(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
変圧器の鉄心構造には大きく分けて、巻鉄心と積鉄心とがある。配電用変圧器では主に巻鉄心が採用されており、パワーエレクトロニクス用の小さな変圧器や配電変圧器よりも大きな大容量変圧器では積鉄心が採用されている。変圧器の鉄心材料には、けい素鋼板と非晶質合金とがある。非晶質合金を鉄心材料に採用したアモルファス変圧器は、けい素鋼板を鉄心材料に採用したけい素鋼板変圧器よりも無負荷時の損失が小さく、エネルギー消費効率の良い変圧器として知られている。
【0003】
近年、エネルギー消費効率の良い非晶質合金を用いた大容量の変圧器が望まれているが、積鉄心構造を用いたものについては、次の理由により従来は製造が困難であった。まず、大容量の変圧器にはより大きな断面積を有する鉄心が必要であり、鉄心幅も積層厚さも通常の変圧器用鉄心と比べて非常に大きくなる。しかしながら、非晶質合金はけい素鋼板の約1/10の厚さの材料であり、大容量変圧器に用いる鉄心を製造するためには積層枚数が膨大になってしまう。また現在の技術では、製造可能な非晶質合金の材料幅は、大容量変圧器の鉄心として必要な材料幅に比べて狭く、更に供給される材料幅のバリエーションも少ない。したがって、大容量変圧器を非晶質材料で製造するには、鉄心の材料幅が足りないということがある。
【0004】
本技術分野の背景技術として、特開2012-138469(特許文献1)がある。この公報には、「アモルファス鉄心を良好に自立させ、自立させた際の鉄心のコーナ部の自重による垂れ下がりを従来よりも改善し、鉄心とコイルの組立をスムーズに行い、作業効率を向上させる。アモルファス材により形成され、ラップ部を上部に配置し、鉄心支持部材により指示された状態でほぼ垂直に自立したアモルファス鉄心と、該アモルファス鉄心に挿入するコイルとを有するアモルファス変圧器において、前記鉄心支持部材は、前記アモルファス鉄心の側面を支持する鉄心支持部材と該鉄心のコーナ部を支持するコーナ部支持部材から成り、一体化し、前記鉄心支持部材は、鉄心の少なくとも1つの側面に沿うようにほぼ垂直に配置されていることを特徴とする。」と記載されているが、大容量変圧器とするための方法については開示されていない。
【0005】
また、特開平11-186082号公報(特許文献2)には、「アモルファス磁性合金箔のリボンの重合体からなる単位重合体を容易に形成することができるようにして作業能率を向上させたアモルファス積鉄心の製造方法を提案する。複数のアモルファス磁性合金箔のストリップを重ね合わせたものからなるストリップ重合体を所定の長さに切断することにより単位重合体10を形成する。順次形成される単位重合体を長さ方向に位置をずらして段積みすることにより単位重合体の積層ブロック11を形成する。積層ブロック11を構成している単位重合体10を上から順に取って作業台上に積層することにより積鉄心の脚部及び継鉄部を形成する。」と記載されており、非晶質合金による積鉄心の構成が開示されているが、こちらも単一幅の鉄心材料を積層して構成された鉄心であり、大容量変圧器の鉄心を製造することはできない。
【発明を実施するための形態】
【0011】
以下、本発明を実施例ごとに図面を用いて説明する。
【実施例1】
【0012】
図1〜6を用いて、本発明の実施例1について説明する。
図1、
図2では実施例1の変圧器の中身構造を説明する。
図1は正面図であり、
図2は側面図である。本発明の変圧器の中身構造は、鉄心100、コイル200、上締金具300、下締金具400、鉄心固定金具500、締金具締付スタッド600、ベース700からなる。鉄心固定金具500は、積層された鉄心100の周囲を囲む断面四角形状の筒状の部材であり、コイル200を貫通するように配置される。また、締金具締付スタッド600により上締金具300、下締金具400を締付することで、鉄心固定金具500内に配置されている鉄心100を固定する。更に鉄心固定金具500は、上締金具300、下締金具400にボルトで固定される。下締金具400は、最も下部に配置されるベース700にボルトで固定される。
【0013】
図3(a)は、
図1に記載された鉄心100の斜視図であり、
