味し、「アミノ」は、−NH
2を意味する。化学基の脈略で使用される場合、「カルボキシレート」は、基、−C(=O)O
−(C(O)O
−または−CO
2−とも記載される)を含有する分子を意味し、分子の全体電荷は負であり、または「ハライド」は、単一の負電荷を保持した陰イオンに製剤化されるハロゲン原子を意味する。本出願で示した構造の原子上における任意の未定義の原子価は、その原子に結合した水素原子を含蓄的に表す。
【0034】
化学式の脈略において、記号「−」は、単一結合を意味し、「=」は、二重結合を意味し、「≡」は、三重結合を意味する。記号「
−−−−」は選択的結合を表し、存在する場合、単一または二重結合である。記号
【0036】
は、単一結合または二重結合を表す。したがって、例えば、
【0038】
一つのそのような環原子は、一つより多くの二重結合の一部を形成しないことが理解される。さらに、共有結合記号「−」は、一つまたは二つの立体発生原子を連結する場合、如何なる好ましい立体化学も示さないことが注目される。代わりに、これは全ての立体異性体及びその混合物を包括する。記号
【0040】
は、結合を垂直に横切って描かれる場合
【0042】
基の付着点を表す。付着点は典型的には、読者が付着点を明確に確認することを手助けするために、より大きな基のためにこのような方法で確認されることが注目される。記号
【0044】
は、くさびの厚い端部に付着された基が「ページの外」にある単一結合を意味する。記号
【0046】
は、くさびの厚い端部に付着された基「ページの内」にある単一結合を意味する。記号
【0048】
は、二重結合の周りの幾何学(例えば、EまたはZ)が定義されていない単一結合を意味する。したがって、二つの選択全て及びその組み合わせが意図される。前述した結合の順序は結合によって連結された原子のうち一つが、金属原子(M)である場合、制限的ではない。そのような場合に、実際の結合は、かなりの多重結合及び/又はイオンの特徴を含み得ることが理解される。したがって、他に表示されない場合、化学式M−C、M=C、
【0050】
は、それぞれ金属原子と炭素原子との間の任意のタイプ及び順序の結合をいう。
【0051】
下記の基及びクラスのために、次のカッコ内の添字は、さらに下記のように基/クラスを定義する:「(Cn)」は、基/クラス内の炭素原子の正確な数(n)を定義する。「(C≦n)」は、基/クラス内にあり得る炭素原子の最大数(n)を定義し、最小数は、問題の基において可能な限り小さく、例えば、基「アルケニル
(C≦8)」またはクラス「アルケン
(C≦8)」において、炭素原子の最小数は2であることが理解される。例えば、「アルコキシ
(C≦10)」は、1〜10個の炭素原子を有するアルコキシ基を表す。(Cn−n')は、基の内の炭素原子の最小(n)及び最大数(n')の両方を定義する。同様に、「アルキル
(C2−10)」は、2〜10個の炭素原子を有するアルキル基を表す。
【0052】
本明細書で使用される用語「飽和された」は、そのように修飾された化合物または基が下記に記載されたことを除いては、炭素−炭素の二重結合及び炭素−炭素の三重結合がないことを意味する。飽和された基の置換されたバージョンの場合には、一つ以上の炭素−酸素の二重結合または炭素−窒素の二重結合が存在し得る。そのような結合が存在する場合、ケト−エノール互変異性質現象またはイミン−エナミン互変異性の一部として発生し得る炭素−炭素の二重結合が排除されない。
【0053】
「置換された」という修飾語なしで使用される用語「脂肪族」は、このように修飾された化合物/基が非環式または環式、非芳香族の炭化水素化合物または基であることを意味する。脂肪族化合物/基では、炭素原子は直鎖、分岐鎖または非芳香族環(脂環族)で一緒に連結され得る。脂肪族化合物/基は飽和して単一結合によって連結されるか(アルカン/アルキル)、または不飽和されて一つ以上の二重結合(アルケン/アルケニル)または一つ以上の三重結合(アルキン/アルキニル)を有し得る。
【0054】
「置換された」という修飾語なしで使用される場合、用語「アルキル」は、付着点としての炭素原子、線状または分岐状、シクロ、環式または非環式構造を有し、炭素と水素以外の他の原子のない1価の飽和脂肪族基をいう。したがって、本明細書で使用されるとき、シクロアルキルは、アルキルの部分集合であり、付着点を形成する炭素原子はまた、シクロアルキル基が炭素と水素のみからなる一つ以上の非芳香族環構造の構成員である。本明細書で使用される用語は、環または環システムに付着された一つ以上のアルキル基(炭素数の制限を許可)の存在を排除しない。基−CH
