【実施例】
【0052】
以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。
【0053】
(1)厚み
接触式の膜厚計ミツトヨ社製ライトマチックVL−50A(10.5mmφ超硬球面測定子、測定荷重0.06N)にて測定した。測定は場所を替えて10回行い、その平均値を多孔性フィルムの厚みtとした。
【0054】
(2)透気抵抗
多孔性フィルムから100mm×100mmの大きさの正方形を切取り試料とした。JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間の測定を行った。測定は試料を替えて3回行い、透過時間の平均値をそのフィルムの透気抵抗とした。
【0055】
(3)表面開口率(S)
多孔性フィルムにエイコーエンジニアリング社製IB−5型イオンコーターを用いてイオンコートを行い、日本電子社製電界放射走査顕微鏡(JSM−6700F)を用いてフィルム表面を撮影倍率1,000倍で観察した。得られた画像データ(スケールバーなどの表示がない、観察部のみの画像)をMVTec社製HALCON Ver.10.0を用いて画像解析を行い、表面開口率(%)を算出した。画像解析方法としては、まず256階調モノクロ画像に対して、11画素平均画像Aと3画素平均画像Bをそれぞれ生成し、画像B全体の面積(Area_all)を算出した。
【0056】
次に画像Bから画像Aを差として除去し、画像Cを生成し、輝度≧10となる領域Dを抽出した。抽出した領域Dを塊ごとに分割し、面積≧100となる領域Eを抽出した。その領域Eに対して、半径2.5画素の円形要素でクロージング処理した領域Fを生成し、横1×縦5画素の矩形要素でオープニング処理した領域Gを生成することで、縦サイズ<5の画素部を除去した。そして、領域Gを塊ごとに分割し、面積≧500となる領域Hを抽出することで、フィブリル領域を抽出した。
【0057】
さらに画像Cにて画像≧5となる領域Iを抽出し、領域Iを塊ごとに分割し、面積≧300となる領域Jを抽出した。領域Jに対して、半径1.5画素の円形要素でオープニング処理した後、半径8.5画素の円形要素でクロージング処理した領域Kを生成し、領域Kに対して、面積≧200となる領域Lを抽出した。領域Lにおいて、面積≧4,000画素の暗部を明部で埋めた領域Mを生成することでフィブリル以外の未開口部の領域を抽出した。
【0058】
最後に、領域Hと領域Mの和領域Nを生成し、和領域Nの面積(Area_closed)を算出することで、未開口部の面積を求めた。なお、表面開口率の計算は、以下の式により算出した。
【0059】
表面開口率(%)=(Area_all − Area_closed) / Area_all
上記の方法にて、同じ多孔性フィルムの両面において10ヶ所ずつ測定し、その平均値の値を当該サンプルの表面空孔率(%)とした。
【0060】
(4)空孔率(P)
多孔性フィルムを100mm×100mmの大きさに切取り試料とした。電子比重計(ミラージュ貿易(株)製SD−120L)を用いて、室温23℃、相対湿度65%の雰囲気にて比重の測定を行った。測定を3回行い、平均値をフィルムの比重ρとした。
【0061】
次に、測定したフィルムを280℃、5Mpaで熱プレスを行い、その後、25℃の水で急冷して、空孔を完全に消去したシートを作成した。このシートの比重を上記した方法で同様に測定し、平均値を樹脂の比重(d)とした。なお、後述する実施例においては、いずれの場合も樹脂の比重dは、0.91であった。フィルムの比重と樹脂の比重から、以下の式により空孔率を算出した。
【0062】
空孔率(%)=〔( d − ρ ) / d 〕 × 100
(5)β晶形成能
多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から220℃まで40℃/分で昇温(ファーストラン)し、5分間保持した後、20℃まで10℃/分で冷却(ファーストラン)した。5分保持後、再度40℃/分で昇温(セカンドラン)した際に観測される融解ピークにについて、145〜157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とした。なお、融解熱量の校正はインジウムを用いて行った。
【0063】
β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
ただし、上記方法において、140〜160℃に頂点を有する融解ピークが存在するが、β晶の融解に起因するものか不明確な場合は、140〜160℃に融解ピークの頂点が存在することと、下記条件で調製したサンプルについて、上記2θ/θスキャンで得られる回折プロファイルの各回折ピーク強度から算出されるK値が0.3以上であることをもってβ晶形成能を有するものと判定する。
【0064】
下記にサンプル調製条件、広角X線回折法の測定条件を示す。
【0065】
・サンプル:
フィルムの方向を揃え、熱プレス調製後のサンプル厚さが1mm程度になるよう重ね合わせる。このサンプルを0.5mm厚みの2枚のアルミ板で挟み、280℃で3分間熱プレスして融解・圧縮させ、ポリマー鎖をほぼ無配向化する。得られたシートを、アルミ板ごと取り出した直後に100℃の沸騰水中に5分間浸漬して結晶化させる。その後25℃の雰囲気下で冷却して得られるシートを切り出したサンプルを測定に供する。
【0066】
・広角X線回折方法測定条件:
上記条件に準拠し、2θ/θスキャンによりX線回折プロファイルを得る。
【0067】
ここで、K値は、2θ=16°付近に観測され、β晶に起因する(300)面の回折ピーク強度(Hβ1とする)と2θ=14,17,19°付近にそれぞれ観測され、α晶に起因する(110)、(040)、(130)面の回折ピーク強度(それぞれHα1、Hα2、Hα3とする)とから、下記の数式により算出できる。K値はβ晶の比率を示す経験的な値であり、各回折ピーク強度の算出方法などK値の詳細については、ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134−158頁(1964)を参考にすればよい。
