【実施例】
【0035】
本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
【0036】
本発明の実施例を以下に示す。
1. 5−メタクリルアミド−1H−テトラゾールの合成
<実験操作>
(1) 5−アミノ−1H−テトラゾール 3.09g、テトラヒドロフラン90mL, 水11.4mLの溶液にメタクリロイルクロリド3.79mLを30分かけて滴下し、3時間後に水90mLを加え、冷蔵保存した。
(2)この溶液を吸引ろ過し、ろ紙上の白い固体を真空乾燥した。
【0037】
【化4】
5-Methacrylamido-1H-tetrazoleの合成
【0038】
<結果>
作製した(メタ)アクリルアミドモノマーの
1H NMRの測定結果を
図1に示す。収率は70%であった。
【0039】
2. テトラゾール含有ポリマー修飾型固定相 (PTz) の合成
2-1. 3−メタクリルアミドプロピルトリエトキシシラン(MAS)の合成およびシリカゲルへの担持
<実験操作>
(1)3−アミノプロピルトリエトキシシラン11.09gをTHF25mLに溶解し、 トリエチルアミン7.39mLを加えた。
(2)氷冷下でメタクリロイルクロライド5.08mLを30分かけて滴下。
(3)21時間後、この溶液を吸引ろ過し、 エバポレーターで濃縮後、真空乾燥を行った。(MASの単離)
(4)乾燥させたシリカゲル13.67gにトルエン60mLを加え、120℃で蒸留(共沸)した。
(5)MAS、ピリジン8.46gおよびヒドロキノンを加え、24時間加熱還流した。
(6)還流終了後、メタノールでろ過し、ろ紙上の固体を乾燥した。(MAS-Siの単離)
【0040】
2-2. メタクリルアミドモノマーの重合による固定相の合成
<実験操作>
(1)MAS-Si 700mgに対し、400〜1300mgのメタクリルアミドモノマーを用い、溶媒5mL中で、60℃、3時間ラジカル重合を行った。開始剤には、すべて過硫酸アンモニウムを用い、溶媒は水/ピリジン=4/1とした。
(2)重合後、メタノールおよびアセトンでろ過し、乾燥した。
(3)出来上がった充填剤を、スラリー溶媒(メタノール/水=4/1)20mLを用いてステンレスカラムに充填した。
【0041】
【化5】
PTz固定相の合成
【0042】
3. カラムテスト法による特性評価
3-1. カラムテスト法
カラムテスト法を用いて、表1の各項目について表2に示す各分離剤について評価を行った。
測定条件
移動相: α(AX), α(CX)…Acetonitrile (ACN)/AcONH
4 buffer (100 mM, pH 4.76 )
上記以外の項目…Acetonitrile (ACN)/AcONH
4 buffer (20 mM, pH 4.76 )
カラム温度: 30 °C
検出器: UV 254 nm
【0043】
<結果と考察>
実施例のカラム(以下、PTzカラムともいう)及び市販のカラム(TSKgel Amide-80, Halo−HILIC)の測定結果を表2に示した。ウリジンの保持k(U)に関して、実施例のカラムではk(U)=4.562〜8.944の値が得られた。これは、市販カラムの中で最大の保持を有するTSKgel Amide-80のk(U)=4.58と同等以上であり、大きく上回るものもあった。親水性選択性の大きさを表すα(OH)の値は1.927〜2.25であった。よって、このPTzカラムはウリジンなどの親水性物質に対しての保持や選択性が非常に高いと考えられる。また、α(Tb/Tp)の値が1以上であることから、酸性型の分離剤であると考えられる。
図3として、実施例のカラムと市販品のカラムのk(U)を比較した結果を示す。
【0044】
【表1】
【0045】
【表2】
【0046】
4. 市販のカラムとの比較
8種の核酸および核酸塩基を試料とし、 PTzカラム(実施例)、TSK gel Amide-80(5μm)、Halo-HILICの3つのカラムでその分離性能を比較した。
【0047】
<結果と考察>
8種の試料 (Guanine, Guanosine, Uracil, Uridine, Adenine, Adenosine, Cytosine, Cytidine) の分離性能比較の結果を
図4に示した。
測定条件
移動相: ACN/20 mM AcONH
4buffer = 90/10
検出器: UV 254 nm