3(Me)、−CH
2CH
3(Et)、−CH
2CH
2CH
3(n-Prまたはプロファイル)、−CH(CH
3)
2(i-Pr、
iPrまたはイソプロピル)、−CH(CH
2)
2(シクロプロピル)、−CH
2CH
2CH
2CH
3(n-Bu)、−CH(CH
3)CH
2CH
3(sec−ブチル)、−CH
2CH(CH
3)
2(イソブチル)、−C(CH
3)
3(tert−ブチル、t-ブチル、t-Buまたは
tBu)、−CH
2C(CH
3)
3(neo−ペンチル)、シクロブチル、シクロペンチル、シクロヘキシル及びシクロヘキシルメチルは、アルキル基の非制限的な例である。「置換された」という修飾語なしで使用される場合、用語「アルカンジイル」は、付着点として一つまたは二つの飽和炭素原子、線状または分枝状、シクロ-、環式または非環式構造を有し、炭素−炭素の二重または三重結合がなく、炭素と水素以外の他の原子のない2価の飽和脂肪族基をいう。基−CH
2−(メチレン)、−CH
2CH
2−、−CH
2C(CH
3)
2CH
2−、−CH
2CH
2CH
2−及び
【0056】
はアルカンジイル基の非制限的な例である。アルケンジイル基は脂肪族である一方、一旦両末端で連結されると、この基は、芳香族構造を形成することから排除されない。「置換された」という修飾語なしで使用される場合、用語「アルキリデン」は、R及びR'が独立に水素、アルキルであるか或いはRとR'が共に少なくとも二つの炭素原子を有するアルカンジイルを表す、2価の基=CRR'」をいう。アルキリデン基の非制限的な例は、=CH
2、=CH(CH
2CH
3)及び=C(CH
3)
2を含む。「アルカン」は、化合物H−Rをいい、ここで、Rは、前記定義したアルキルである。これらの用語のいずれかが「置換された」という修飾語と使用される場合、一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。下記基は、置換されたアルキル基の非制限的な例である:−CH
2OH、−CH
2Cl、−CF
3、−CH
2CN、−CH
2C(O)OH、−CH
2C(O)OCH
3、−CH
2C(O)NH
2、−CH
2C(O)CH
3、−CH
2OCH
3、−CH
2OC(O)CH
3、−CH
2NH
2、−CH
2N(CH
3)
2及び−CH
2CH
2Cl。用語「ハロアルキル」は、置換されたアルキルの部分集合であり、この際、一つ以上の水素原子は、ハロ基に置換されており、炭素、水素及びハロゲンを除いた他の原子は存在しない。基−CH
2Clはハロアルキルの非制限的な例である。用語「フルオロアルキル」は、置換されたアルキルの部分集合であり、この際、一つ以上の水素はフルオロ基に置換されており、炭素、水素及びフッ素を除いた他の原子は存在しない。基−CH
2F、−CF
3及び−CH
2CF
3はフルオロアルキル基の非制限的な例である。
【0057】
「置換された」という修飾語なしで使用される場合、用語「アルケニル」は、付着点としての炭素原子、線状または分枝状、シクロ-、環式または非環式構造の少なくとも一つの非芳香族炭素−炭素の二重結合を有し、炭素−炭素の三重結合はなく、炭素と水素以外の他の原子のない、1価の不飽和脂肪族基をいう。アルケニル基の非制限的な例は、−CH=CH
2(ビニル)、−CH=CHCH
3、−CH=CHCH
2CH
3、−CH
2CH=CH
2(アリール)、−CH
2CH=CHCH
3及び−CH=CHCH=CH
2を含む。「置換された」という修飾語なしで使用される場合、用語「アルケンジイル」は、付着点として二つの炭素原子、線状または分枝状、シクロ−、環式または非環式構造の少なくとも一つの非芳香族炭素−炭素の二重結合を有し、炭素−炭素の三重結合がなく、炭素と水素以外の原子のない、2価の不飽和脂肪族基をいう。基−CH=CH−、−CH=C(CH
3)CH
2−、−CH=CHCH
2−及び
【0059】
はアルカンジイル基の非制限的な例である。用語「アルケン」または「オレフィン」は同義であり、Rが前記で定義されたアルケニルである化学式H−Rを有する化合物をいう。「末端アルケン」は、ただ一つの炭素−炭素の二重結合を有したアルケンをいい、この際、その結合は、分子の一端部でビニル基を形成する。これらの用語のいずれかが「置換された」という修飾語と使用される場合、一つの水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。基−CH=CHF、−CH=CHCl及び−CH=CHBrは置換されたアルケニル基の非制限的な例である。