【0068】
K = Hβ1/{Hβ1+(Hα1+Hα2+Hα3)}
なお、ポリプロピレンの結晶型(α晶、β晶)の構造、得られる広角X線回折プロファイルなどは、例えば、エドワード・P・ムーア・Jr.著、“ポリプロピレンハンドブック”、工業調査会(1998)、p.135−163;田所宏行著、“高分子の構造”、化学同人(1976)、p.393;ターナージョーンズ(A.Turner Jones)ら,“マクロモレキュラーレ ヒェミー”(Makromolekulare Chemie),75,134−158頁(1964)や、これらに挙げられた参考文献なども含めて多数の報告があり、それを参考にすればよい。
【0069】
(6)結晶化温度(Tc)
上記(4)の示差走査熱量計によるβ晶形成能の測定方法と同様の方法で原料のポリプロピレン樹脂を測定し、冷却(ファーストラン)のピーク温度を結晶化温度(Tc)とした。
【0070】
(7)メルトフローレート(MFR)
ポリプロピレン樹脂のMFRは、JIS K 7210(1995)の条件M(230℃、2.16kg)に準拠して測定した。ポリエチレン樹脂は、JIS K 7210(1995)の条件D(190℃、2.16kg)に準拠して測定した。
【0071】
(8)弾性率
多孔性フィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの製膜方向および幅方向に合わせて各方向のサンプルを用意した。引張試験機(オリエンテック製テンシロンUCT−100)を用い、JIS K 7127(1999、試験片タイプ2)に準じて引張試験を行い、2%引張伸度時の引張応力と歪み変位量を測定し、その傾きを算出した。なお、初期チャック間距離は50mmとし、引張速度を300mm/分とした。測定は各サンプル5回ずつ行い、その傾きの平均値を弾性率とした。
【0072】
(9)熱収縮率
多孔性フィルムを長さ150mm×幅10mmの矩形に切り出しサンプルとした。なお、150mmの長さ方向をフィルムの幅方向に合わせた。サンプルの中央部に100mmの間隔で標線を描き、加熱前の標線間距離L
0を測定した。サンプルの上端を把持し、下端に3gの加重をかけ、135℃に加熱した熱風オーブン内に吊り下げて60分間静置し加熱処理を行った。熱処理後、放冷し、加重を外したあと、加熱後の標線間距離L
1を測定し、以下の式で計算される値を熱収縮率とした。測定は各サンプルにつき5回実施して平均値を表1に記した。
【0073】
熱収縮率(%) = (L
0−L
1)/L
0×100
(10)細孔比表面積
日本ベル社製「ベルソープミニ」を用いJIS Z8830(2013)に準じ、下記条件にて比表面積(BET法による比表面積)を測定した。サンプル0.4gをガラスセルに入れて、室温で約5時間減圧脱気した後に測定した。
【0074】
・測定手法:窒素ガス吸着法
・吸着質:窒素
・死容積測定ガス:ヘリウム
・測定温度:77K
・飽和蒸気圧:101.3kPa
・測定相対圧P/P
0:約0〜1
(11)電池抵抗
宝泉(株)製のリチウムコバルト酸化物(LiCoO
2)厚みが40μmの正極を直径15.9mmの円形に打ち抜いた。また、宝泉(株)製の厚みが50μmの黒鉛負極を直径16.2mmの円形に打ち抜いた。次に、多孔質フィルムまたは多孔フィルムを直径24mmに打ち抜いた。正極活物質と負極活物質面が対向するように、下から負極、多孔質フィルムまたは多孔フィルム、正極の順に重ね、蓋付ステンレス金属製小容器(宝泉(株)製、HSセル、ばね圧1kgf)に収納した。容器と蓋とは絶縁され、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内にプロピレンカーボネート:ジエチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPF
6を濃度1モル/リットルとなるように溶解させた電解液を注入して密閉し、電池を作製した。
【0075】
作製した二次電池について、25℃の雰囲気下で測定を行った。1.5mAの電流値で4.2Vとなるまで定電流充電を行い、4.2Vの電圧で電流値が50μAになるまで定電圧充電を行った。続いて、3mAの電流値で2.7Vの電圧まで定電流放電を行った。上記充放電操作を4回行った。次に、1.5mAの電流値で4.2Vとなるまで定電流充電を行い、4.2Vの電圧で電流値が50μAになるまで定電圧充電を行った。続いて、3、6、9、12、15mAの電流値で10秒間定電流放電を行い、その電池電圧を測定した。なお、各放電前に1.5mAの電流値で4.2Vとなるまで定電流充電を行い、4.2Vの電圧で電流値が50μAになるまで定電圧充電を実施した。
【0076】
放電電流値と10秒間低電流放電後の電池電圧との関係(傾き)から抵抗(R1)を算出した。測定は試料を替えて5回行い、平均値を抵抗R0とした。
【0077】
厚みの異なるサンプルを規格化するために以下の式で算出される値を電池抵抗(R)とした。
【0078】
電池抵抗(R)=R0/t×18
○:R≦7.5
△:7.5<R≦8.5
×:8.5<R
(実施例1)
ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、NU−100)を0.3質量部、ベヘン酸カルシウム0.05質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーからL/D=41の二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、ドラフト比が3.8となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が130.8℃となるポリプロピレン組成物(あ)のチップを得た。