カラム温度: 30 ℃
【0048】
図4のクロマトグラムで示されるように、Amide-80(5μm)ではAdenosineとUridineが、Halo-HilicではAdenineとAdenosineが同時に溶出し, 分離できなかった。これに対して、PTzのみがこれら8種の化合物全ての分離を達成することができた。したがって、PTzカラムはヌクレオシドや、核酸類のような親水性の化合物に対しての分離性能が高いことが確認された。
【0049】
<参考例:カラムの分類について(市販のカラムとの比較)>
カラムテスト法に利用した検体を使って、log k(U)(k(uridine)の対数値)および log k(TMPAC)(k (trimethylphenylammonium chloride)の対数値)の値をプロットすることにより、カラムを分類することができる。
この手法の長所は、性質が分からないカラムを分類する際、たった2つの試料を用いることである程度の分類が可能であり、簡便に行えることである。市販のカラム15本(
図5参照)とPTzカラムを用いてこのプロットを行った。
【0050】
<結果>
log k(U) および log k(TMPAC)を用いたプロットの結果を
図5に示した。ここから読み取れるように、市販のカラムはアミン系、シリカ系、アミド系などに分類することができる。その中でも、PTzカラムはアミド系のカラムと性質が類似していた。
【0051】
上記1.と同様の方法により、以下の表3に示す(メタ)アクリルアミドモノマーを作製した。ただし、3−アミノ−1,2,4−トリアゾールと、5−アミノ1H−テトラゾールを原料とした反応ではテトラヒドロフランを用いず水溶媒のみで反応を行ない、塩基として炭酸水素カリウムを用いた。これらのモノマーの生成は、
1H NMR及びMSで確認し、矛盾のない結果を得た。
【0052】
【表3】
【0053】
上記2−1.で作製した3−メタクリルアミドプロピルトリエトキシシラン(MAS)で修飾したシリカゲル粒子とシリカゲル粒子状で、上記表3に記載の(メタ)アクリルアミドモノマーを以下の表4に記載の条件で重合した。なお、MA thiazoleやMA thiadiazoleはモノマー及びポリマーの水溶性が低かったため、全てのモノマーが溶解するジメチルホルムアミド(DMF)系での重合を行なった。
【0054】
【表4】
【0055】
<結果と考察>
実施例のカラム(以下、PTzカラムともいう)及び市販のカラム(TSKgel Amide-80, Halo−HILIC)を用いたカラムテストの結果を表5に示した。なお、TSKgel Amide-80はポリアクリルアミド修飾型、Halo−HILICは未修飾のシリカ型のカラムである。
【0056】
【表5】
【0057】
ウリジンの保持k(U)に関して、表4に記載のモノマー(MA tetrazoleを除く)によるカラムではk(U)=0.40〜0.57の値が得られた。これは同時に重合したMA tetrazoleによるカラムのk(U)=5.15に比べると小さく親水性は高くないが、親水性クロマトグラフィー用の分離剤としては用いることができる値である。また、固定相表面のpHの状態を示すα(Tb/Tp)の値は、MA thiadiazole、MA triazole、AA tetrazoleの場合に1以下となり、これらのモノマーで修飾した固定相表面が塩基性であることを示した。
MA tetrazoleによる固定相は、水中で重合した場合と同様にα(Tb/Tp)が1以上であることから、酸性型の分離剤であると考えられる。
AA tetrazole型固定相で、α(Tb/Tp)が0.68と塩基性の性質を示した。
【0058】
次に、横軸にα(OH)、縦軸にα(Tb/Tp)をとって各カラムの値をプロットすると、
図6のようになった。α(Tb/Tp)が1付近なら中性の表面、1以上なら酸性、1以下なら塩基性の表面であることを示す。α(OH)が大きいほどヒドロキシ基の選択性が高いことを示し、プロットの右上の方が親水性が大きくなる方向である。表4に記載のモノマーを用いて調製した固定相は16〜20に相当する。
MA thiazoleやMA thiazdiazoleの重合修飾によって中性〜弱塩基性のHILIC固定相を、MA triazoleの重合修飾によって塩基性のHILIC固定相を調製できる。表3に記載の用いた条件では、MA tetrazole修飾型カラムのプロット位置は双性イオン型の領域にとどまったが、k(U)=10のMA tetrazole修飾型カラムではずっと右上の領域にプロットが現れた。