【0060】
「置換された」という修飾語なしで使用される場合、用語「アリール」は、付着点として芳香族炭素原子を有する1価の不飽和芳香族基をいい、前記炭素原子は、一つ以上の6員芳香族環構造の一部を形成し、この際、環原子は全て炭素であり、前記基は、炭素と水素のみからなる。万が一、一つより多くの環が存在すると、環は融合されたり、非融合され得る。本明細書で使用される前記用語は、一番目の芳香族環または存在する任意の追加の芳香族環に付着された一つ以上のアルキルまたはアラルキル基(炭素数の制限を許可)の存在を排除しない。アリール基の非制限的な例は、フェニル(Ph)、メチルフェニル、(ジメチル)フェニル、−C
6H
4CH
2CH
3(エチルフェニル)、ナフチル及びビフェニルから由来された1価の基を含む。「置換された」という修飾語なしで使用される場合、用語「アレンジイル」は、付着点として二つの芳香族炭素原子を有する2価の芳香族基をいい、前記炭素原子は、一つ以上の6員芳香族環構造の一部を形成し、この際、環原子は全て炭素であり、1価の基は炭素と水素のみからなる。本明細書で使用される前記用語は、一番目の芳香族環または存在する任意の追加の芳香族環に付着された一つ以上のアルキル、アリールまたはアラルキル基(炭素数の制限を許可)の存在を排除しない。一つよりも多くの環が存在すると、環は融合されたり、非融合され得る。非融合環は、下記のいずれか一つを介して連結され得る:共有結合、アルカンジイルまたはアルケンジイル基(炭素数の制限を許可)。アレンジイル基の非制限的な例は、下記を含む:
【0062】
「アレン」はRが前記で定義されたアリールである化合物H−Rをいう。ベンゼン及びトルエンは、アレンの非制限的な例である。これらの用語のいずれかが「置換された」という修飾語と使用される場合、一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。
【0063】
「置換された」という修飾語なしで使用される場合、用語「ヘテロアリール」は、付着点として芳香族炭素原子または窒素原子を有する1価の芳香族基をいい、前記炭素原子または窒素原子は、一つ以上の芳香族環構造の一部を形成し、この際、環原子のうち少なくとも一つは、窒素、酸素または硫黄であり、ヘテロアリール基は、炭素、水素、芳香族窒素、芳香族酸素及び芳香族硫黄のみからなる。一つよりも多くの環が存在すると、環は融合されたり、非融合され得る。本明細書で使用されるとき、前記用語は、芳香族環または芳香族環システムに付着された一つ以上のアルキル、アリール、及び/又はアラルキル基(炭素数の制限を許可)の存在を排除しない。ヘテロアリール基の非制限的な例は、フラニル、イミダゾリル、インドリル、インダゾリル(Im)、イソオキサゾリル、メチルピリジニル、オキサゾリル、フェニルピリジニル、ピリジニル、ピロリル、ピリミジニル、ピラジニル、キノリル、キナゾリル、 キノキサリニル、トリアジニル、テトラゾリル、チアゾリル、チエニル及びトリアゾリルを含む。
【0064】
用語「N−ヘテロアリール」は、付着点として窒素原子を有するヘテロアリール基をいう。「置換された」という修飾語なしで使用される場合、用語「ヘテロアレンジイル」は二つの芳香族炭素原子、二つの芳香族窒素原子、または一つの芳香族炭素原子と一つの芳香族窒素原子を二つの付着点で有する2価の芳香族基をいい、前記原子は環原子のうち少なくとも一つが窒素、酸素または硫黄である一つ以上の芳香族環構造の一部を形成し、2価の基は、炭素、水素、芳香族窒素、芳香族酸素及び芳香族硫黄のみからなる。一つよりも多くの環が存在すると、環は融合されたり、非融合され得る。非融合環は、下記のいずれか一つ以上を介して連結され得る:共有結合、アルカンジイルまたはアルケンジイル基(炭素数の制限を許可)。本明細書で使用される前記用語は、芳香族環または芳香族環システムに付着された一つ以上のアルキル、アリール、及び/又はアラルキル基(炭素数の制限を許可)の存在を排除しない。ヘテロアレンジイル基の非制限的な例は、下記を含む:
【0066】
「ヘテロアレン」はRがヘテロアリールである化合物H−Rをいう。ピリジン及びキノリンはヘテロアレンの非制限的な例である。これらの用語は、「置換された」という修飾語と使用される場合は、一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。
【0067】