【0079】
ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製FLX80E4を59.8質量部、共重合PE樹脂としてエチレン−オクテン−1共重合体(ダウ・ケミカル製 Engage8411、メルトインデックス:18g/10分)を30質量部と、分散剤としてCEBC(JSR(株)製 DYNARON6200P)を10質量部と、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010およびIRGAFOS168を各々0.1質量部とがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、230℃で溶融混練を行った。そして、溶融混練された材料をストランド状にダイから吐出して、ドラフト比が1.9となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(い)を得た。
【0080】
得られたポリプロピレン組成物(あ)を80質量部、ポリプロピレン組成物(い)を20質量部をドライブレンドして単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.2倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0081】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に164℃で弛緩率10%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で熱処理を行った(HS2ゾーン)。
【0082】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性フィルムを得た。
【0083】
(実施例2)
実施例1と同様の条件でキャストシートを作製し、ついで、126℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.3倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0084】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に164℃で弛緩率20%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で熱処理を行った(HS2ゾーン)。
【0085】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性フィルムを得た。
【0086】
(実施例3)
実施例1と同様の条件でキャストシートを作製し、ついで、126℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.3倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0087】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に164℃で弛緩率15%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま160℃で熱処理を行った(HS2ゾーン)。
【0088】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性フィルムを得た。
【0089】
(比較例1)
ポリプロピレン樹脂として、融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.7質量部、β晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボキシアミド(新日本理化(株)製、NU−100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、300℃で溶融混練を行い、ダイから吐出して、ドラフト比が1.9となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットして結晶化温度(Tc)が128.0℃となるポリプロピレン組成物(う)のチップを得た。
【0090】
得られたポリプロピレン組成物(う)を単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.1倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0091】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に160℃で弛緩率12%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で熱処理を行った(HS2ゾーン)。
【0092】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性フィルムを得た。
【0093】
(比較例2)
比較例1で得られたポリプロピレン組成物(う)を単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて119℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.2倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0094】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に163℃で弛緩率15%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま160℃で熱処理を行った(HS2ゾーン)。