【0059】
実施例1で作製したPTzカラムについて、各モノマー濃度ごとの分離特性を示す図として
図7を示す。縦軸と横軸は
図6と同じであり、図中の符号の数字も
図6と同じものを意味する。
図7に示された結果から、モノマー濃度を増加させることでPTzカラムの親水性と選択性を高めることができる。
【0060】
<実施例2:一体型担体(モノリスカラム)>
1. 多孔性シリカモノリスカラムの調製
多孔性シリカモノリスの調製は、公知の方法により行った。具体的には、アルコキシシランの加水分解、重縮合により引き起こされるゾル-ゲル法により行った。
2. フューズドシリカキャピラリーの内壁処理
100μm I.D.×375μm O.D.のヒューズドシリカキャピラリーカラム(Polymicro Technologies)に1N-水酸化ナトリウムを送液し、40℃で3時間放置した。次に1N−塩酸で洗浄を行った後、40℃で3時間放置した。最後に、超純水、アセトンの順に洗浄を行い、乾燥した。
3. Hybrid型シリカモノリスキャピラリーカラムの調製
氷冷下でポリエチレングリコール(PEG) 0.9gと尿素2gに0.01N酢酸20mlを加えて30分間撹拌した。混合溶液にテトラメトキシシランとメチルトリメトキシシランの混合アルコキシシラン(3:1 vol/vol)を9ml滴下し30分間撹拌を行った。さらに、40℃で10分間加熱した後、混合溶液をPTFEフィルター(0.45μm)でろ過した。この混合溶液を内壁処理を行ったフューズドシリカキャピラリー中に注入し、40℃で24時間反応を行いゲル化させた。次に、両端を0.06g/ml尿素水に浸した状態でこのキャピラリーを90℃加熱エージング処理し(24時間)、その後120℃で熱処理を4時間行った。熱処理を行うことにより骨格の再結合、および尿素の分解により発生するアンモニアによるシリカの溶解によるメソポアの形成を行った。その後、キャピラリー内をメタノールで洗浄した。最後にキャピラリー内により完全に乾燥させ熱処理を行い、シリカモノリスキャピラリーカラムを得た。
4. シリカモノリスキャピラリーカラムのMASによるシリル化
メタノール、トルエンで置換したシリカモノリスキャピラリーカラムにMAS、トルエン、ピリジン混合溶液(体積比=1:1:1)をシリンジポンプで24時間送液した(反応温度80℃)。その後、トルエンでキャピラリー内の洗浄を行った。同様の操作を再度行いシリカモノリスキャピラリーカラムのMAS化を行った。
5. 重合修飾型固定相の調製
重合開始剤を含んだモノマー(実施例1で作製したものと同じもの)溶液を、あらかじめ水で置換したMASカラムに室温で十分量送液し、カラム内にモノマー溶液の充填を行った。その後、それぞれの重合温度(60℃)に設定されたウォーターバス中に両端を密栓したカラムを投入し所定の時間重合させた。最後にHPLCポンプにより水またはメタノールを送液し、キャピラリー内を洗浄することにより重合修飾型シリカモノリスキャピラリーカラムを得た。モノマーの構造は
図1に、重合条件は以下に示した。
【0061】
・重合修飾型固定相の調製条件
モノマー濃度:150mg/ml
反応時間:2hr
開始剤:5mg(過硫酸アンモニウム)/ 1% NH
3aq in water
【0062】
測定条件
実施例1と同一条件
【0063】
【表6】
【0064】
<モノリスカラムの調製−2>
実施例2の4.で作製したMAS化されたシリカモノリスキャピラリーカラムに、下記の条件で調製したモノマー溶液を充填し、以下の表7に示すように、モノマーの濃度を変えてカラム内重合反応を行い、各モノリスカラムを得た。
開始剤: 過硫酸アンモニウム (5mg/ml in 4.1mol/l NH
3aq)
温度60℃
反応時間:2hr
このモノマーを重合してできるポリマーは、水又はMeOHへの溶解性が富んでいるため、モノマーの仕込み量が比較的大きかった。当該実験ではその仕込み量範囲の広さを利用して、モノマーの仕込み量とカラム性能(保持や選択性)の評価を行った。結果を表7に示す。
【0065】
【表7】
クロマトグラフィー条件:
Mobile phase: AN90%-20 mM AcONH