「置換された」という修飾語なしで使用される場合、用語「ヘテロシクロアルキル」は、付着点で炭素原子または窒素原子を有する1価の非芳香族基をいい、前記炭素原子または窒素原子は、一つ以上の非芳香族環構造の一部を形成し、この際、環原子のうち少なくとも一つは、窒素、酸素または硫黄であり、ヘテロシクロアルキル基は、炭素、水素、窒素、酸素及び硫黄のみからなる。一つよりも多くの環が存在すると、環は融合されたり、非融合され得る。本明細書で使用される前記用語は、環または環システムに付着された一つ以上のアルキル基(炭素数の制限を許可)の存在を排除しない。また、前記用語は、生成される基が非芳香族として残っている場合、環または環システム内に一つ以上の二重結合の存在を排除しない。ヘテロシクロアルキル基の非制限的な例は、アジリジニル、アゼチジニル、ピロリジニル、ピペラジニル、 モルホリニル、チオモルホリニル、テトラヒドロフラニル、テトラヒドロチオフラニル、テトラヒドロピラニル、ピラニル、オキシラニル及びオキセタニルを含む。
【0068】
用語「N-ヘテロシクロアルキル」は、付着点として窒素原子を有するヘテロシクロアルキル基をいう。「置換された」という修飾語なしで使用する場合、用語「ヘテロシクロアルカンジイル」は二つの炭素原子、二つの窒素原子、または一つの炭素原子と一つの窒素原子を二つの付着点で有する2価のサイクリック基をいい、前記原子は環原子のうち少なくとも一つが窒素、酸素または硫黄である一つ以上の環構造の一部を形成し、2価の基は、炭素、水素、窒素、酸素、及び硫黄のみからなる。一つよりも多くの環が存在すると、環は融合されたり、非融合され得る。非融合環は、下記のいずれかを介して連結され得る:共有結合、アルカンジイルまたはアルケンジイル基(炭素数の制限を許可)。本明細書で使用されるとき、前記用語は、環または環システムに付着された一つ以上のアルキル基(炭素数の制限を許可)の存在を排除しない。また、前記用語は、生成される基が非芳香族で残っている場合、環または環システム内に一つ以上の二重結合の存在を排除しない。ヘテロシクロアルカンジイル基の非制限的な例は、下記を含む:
【0070】
これらの用語は、「置換された」という修飾語と使用される場合、一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、 −SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。
【0071】
「置換された」という修飾語なしで使用される場合、用語「アラルキル」は1価の基−アルカンジイル−アリールをいい、この際の用語、アルカンジイル及びアリールは、それぞれ前記に提供された定義と一致する方法で使用される。アラルキルの非制限的な例は、フェニルメチル(ベンジル、Bn)及び2−フェニル−エチルである。用語、アラルキルが「置換された」という修飾語と使用される場合、アルカンジイル及び/又はアリール基からの一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。置換されたアラルキルの非制限的な例は、(3−クロロフェニル)−メチル及び2−クロロ−2−フェニル−エト−1−イルである。
【0072】
「置換された」という修飾語なしで使用される場合、用語「アルアルケニル」は、1価の基−アルケンジイル−アリールをいい、この際の用語アルケンジイル及びアリールは、それぞれ、前記に提供された定義と一致する方式で使用される。アルアルケニルの非制限的な例は、2−フェニルエテニル及び3,3−ジフェニル−プロップ−2−エニルである。用語「アルアルケン」は、Rが前記定義された用語であるアルアルケニルである化学式H−Rを有する化合物をいう。「末端アルアルケン」は、ただ一つの非芳香族炭素−炭素の二重結合を有するアルアルケンをいい、この際、その結合は、分子の一端部でビニル基を形成する。前記用語は、「置換された」という修飾語と使用される場合、アルカンジイル及び/又はアリールからの一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。置換されたアルアルケニルの非制限的な例は、(3−ニトロフェニル)−エテニル及び4−シアノ−4−フェニル−ブト−1−エニルである。
【0073】
「置換された」という修飾語なしで使用される場合、用語「アシル」は、Rが水素、アルキル、アリール、アラルキルまたはヘテロアリールであり、これらの用語は、前記定義されたように、基−C(O)Rをという。基−CHO、−C(O)CH
3(アセチル、Ac)、−C(O)CH
2CH
3、−C(O)CH
2CH
2CH
3、−C(O)CH(CH