図1からコイル200、上締金具300、下締金具400、鉄心固定金具500、ベース700を取り除いたものである。鉄心100は、所定幅の鉄心材料107と鉄心材料108を並列に並べて構成されており、複数の板状鉄心材料がY軸方向に積層されている。鉄心材料として非晶質合金材料のような薄い材料を用いる場合、例えば15〜20枚程度を積層したものを1つの積層単位(以後、積層ブロックと表現する)とし、この積層ブロックの複数個を更に積層して鉄心100を構成する。鉄心材料107と鉄心材料108の間、及び鉄心材料110と鉄心材料111の間には、板状の部材である材料境界仕切り900が挟まれている。また、複数の積層ブロックが積層されて鉄心100が構成されているが、その積層ブロック間の一部には板状の部材である積層面仕切り800が挟まれている。材料境界仕切り900と積層面仕切り800に関する詳細は、
図4を用いて後述する。
【0014】
この鉄心100の構成を説明するにあたり、まず各部の名称について説明する。この鉄心100は、3つの鉄心脚の一部であって
図1、2におけるコイル200の内側に配置されるコア部(断面Aの周辺)と、3つの鉄心脚を繋ぎ、上締金具300や下締金具400で固定されるヨーク部(断面Bの周辺)とから成る。本実施例では、コア部とは鉄心部材107、108、110、111の一部であってコイル200の内側に配置される領域を意味し、ヨーク部は鉄心部材101、102、104、105を意味する。コア部の詳細は
図4、ヨーク部の詳細は
図5を用いて後述する。
【0015】
図3(b)は、第一の積層ブロックの正面図であり、
図3(c)は第一の積層ブロックに隣接して積層される、第二の積層ブロックの正面図である。
図3(d)は、
図3(b)と
図3(c)を重ねた状態を示す正面図である。それぞれの図において説明を簡略化するために材料境界仕切り900を省略しているが、鉄心材料101と102、104と105、107と108、110と111のそれぞれの間には材料境界仕切り900が挿入される。
【0016】
図3(b)〜(c)は正面図のために表示されていないが、各積層ブロックは、紙面奥行き方向に同じ鉄心材料が例えば15〜20枚程度積層されて構成されている。
図3(b)と
図3(c)は、互いに裏返しの関係である。
図3(a)の鉄心100は、
図3(d)を複数積層し、材料境界仕切り800と積層面仕切り900とを挿入したものであり、これは即ち
図3(b)の積層ブロックと
図3(c)の積層ブロックを交互に積層して構成されたものである。
【0017】
図3(d)に表されているように、鉄心材料110と鉄心材料111の境界部分が一直線になるように第一、第二の各積層ブロックを積層し、かつ鉄心材料107と鉄心材料108の境界部分が一直線になるように第一、第二の積層ブロックを積層すると、接合部115の位置で第一と第二の積層ブロックが所定幅ずれることになる。このずれ量は、中央鉄心脚の形状に応じて決定されるが、例えば十数mm程度であり、設計仕様により任意に選択できる。本実施例では、中央鉄心脚の鉄心材料111とヨーク部の鉄心材料101との接合部115は、中央鉄心脚の鉄心材料111の延びる方向(Z軸方向)に対して45度となるように形成されているが、この接合部115の角度はこれに限定されるものではない。本実施例の場合、中央鉄心脚を構成する鉄心材料110と鉄心材料111を挟んで左右に配置されている2つの鉄心材料101は、この中央鉄心脚の存在により分断されて2つの部材となっている。しかし例えば鉄心材料111の延びる方向(Z軸方向)に対して60度の角度で接合部115を形成した場合、これらの鉄心材料101は分断されず、繋がった1つの部材とすることができる。1つの部材とすれば上部ヨーク部の組立性が向上する。このように接合部115の角度は上部ヨーク部の作業性を考慮して変更することができる他、内周側と外周側の角度を異なる角度とすることも可能である。例えば内周側を磁気抵抗が大きくなるような角度にすることで、内周に集中する磁束を外周側に移動させ、鉄心脚の磁束均一化を図ることもできる。
【0018】
なお、非晶質合金はけい素鋼板に比べて板厚が非常に薄く、厚さが不均一となりやすい。そこで、板厚の大きい部分と小さい部分をうまく組み合わせて積層ブロックの平坦度を高めるという方法も可能である。また、積層ブロックの間に薄い絶縁材やけい素鋼板を挿入することで必要な平坦度を得ることも可能である。