【0095】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み20μmの多孔性フィルムを得た。
【0096】
(比較例3)
比較例1で得られたポリプロピレン組成物(う)を単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して155℃で幅方向に9.5倍延伸した。
【0097】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に163℃で弛緩率17%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま163℃で熱処理を行った(HS2ゾーン)。
【0098】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み24μmの多孔性フィルムを得た。
【0099】
(比較例4)
融点165℃、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を70質量部、共重合PE樹脂としてエチレン−オクテン−1共重合体(ダウ・ケミカル製 Engage8411、MFR:18g/10分)を30質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.1質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、ドラフト比が1.8となるように引き取り、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(え)チップを得た。
【0100】
比較例1で得たポリプロピレン組成物(う)67質量部とポリプロピレン組成物(え)33質量部をドライブレンドして単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて121℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、122℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に6.0倍延伸した。
【0101】
続く熱処理工程で、160℃で弛緩率10%でリラックスを行った(Rxゾーン)。
【0102】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み24μmの多孔性フィルムを得た。
【0103】
(比較例5)
比較例1で得たポリプロピレン組成物(う)90質量部と比較例4で得たポリプロピレン組成物(え)10質量部をドライブレンドして単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて121℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、122℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.0倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に6.0倍延伸した。
【0104】
続く熱処理工程で、160℃で弛緩率10%でリラックスを行った(Rxゾーン)。
【0105】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み22μmの多孔性フィルムを得た。
【0106】
(比較例6)
比較例1で得たポリプロピレン組成物(う)80質量部と実施例1で得たポリプロピレン組成物(い)20質量部をドライブレンドして単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.2倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0107】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に164℃で弛緩率10%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で熱処理を行った(HS2ゾーン)。
【0108】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性フィルムを得た。
【0109】
(比較例7)
実施例1で得たポリプロピレン組成物(あ)を単軸の溶融押出機に供給し、210℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて120℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、123℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.2倍延伸を行った。次に端部をクリップで把持して150℃で幅方向に7.7倍延伸した。
【0110】
続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で熱処理し(HS1ゾーン)、更に164℃で弛緩率10%でリラックスを行い(Rxゾーン)、弛緩後のクリップ間距離に保ったまま164℃で熱処理を行った(HS2ゾーン)。
【0111】
その後、クリップで把持したフィルムの耳部をカットして除去し、厚み23μmの多孔性フィルムを得た。
【0112】
【表1】
【0113】
本発明の要件を満足する実施例では電池抵抗が低いだけでなく、耐熱性に優れることから電池抵抗と耐熱性のバランスが良好であるだけでなく、弾性率に優れるため、機能層塗工用原反としても好適に用いることが可能である。一方、比較例では、耐熱性に劣る、または、電池抵抗に劣ることから電池抵抗と弾性率のバランスが良好ではなく、蓄電デバイス用のセパレータとして用いることが困難である。