3)
2、−C(O)CH(CH
2)
2、−C(O)C
6H
5、−C(O)C
6H
4CH
3、−C(O)CH
2C
6H
5及び−C(O)(イミダゾリル)はアシル基の非制限的な例である。「チオアシル」は、基−C(O)Rの酸素原子が硫黄原子に置換されて−C(S)Rであることを除いては、同様の方式で定義される。用語「アルデヒド」は、前記定義されたアルカンに該当し、この際、水素原子のうち少なくとも一つは、−CHO基に置換された。これらの用語のいずれかが「置換された」という修飾語と共に使用される場合は、一つ以上の水素原子(必要に応じて、カルボニルまたはチオカルボニル基に直接付着された水素原子を含む)が独立に−OH、−F、 −Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2によって置換された。基−C(O)CH
2CF
3、−CO
2H(カルボキシル)、−CO
2CH
3(メチルカルボキシル)、−CO
2CH
2CH
3、−C(O)NH
2(カルバモイル)及び−CON(CH
3)
2は、置換されたアシル基の非制限的な例である。
【0074】
「置換された」という修飾語なしで使用される場合、用語「アルコキシ」は、Rがアルキルであり、この用語は、前記定義されたとおりである、基−ORをいう。アルコキシ基の非制限的な例は、−OCH
3(メトキシ)、−OCH
2CH
3(エトキシ)、−OCH
2CH
2CH
3、−OCH(CH
3)
2(イソプロポキシ)、−O(CH
3)
3(tert−ブトキシ)、−OCH(CH
2)
2、−O−シクロペンチル及び−O−シクロヘキシルが含まれる。用語「アルケニルオキシ」、「アルキニルオキシ」、「アリールオキシ」、「アルアルコキシ」、「ヘテロアリールオキシ」、「ヘテロシクロアルコキシ」及び「アシルオキシ」は、「置換された」という修飾語なしで使用される場合、Rがそれぞれアルケニル、アルキニル、アリール、アラルキル、ヘテロアリール、ヘテロシクロアルキル及びアシルである、−ORに定義された基をいう。本願の脈略で使用される場合、用語「アルコキシレート」は、Rが前記定義されたアルキル基である、負に荷電された基
−ORをいう。用語「アルケニルオキシレート」、「アルキニルオキシレート」、「アリールオキシレート」、「アルアルコキシレート」、「アルアルケニルオキシレート」、「ヘテロアリールオキシレート」、「ヘテロシクロアルキルオキシレート」及び「アシルオキシレート」は、Rがそれぞれアルケニル、アルキニル、アリール、アラルキル、アルアルケニル、ヘテロアリール、ヘテロシクロアルキル及びアシルに定義される、
−ORに定義される基をいう。他に示さない場合、これらの「オキシレート」という用語は、置換及び非置換の基の全てを含む。用語「アルコキシジイル」は、2価の基−O−アルカンジイル−、−O−アルカンジイル−O−または−アルカンジイル−O−アルカンジイル−をいう。用語「アルキルチオ」及び「アシルチオ」は、「置換された」という修飾語なしで使用される場合、Rが、それぞれアルキル及びアシルである基−SRをいう。用語「アルコール」は、水素原子のうち少なくとも一つがヒドロキシ基に置換された、前記定義されたアルカンに該当する。用語「エーテル」は、水素原子のうち少なくとも一つがアルコキシ基に置換された、前記定義されたアルカンに該当する。これらの用語のいずれかが「置換された」という修飾語と使用される場合、一つ以上の水素原子は、独立に−OH、−F、−Cl、−Br、−I、−NH
2、−NO
2、−CO
2H、−CO
2CH
3、−CN、−SH、−OCH
3、−OCH
2CH
3、−C(O)CH
3、−NHCH
3、−NHCH
2CH
3、−N(CH
3)
2、−C(O)NH
2、−OC(O)CH
3または−S(O)
2NH
2に置換された。
【0075】
請求範囲及び/又は明細書において、用語「含む」と共に使用される場合、冠詞(「a」または「an」)の使用は、「1」を意味することができるが、また、「一つ以上」、「少なくとも一つ」及び「一つまたは一つを超える」の意味と一致する。
【0076】
本出願全体にわたって、用語「約」は、特定の値が装置の誤差の固有な変動を含むということを示すために使用され、この方法は、被験者の間に存在する値または変動を決定するために使用される。
【0077】
用語「含む」及び「有する」は、開放型(open−ended)連結動詞である。「含む」、「含む」、「有する」及び「有する」などのこれらの動詞の一つ以上の任意の形態または時制もまた開放型である。たとえば、一つ以上の段階を「含む」、「有する」、または「含む」の任意の方法は、その一つ以上の段階のみ有することに制限されず、他の列挙されていない段階を包括する。