【0019】
図4は、
図3(a)の断面Aの断面図を示す。鉄心材料107及び鉄心材料108の積層方向(Y軸方向)の中央付近には、鉄心材料を平行な平面を有する積層面仕切り800を配置している。また、鉄心材料107の積層ブロックと鉄心材料108の積層ブロックの間には、板状の材料境界仕切り900を配置している。これら積層面仕切り800及び材料境界仕切り900は、絶縁材又はワニス等で絶縁処理した金属等で製作される。鉄心材料107及び鉄心材料108の外周は、
図3(a)では図示を省略した鉄心固定金具500で囲まれている。鉄心固定金具500は鉄、又はエポキシ樹脂等、強度の高い材料で形成される。鉄心100は、鉄心固定金具500と材料境界仕切り900に沿って鉄心材料107及び鉄心材料108が積層されることにより形成される。非晶質合金の端面は、スリット加工されたけい素鋼板の端面に比べて不揃いとなりやすい。したがって、本実施例のように鉄心両側にガイド部材の役割を果たす材料境界仕切り900や鉄心固定金具500を配置することで、積層作業性を向上させることができる。また、これにより接合部115の端面をきれいに揃えることもできるので、接合部115での損失を抑制でき、鉄心特性の改善が可能となる。更には、積層面仕切り800は鉄心を積層する際の基準面としての役割を果たすことができ、また積層方向の芯としての役割を果たすこともできるので、鉄心脚の強度も高めることができ、輸送時の振動にも強い鉄心となる。
鉄心固定金具500が鉄などの導体の場合には、積層面仕切り800によりコイルと同方向の回路が形成しないように配慮する必要があるが、絶縁材で構成すればこれらの配慮は不要である。また、導体で構成されている場合であっても少なくとも1箇所で区切れていればよく、図示以外の積層方向(Y方向)の任意の位置に積層面仕切り800を配置することができる。
【0020】
鉄心固定金具500、積層面仕切り800、材料境界仕切り900との接触部位に、積層作業時にワニス塗布しておくことにより、組立後の乾燥工程である程度固着され、より強度の高い構成とすることができる。
【0021】
図5に、
図3(a)の断面Bの断面図を示す。鉄心材料104及び鉄心材料105の外周は、
図3(a)では図示を省略した鉄心固定金具500で囲まれている。積層方向の締め付けは、
図3(a)では図示を省略した下締金具400により行う。非晶質合金の鉄心では、けい素鋼板のように締め付けによって強度向上することは期待できないばかりか、過度の締付けは著しい特性劣化を招く。そのため、組立作業の安全性や、輸送に耐え得るように鉄心に強度を依存しない構造が必要である。本発明の鉄心固定金具500、材料境界仕切り900は、上締金具300または下締金具400による締付過ぎを防止する機能も備え、積層方向両側からの締め付けが適正な寸法となるように寸法は決定される。下締金具400は中身構造の下部に位置するベース700への固定部を備え、ボルトにより固定される。ベース700と、鉄心固定金具500との隙間1000はプレスボード等の絶縁材を満たし下部への動きを防止する。
【0022】
図6に、
図1から鉄心の固定構造のみを抽出した図を示す。鉄心固定金具500の上下端には、上締金具300と下締金具400とに連結するための鉄心固定金具締金具連結部503が設けられ、
図1のように上締金具300、下締金具400にボルトで締結される。コイル200は、上下の鉄心固定金具締金具連結部503の間の位置に配置される。
【0023】
次に、鉄心の積層手順を説明する。上部ヨーク部は最後に形成するため、まずそれ以外の部分について、骨格となる上締金具300、下締金具400、鉄心固定金具500をボルトで締結する。特に下締金具と鉄心固定金具500との締結を例に上げて説明すると、
図5に示すように下締金具は鉄心100を挟んで両側に配置されるが、まずはこのうちの一方の下締金具、例えば左側の下締金具400と鉄心固定金具500をボルトで締結する。
図5は既に起立状態となっているが、
図5の左側の下締金具400と鉄心固定金具500を90度回転させて横倒しの状態にする。次に鉄心固定金具500をガイド部材として、上から(
図5の起立状態では右側からに相当)鉄心材料を積層する。その後、他方の下締金具を取り付け、締金具締付スタッド600(