4 buffer pH 4.7, Flow rate: 0.5 ml/min, Pressure: 12 kgf, temperature: 30℃, Detection: 254 nm, Sample: α(CH2): k(uridine)/k(5-methyluridine), α(OH): k(uridine)/k(2'-deoxyluridine), α(Tb/Tp): k(theobromine)/k(theophylline), α(V/A): k(vidarabine)/k(adenosine), α(2dG/3dG): k(2'-deoxyguanosine)/k(3'-deoxyguanosine), k(TPA): N,N,N-trimethylphenylammonium chloride
【0066】
上記で作製したモノリスカラムのうち、モノマーの濃度が200mg/mlのもの(PTZ200)と、様々なHILIC型モノリスカラム、及び粒子充填型カラムとを用いて、分離特性を比較した。クロマトグラフィーの条件や分離対象のサンプルは表7と同様である。結果を表8と
図8に示す。
図8の縦軸と横軸は
図6と同じであり、図中の符号の数字も
図6と同じものを意味する。表8に記載されたPSDMA、PAAm、PAEMAの各モノマーの構造を
図8中に示す。
【0067】
【表8】
【0068】
本発明にかかるPTZ−200はモノリスカラム(重合修飾モノリス型)で最も大きい保持を発現した。また、粒子充填型カラムと比較すると、ZIC−HILICの1.75倍、NH2−MSの1.51倍、Amide−80の0.8倍の保持能力を有していた。モノリスカラムのポロシティーを考慮に入れるとPTZ−200は非常に大きな保持が発現されている事がわかった。この特徴はモノリスカラムの弱点である保持能力の低さを十二分に補う特性だといえる。
また、選択性に関しても他のカラムに比べ特徴的な値を示していた。親水性選択性は最も大きな値を示しており、疎水性選択性も比較的大きな値を示していた。OH基の向きや位置選択性は他のカラムの方が大きな結果となった。
【0069】
また、モノマー濃度を変えて調製したPTZ−150、及び上記表8に記載のPSDMA、PAEMA、PAAmを用いて調製したカラムを用いて、フッ化ウラシルの類縁体の分離を行った。分離対象とした化合物群は、構造が極めて類似しており、一般的にこれらの一斉分離は困難である。結果を
図9に示す。
クロマトグラフィーの条件と、分離対象とした化合物は以下の通りである。
Mobile phase: AN90% 20 mM AcONH
4 buffer, Column: a: PSDMA 26cm, b: PAEMA 26 cm, c: PAAm 25cm, d: PTZ-150 26.7 cm, Flow rate: 0.5 ml/min, Pressure: 15 kgf, temperature: 30℃, Detection: 254 nm
Sample 1: toluene, 2: trifluorothymidine, 3: 5'-deoxy-5-fluorouridine, 4: 2'-deoxy-5-fluorouridine, 5: 2'-deoxy-2'-fluorouridine, 6: thymidine, 7: 2'-deoxyuridine, 8: 5-fluorouridine, 9: uridine
【0070】
図9の結果から、PSDMAやPAEMAでは全ての化合物を分離することはできなかった。PAAmでは全てのピークトップを確認できたが、4,5,6,7のサンプルは完全に分離できなかった。しかし、PTZ−150カラムは全ての化合物を完全に分離することができた。これはPTZの特徴である大きな保持と良好な選択性によって分離が達成された一例である。
【0071】
本発明では、式(I)で示される化合物に由来する構造を有するモノマーをシリカゲルのような担体に重合、修飾することにより新たな分離剤を開発した。本発明で開発した分離剤を充填したカラムの中で、MA tetrazoleが担持された分離剤は、弱い酸性型のカラムであり、ウリジンの保持や親水性選択性が極めて高い特性を示した。本発明の分離剤の中でも特に、MA tetrazoleが担持された分離剤を用いたカラムは、親水性物質の保持及び選択性が市販のカラムと比較して非常に大きく、またヌクレオシドや核酸塩基の分離性能に優れる。