【0078】
用語「エポキシド」は、一つの酸素原子と単一結合によって連結された二つの炭素原子を含有した3員環をいう。「エポキシド化反応」は、分子上にエポキシドの生成を誘導する反応である。最も一般的なエポキシド化反応は、分子内のアルケンまたはアルアルケン官能基をエポキシド基に転換することからもたらされる。
【0079】
一番目の化合物の「異性体」は、それぞれの分子が、一番目の化合物と同様の構成原子を含有するが、三次元でこれらの原子の形態が異なる別の化合物である。
【0080】
「方法」は、最終生成物に、結果または結果物を誘導する一連の一つ以上の段階である。本明細書で使用される際に、単語「方法」は、単語「工程」と互いに交換的に使用される。
【0081】
「ペルオキシド」は、二つの酸素原子の間の単一の共有結合を含有する分子であり、それぞれの酸素はまた、水素、アルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロアリールまたはヘテロシクロアルキル基に結合し、これらの基は、前記定義された、1〜30個の炭素原子を含有する。一部の実施形態では、ヒドロペルオキシドは、二つの酸素原子の間の単一の共有結合を含有する化合物であり、酸素原子のいずれか一つは、水素原子に結合し、他の酸素はアルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロアリールまたはヘテロシクロアルキル基に結合し、これらの基は、前記定義され、1〜20個の炭素原子を含有する。ヒドロペルオキシドの一部の非制限的な例は、エチルベンゼンヒドロペルオキシド、tert−アミルヒドロペルオキシド、シクロヘキシルヒドロペルオキシド、及びクメンヒドロペルオキシドを含む。一般的に、二つの酸素原子の間のペルオキシド結合は、一般的に不安定で容易に分解されたり、他の分子と反応する。ペルオキシドの一部の非制限的な例は、HO−OH(ハイドロゲンペルオキシド)及び(CH
3)
3CO−OH(tert−ブチルヒドロペルオキシド)を含む。
【0082】
「ペルオキシド転換率」は、反応で消費されるペルオキシドの量の測定値である。この測定値は、指定された反応の効能を比較するために、そして目的の生成物の生産で消費される試薬の量の尺度として使用され得る。
【0083】
「固体担体」または「キャリア」は、金属触媒または他の試薬が沈着され得るが、試薬または金属触媒を分解したり、消費しない不活性物質に関するものである。一部の場合には、固体担体またはキャリアはシリカ、アルミナ、有機重合体または高い表面積を有する他の非反応性物質であってもよく、一般的に高い多孔性を有する。付加的には、一部の実施形態では、固体担体またはキャリアは、その構造全体にわたって多くの気孔、空隙または他の小さい隙間を含有する。一部の実施形態では、シリカ粒子は稠密でかつ密集した塊に凝集されたり、共に連結され、または緩く組まれ、緩く固まった凝集体に容易に崩壊される粒子を含有することができる。担体またはキャリアは、触媒的に活性な原子または複合体に結合するために使用され得る。一部の実施形態では、固体担体の主要な部分は、シリコンジオキサイド(SiO
2)と無定形の形態のSiO
2である。一部の非制限的な例では、固体担体は、薄層クロマトグラフィー、カラムクロマトグラフィー、触媒担体または他の商業的用途を含むが、これに制限されない様々な目的のために購入可能なシリカ化合物である。一部の場合では、固体担体は、ダビシル(登録商標)643多孔性物質または類似の市販の物質のようなシリカゲルである。一部の実施形態では、固体担体は、MCM−41またはSBA−15のようなメゾ多孔性シリカである。
【0084】
前記定義は、本願に参考として含まれる任意の参考文献での相反する定義に優先する。しかし、特定の用語が定義されるという事実は、定義されていない任意の用語が不明確であることを表すものと見なされてはならない。むしろ、使用された全ての用語は、当業者が本発明の範囲を理解し、実施できるように、本発明を開示するものと考えられる。
【0085】
V.実施例
下記の実施例は、本発明の好ましい実施形態を立証するために含まれる。下記の実施例で開示された技術は、本発明の実施でよく機能するもので本発明者によって発見された技術を示し、従って、本発明の実施のための好ましい態様を構成するものと見なされ得ることが当業者によって理解されるべきである。しかし、当業者は、本発明に照らし、開示された具体的な実施形態では、多くの変化が可能であり、また、本発明の思想と範囲を逸脱することなく同様の結果を取得できることを理解するであろう。