図1参照)にて双方の下締金具400を締め付ける。コア部についても同様に積層した後、これを反転機で90度反転してコイル200を挿入できる状態にし、コイル200が挿入される。
【0024】
図6において、鉄心固定金具500のうちヨーク部に配置される領域の部材を501、コア部に配置される領域の部材を鉄心固定金具部材502とすると、501と502の間には寸法調整のためにプレスボード等の絶縁材料が挟まれるが、この位置を溶接して501と502を一体の構成としても良い。締金具締付スタッド600には締付けすぎを防止するための筒状ストッパーを配置し、また、筒の断面積を広げ接触面積を増やして構造的な強度を向上しても良い。
【0025】
次に、上部ヨーク部の積層について説明する。ヨーク部鉄心とコア部鉄心とが組み合わされる接合部115(
図3d参照)では、それぞれの鉄心が互いに正確に配置される必要がある。しかしながら、非晶質合金は一枚一枚が非常に薄いため、非晶質合金の積層ブロックもたわみや積層体のバラけ等を発生しやすく、そのままでは作業性が低い。そこで、ヨーク部鉄心の積層方向最外周に1mm以下の厚さの鉄板ガイド部材を配置し、この鉄板ガイド部材でヨーク部鉄心を挟む構造とする。これにより、ヨーク部鉄心を安定させて作業性を向上することができる。なお、この鉄板ガイド部材はヨーク部鉄心全体を安定させるためにヨーク部鉄心と略同等の長さの部材としても良いし、より短い鉄板ガイド部材にして接合部115周辺だけに配置しても良い。
【0026】
組立作業は内周側鉄心を先に行い、その後材料境界仕切り900を配置し、最後に外周側鉄心の作業を行う。鉄板ガイド部材は数ブロックの積層体の挿入が完了するまで取り去らず、ある程度の積層厚となって非晶質合金が安定した後に、まとめて取り去る。この作業を繰り返し全てのブロックを挿入する。
【0027】
上記鉄製ガイド部材の代わりに、0.05mm程度の厚さのPET樹脂フィルムをガイドとして用いることもできる。この場合、ヨーク部鉄心の長手方向にヨーク部鉄心より1mm程度はみ出るように配置し、接合部115そのフィルムのはみ出たところを目安に上部ヨークの各ブロックを積層する事もできる。薄いフィルムの場合はこのガイドをコア部積層時にあらかじめ挟んでおくことも出来る。
【0028】
組立作業の際に上部ヨーク部を安定させる他の方法として、接合部周辺を樹脂コーティングする方法もある。切断が終了し積層されたヨーク部鉄心の端面に、積層ブロック毎に少量のコーティング材を塗布する。コーティング材としては、特性劣化が極力少ない柔らかい樹脂が好ましいが、作業環境や、鉄心の大きさにより特性劣化が大きいが硬い材料であっても良い。
【実施例2】
【0029】
図7に、本発明の第2実施例における鉄心100の正面図を示す。第1実施例の
図3dと同様に、鉄心材料107と108、101と102、104と105という2つの鉄心積層体を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。第1実施例と異なる点は、鉄心材料107と108の材料幅が互いに異なっている点である。同様に101と102、104と105も材料幅が異なる。3脚の鉄心脚のうち中央の鉄心脚コア部では、材料幅が小さな鉄心材料110の積層ブロックと材料幅が大きな鉄心材料111の積層ブロックとが並列に配置され、それらが第1実施例と同様に積層ブロック毎に左右入れ替えられて積層されている。この第2実施例の場合、材料幅が大きい鉄心材料111は積層方向に隣り合う積層ブロック間で所定幅が重なることになる。第一の積層ブロックにおける鉄心材料110と111の境界線と、第二の積層ブロックにおける鉄心材料110と111の境界線との間の領域が鉄心材料111の重なり代117である。この重なり代117があるために中央鉄心脚には材料境界仕切り900を配置することができないが、この重なり代117は軸のように機能するため、材料境界仕切り900を省略しても鉄心脚の強度は確保される。この重なり代117は、材料107と108、101と102、104と105、110と111の材料幅の差となる。材料境界仕切り900を省略する目的で鉄心の形状に合せて任意に選択することができる。
【0030】