【0086】
実施例1:触媒試験の手順
88.03gの1−オクテン、10.49gのTBHPオキシデート(イソプロピルアルコール中の41%のTBHP)及び3.24gのノナン(内部標準)を組み合わせて製造された反応混合物の14mL分液を凝縮器及び磁気撹拌機を備えた三フロフラスコ中に入れ、N
2大気下で80℃に加熱した。反応混合物に乾燥触媒50mgを添加して反応を開始した。60分後、隔膜を通じて針/シリンジによって試料を収集した。触媒効能の尺度としては、各触媒に対するペルオキシドの転換率を測定する。ペルオキシドの含有量は、ヨウ素適正を用いて測定し、組成物は、GCクロマトグラフィーを用いて決定した。
【0087】
実施例2:TBHPエポキシド化反応で異なるチタンシリカ触媒の製造と比較
実施例A−Ti−MWWチタノシリケートのエポキシド化試験:米国特許8,124,555号に基づいて製造されたTi−MWW触媒を標準的な試験手順に従って試験し、>98%の選択性でTBHPの1,2−エポキシオクテンへの37%の変換率が得られた。
【0088】
実施例B−TiCl
4によってチタン化されたシリカD643の製造及びエポキシド化試験:0.5gのダビシル(登録商標)643シリカ(シグマアルドリッチ(SigmaAldrich)、200−425メッシュ、気孔の大きさ150Å、表面積300m
2/g)を100mL/分のN
2の流れ条件下で石英か燃チューブ内に入れ、2時間の間、200℃で乾燥させた。周囲温度に冷却した後、トルエン中、1MのTiCl
4溶液1.5mLをシリカベッドの上部にゆっくり添加した後、3mLの乾燥トルエンを添加した。下記プログラムを用いて、100mL/分のN
2の流れ条件下でチューブを漸進的に800℃に加熱した:60℃で10分→200℃で15分→600℃で60分→700℃で30分→800℃で30分。標準的な試験手順に従って試験された触媒は、TBHPの1,2−エポキシオクテンへの40%の転換率をもたらした。
【0089】
実施例C−TiCl
4によってチタン化されたメソ多孔性シリカMCM−41の製造及びエポキシド化試験:0.5gのMCM−41メソ多孔性シリカ(シグマアルドリッチ、2.1−2.7nmの気孔の大きさ、表面積〜1000m
2/g)を100mL/分のN
2の流れ条件下で石英か燃チューブに入れ、2時間の間、200℃で乾燥させた。周囲温度に冷却した後、ヘキサン中の1MのTiCl
4溶液1.0mLをシリカベッドの上部にゆっくり添加した後、3mLの乾燥トルエンを添加した。下記プログラムを用いて、100mL/分のN
2の流れ条件下、チューブを漸進的に800℃で加熱した:25℃で30分→200℃で15分→600℃で60分→700℃で30分→800℃で30分。標準試験の手順に従って試験された触媒は、>98%の選択性でTBHPの1,2−エポキシオクテンへの52%の転換率をもたらした。
【0090】
実施例D−シリカD643上に担持された非加水分解Ti−SiO
2ゾル−ゲルの製造及びエポキシド化試験:0.55mLのSiCl
4、1.19mLのSi(OiPr)
4と0.26mLのTi(OiPr)
4の混合物(参考として本明細書に組み込まれるLafond et al.によって使用された同様の方法)を3gダビシル(登録商標)643シリカ(シグマアルドリッチ、200−425メッシュ、気孔の大きさ150Å、表面積300m
2/g)中に含浸させ、試料を2時間の間、200℃で乾燥させた。生成された少し湿った粉末をN
2雰囲気下25mLのステンレス鋼パール(Parr)マイクロ−反応器内に入れて2時間45分(165分)間110℃の内部温度で加熱した。反応は、150℃の内部温度で6時間30分(390分)間、次の日続いた。反応器を周囲温度に冷却し、脱気した。0.8gの生成された物質を石英か燃チューブに入れ、下記プログラムを用いて、100mL/分のN
2の流れ条件下で漸進的に800℃で加熱した:100℃で10分→200℃で15分→600℃で60分→700℃で30分→800℃で30分。標準試験の手順に従って試験された触媒は、>98%の選択性でTBHPの1,2−エポキシオクテンへの8%の転換率をもたらした。
【0091】
実施例E−Si(OiPr)
4−TiCl
4の混合物でチタン化されたシリカD643の製造及びエポキシド化試験:0.5gのダビシル(登録商標)643シリカ(シグマアルドリッチ、200−425メッシュ、気孔の大きさ150Å、表面積300m