本実施例の上記説明では、第一の積層ブロックに使用した鉄心材料110と111をそのまま裏返して第二の積層ブロックに使用する例を説明した。しかし、異なる鉄心幅の材料を組み合わせて積層ブロックを構成する本実施例においても、第二の積層ブロックを構成する鉄心材料の形状を第一の積層ブロックを構成する鉄心材料110及び111とは異なる形状とすることにより、鉄心材料の境界部を第一の積層ブロックと第二の積層ブロックとで揃えることができる。この場合には、この境界部に材料境界仕切り900を挿入することができる。
【0031】
また、ヨーク部においては、内周側の鉄心材料101及び104に材料幅の広い鉄心材料を用い、外周側の鉄心材料102及び105に材料幅の狭い鉄心材料を配置することで、第1実施例では完全に分割されていた鉄心材料101、104をそれぞれ1つの部材とすることが出来る。
【0032】
なお、本実施例は、非晶質合金は材料幅が大きいほど特性が悪いことを考慮したものである。即ち、内周側に材料幅が大きく特性が悪い鉄心を配置することで、内周側に集中する磁束を外周側に分散させることができ、鉄心脚の磁束均一化による特性改善の効果が得られる。
【0033】
接合される両側の材料切断部に、かぎ形状の切欠きを設けた切断刃によりかぎ形状を設け、積層時のガイドやずれ防止を行なうことも可能である。
【実施例3】
【0034】
図8に、本発明の第3実施例における鉄心100の正面図を示す。第1実施例の
図3d及び第2実施例の
図7と同様に、鉄心材料107と108、101と102、104と105という2つの鉄心積層体を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。本実施例では、中央鉄心脚を構成する鉄心材料110と111は同じ幅であるのに対し、外側の鉄心脚を構成する鉄心材料107と108、ヨーク部の鉄心材料101、102では互いに異なる鉄心幅となっている。中央の鉄心脚には、外側の鉄心脚を構成する2種類の幅の鉄心のうちの広い方の鉄心を2つ組み合わせて構成しているため、外側の鉄心脚よりも中央の鉄心脚の方が鉄心断面積は大きくなっている。中央の鉄心脚は、両側の鉄心脚とコイル200とに挟まれる配置となっているため、熱が籠りやすく、両側の鉄心脚に比べて冷却され難い。鉄心を十分に冷却できずに鉄心温度が上昇すると鉄心の特性は悪化する。 本実施例では、温度上昇による特性悪化を引き起こしやすい中央の鉄心脚の断面積を両側の鉄心脚よりも広くすることにより、中央の鉄心脚にかかる負荷を低減し、中央の鉄心脚における特性悪化を抑制している。中央鉄心脚に広い材料幅の鉄心材料2つを組み合わせて用いることにより外側の鉄心脚よりも鉄心断面積を大きくしたが、逆に外側の鉄心脚に狭い材料幅の鉄心材料2つを組み合わせることにより中央鉄心脚より鉄心断面積を小さくすることもできる。なお、同一の材料幅の鉄心材料を並べて中央の鉄心脚を構成する場合には、実施例1と同様に材料境界仕切り900を配置することが望ましい。
【実施例4】
【0035】
図9に、本発明の第4実施例における鉄心100の正面図を示す。第1〜第3実施例とは異なり、本実施例では3つの鉄心材料を並べて配置し、第一の積層ブロックと第二の積層ブロックを積層している。中央の鉄心脚は鉄心材料110 〜112で構成されている。鉄心材料110と112に同一形状のものを兼用すれば、材料の種類を抑制して製造費用を抑制することができる。
図9では同一の材料幅の鉄心を3つ並べて構成した例を示したが、一部に異なる幅の鉄心材料を用いることもできる。なお、4つ以上の鉄心材料を並べて構成した鉄心100も本発明の実施形態の一例である。そのうちの少なくとも一部の材料幅を異なる幅とすることも本発明の一例である。
【実施例5】
【0036】
図10に、本発明の第5実施例における鉄心100の鉄心脚断面図を示す。
【0037】
コイル200が円筒形状の場合、
図4に示す鉄心100の形状ではコイル200と鉄心固定金具500との間に大きな隙間ができ、コイル内側に占める鉄心の面積の割合(占積率)が低くなってしまう。そこで本実施例では、鉄心100との積層方向(Y軸方向)の中央付近に位置する鉄心材料の幅を、積層方向(Y軸方向)の外側に配置される鉄心材料の幅よりも広くしている。この構成により、鉄心100の断面形状がコイルの円筒形状に近い形状となるため、コイル200と鉄心固定金具500との隙間を小さくし、占積率を高くすることができる。なお、
図11のように3種類以上の鉄心幅とした例も本実施例の一部である。より多くの幅の鉄心を組み合わせて鉄心の断面形状を円形により近づけることにより、より一層占積率を高めることができる。このように多くの幅の鉄心を組み合わせる実施例では鉄心の構造が複雑化して組立性が低下するが、本発明のように鉄心固定金具500を鉄心積層作業のガイドとして用いることで、組立性の低下を抑制することができる。また、積層後には補強効果も得られる。
【実施例6】
【0038】
図11に、本発明の第6実施例における鉄心100の鉄心脚断面図を示す。
図10と同様に、積層方法(Y軸方向)の位置に応じて鉄心幅を異ならせることにより、鉄心外形をコイル200の円筒形状に近づけたものである。本実施例のもう一つの特徴は、積層方向の最外周が単一の積層ブロックで構成されており、X軸方向に複数の積層ブロックが並べられていない点である。このため、材料境界仕切り900が積層方向(Y軸方向)の最外周までは至っていない。
図10の説明で言及したように、鉄心固定金具500は鉄心外形に沿った多段形状をしている。
【0039】
本実施例では、積層方向(Y軸方向)最外周の積層ブロックとそのすぐ内側の積層ブロックとでは材料幅が明確に異なっており、最外周の積層ブロック側からかかる締付加重は内側の積層ブロックの一部領域のみで受ける構造となっている。この加重の偏りを軽減するため、例えば最外周の積層ブロックとそのすぐ内側の積層ブロックとの間に、内側の積層ブロックの面積よりも広い鉄板、けい素鋼板、厚いプレスボードなどを挿入することもできる。
【0040】
鉄心固定金具500の外接円の寸法をコイル200内周よりも若干大きくし、コイル挿入時には接触変形させながら挿入することで、挿入後に良好な接触状態を維持する事ができる。この寸法調整はコイル内周ボビンの乾燥と注油後の寸法によっても調整されるが、例えば1mm以内の範囲とすることができる。この場合のボビンは、強度の面から鉄などの金属が望ましい。コイル内周に配置されるボビンは、鉄心挿入後に鉄心固定金具500の角部に対応する位置にこの角部と同様の形状の溝加工を施すことにより、鉄心固定金具500をコイルに挿入する際の挿入ガイドとして機能させることができる。また鉄心挿入後には鉄心の固定機能を備えることもできる。この場合のボビンは、例えば厚さ3mm程度のプレスボードが望ましい。
【実施例7】
【0041】
図12に、本発明の第7実施例における鉄心100の鉄心脚断面図を示す。本実施例では、
図11の鉄心固定金具500の周囲に円筒形の周囲固定材1100を配置している。この周囲固定材1100は、半円形状の部材2つを材料境界仕切り900の延長線上で連結して略円形状としている。材料としては、油入変圧器においてはプレスボードや鉄板が望ましく、モールド変圧器においてはプラスチック、樹脂や絶縁紙が望ましい。薄い絶縁材料などを利用する場合は、人力で開閉することが比較的容易なので、上述のように半円形状の2つ部材を組み合わせて用いるのではなく、開閉可能な開口部を有する略円筒形の1つの部材を用いてもよい。人力で開閉することができない鉄板またはプレスボードのような固くて厚い材料でも、鉄心材料を入れることができる程度の開口部さえ備えていれば、略円筒形の1つの部材とすることは可能である。
この周囲固定材1100は、ヨーク部においては鉄心100の積層方向(Y軸方向)最外周と上締金具300又は下締金具400とで挟まれて固定され、コア部など締金具が配置されない位置においては、周方向に渡って絶縁性のテープ等で固定する。特に外観が重要となるモールド変圧器において本実施例を採用すれば、接合面や内部構造を隠すことができる。またちりやほこりが鉄心100の表面や鉄心固定金具500外周面に堆積することを抑制できる。さらに防音効果もある。
【0042】
第5実施例や第6実施例のように、鉄心100の外形を円形状に近づける方法を採用した場合であっても、完全に円形にするには非常に多くの種類の鉄心幅を必要とし、実現するのは極めて困難である。本実施例によれば、周囲固定材1100の外周はコイル200の内周に沿った形状をしているので、鉄心100の外周を完全に円形にしなくても、鉄心100とコイル200とをしっかりと固定することができる。また油入変圧器においては、コイル200の内周にワニスを塗布しておき乾燥工程で接着させることで、部材のずれを抑制することができる。