2/g)を100mL/分のN
2の流れ条件下で石英か燃チューブに入れ、2時間の間、200℃で乾燥させた。周囲温度に冷却した後、0.3mL(0.264g、0.001mol)Si(OiPr)
4とトルエン1MのTiCl
4溶液0.5mLの混合物をシリカベッドの上部にゆっくり添加した。下記プログラムを用いて、100mL/分のN
2の流れ条件下でチューブを漸進的に800℃で加熱した:50℃で30分→80℃で45分→100℃で20分→200℃で25分→600℃で60分→700℃で30分→800℃で45分。標準試験の手順に従って試験された触媒は、57%の選択性でTBHPの1,2−エポキシオクテンへの48%の転換率をもたらした。
【0092】
実施例F−Si(OiPr)
4で前処理され、TiCl
4によってチタン化されたシリカD643の製造及びエポキシド化試験:0.5gダビシル(登録商標)643シリカ(シグマアルドリッチ、200−425メッシュ、気孔の大きさ150Å、表面積300m
2/g)を100mL/分のN
2の流れ条件下で石英か燃チューブに入れ、2時間の間、200℃で乾燥させた。周囲温度に冷却した後、0.3mL(0.264g、0.001mol)のSi(OiPr)
4をシリカベッドの上部にゆっくり添加した後、1mLの乾燥トルエンを添加した。1mLの1MのTiCl
4溶液を二つの部分にシリカベッドの上部に添加し、シリカベッドをトルエンで洗浄した。下記プログラムを用いて、100mL/分のN
2の流れ条件下、チューブを漸進的に800℃で加熱した:50℃で15分→100℃で15分→200℃で15分→600℃で60分→700℃で30分→800℃で30分。標準試験の手順に従って試験された触媒は、96%の選択性でTBHPの1,2−エポキシオクテンへの48%の転換率をもたらした。
【0093】
実施例G−Si(OiPr)
4で前処理され、TiCl
4によってチタン化されたMCM−41メソ多孔性シリカの製造及びエポキシド化試験:0.5gのMCM−41メソ多孔性シリカ(シグマアルドリッチ、2.1−2.7nmの気孔の大きさ、表面積〜1000m
2/g)を100mL/分のN
2の流れ条件下で石英か燃チューブに入れ、2時間の間、200℃で乾燥させた。周囲温度に冷却した後、0.3mL(0.264g、0.001mol)のSi(OiPr)
4をシリカベッドの上部に徐々に添加した後、2mLの乾燥ヘキサンを添加した。0.3mLの純粋なTiCl
4をシリカベッドの上部に添加した後、3mLのヘキサンで洗浄した。下記プログラムを用いて、100mL/分のN
2の流れ条件下でチューブを漸進的に800℃で加熱した:50℃で15分→100℃で15分→200℃で15分→600℃で60分→700℃で30分→800℃で30分。標準試験の手順に従って試験された触媒は、>98%の選択性でTBHPの1,2−エポキシオクテンへの59%の転換率をもたらした。
【0095】
本明細書で開示されて請求されたすべての化合物、複合体及び方法は、本発明に照らし、過度の実験なしで作られて実施され得る。本発明の化合物、複合体及び方法が好ましい実施形態の面で開始されたが、本発明の概念、思想及び範囲を逸脱することなく、化合物、複合体及び方法だけでなく、本明細書に開示され方法の段階で、または段階の順序で変化が適用され得ることが当業者に明らかであろう。より具体的には、化学的に関連するいくつかの製剤が、同一であるかまたは類似の結果を成しながら、本明細書に開示された製剤を代わりにできることが明らかであろう。当業者に明らか全てのそのような類似した代替物と変形は、添付された請求範囲によって定義される本発明の思想、範囲及び概念以内と見なされる。
【0096】
参考文献
例示的な手順または本明細書に開示されたものを補充する他の詳細事項を提供する下記の参考文献は、具体的に参考として本明細書に組み込まれる。
−米国特許6,759,540号
−米国特許8,124,555号
−Anderson, N.G., Practical Process Research & Development − A Guide For Organic Chemists, 2
nd ed.,Academic Press, New York, 2012.
−Lafond, et al., J. of Molecular Catalyst, 182−183:81−88, 2002.
−March‘s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 2007.