【0043】
大容量の変圧器の場合は、鉄心100とコイル200の絶縁距離を大きく確保する必要があるが、鉄心100とコイル200の間の隙間に冷却ダクトを配置することで、絶縁距離を確保しつつ冷却性能を向上することができる。
【実施例8】
【0044】
図13に、本発明の第8実施例における鉄心100のヨーク部における鉄心断面図を示す。第1〜第7実施例の鉄心固定金具500の代わりに絶縁物から成る鉄心固定材1200を配置し、その外側に上締金具300、下締金具400に溶接された円弧形状の周囲固定材1100を配置し、これにより鉄心100を固定する。周囲固定材1100は溶接されるため鉄製とする。本実施例における積層面仕切り800は絶縁材で構成されており、周囲固定材1100の境界部1300で挟まれて固定されるため周囲固定材1100は回路を形成しない構成となる。積層面仕切り800を絶縁材でない材料とする場合は、周囲固定材1100と積層面仕切り800との接触部付近にワニス処理をするか、又は新たに絶縁材を挟み込むという方法で回路を構成しないようにすることもできる。周囲固定材1100は鉄心100の大きさに応じて部分的に配置しても良い。
【0045】
鉄心断面形状が円形に近づくにつれて上締金具300、下締金具400に接触する平面部が狭くなる。本実施例では、周囲固定材1100と上締金具300、下締金具400が溶接されて固定されているため、平面部が狭い場合であっても鉄心をしっかり締め付け固定することが可能である。
【実施例9】
【0046】
図14に、本発明の第9実施例における鉄心100の鉄心断面図を示す。本実施例では積層面仕切り800が積層方法の複数個所に配置されており、円形状に成形した周囲固定材1100の積層面仕切り800に対応する位置には、この積層面仕切り800が嵌め込まれるように穴又は溝を設けている。この積層面仕切り800と周囲固定材1100とが嵌め合わされて固定されることにより、鉄心材料を固定することができる。周囲固定材1100の外周に配置される周囲固定金具1400は、積層方向(Y軸方向)中央付近に配置されている積層面仕切り800に対応する位置にのみ穴が形成されており、この穴に積層面仕切り800が挿入されている。
周囲固定金具1400で、挿入された積層面仕切り800を挟んで固定するか否かは積層面仕切り800の強度次第であり、任意に選択できる。
【0047】
本発明の各実施例では非晶質合金の積鉄心を例に上げて説明したが、必ずしもこれに限らず、けい素鋼板の積鉄心にも適用可能である。また非晶質合金とけい素鋼板の組み合わせでも適用可能である。非晶質合金による鉄心の場合には、けい素鋼板の積鉄心の場合よりも鉄心の補強効果や生産性改善効果が大きい。
【0048】
なお、積層面仕切り800にけい素鋼板を使用することもでき、これにより強度向上を図ることができる。また、非晶質合金の積層ブロックの積層面の表と裏に同じ材料幅のけい素鋼板を配置し、非晶質合金を挟む構成とすることにより、鉄心脚の強度を更に高めて上部ヨーク部挿入作業性の改善を図っても良い。このように材料を複合させる場合、けい素鋼板の割合を少なくした方が特性を良くすることができる。例えば非晶質合金20枚に対し、その両側にけい素鋼板を配置する構成とすると、鉄心全体としては半分程度がけい素鋼板になるため、非晶質合金100%時よりも鉄損が多くなる。一方、例えばけい素鋼板の割合を全積厚の10%以内に抑制すれば、100%非晶質合金の特性に対して鉄損は+30%程度にまで抑制することができる。けい素鋼板の割合は求められる鉄心強度によっても左右されるが、例えば非晶質合金の積層ブロックの10ブロック毎にけい素鋼板を配合するようにする。また、作業性を考慮して上部ヨーク部のみに限定しても良いし、他の脚部にけい素鋼板を採用しても良い。
【0049】
鉄心100の固定方法として、上締金具300、下締金具400、鉄心固定金具500および、各コア部、ヨーク部に丸穴を開け、絶縁された丸棒を挿入することで固定する方法も可能である。これによれば、例えば
図5における隙間1000の隙間埋めを省略しながらより強固に固定することができる。