特許第6361314号(P6361314)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ いすゞ自動車株式会社の特許一覧

<>
  • 特許6361314-センサ 図000005
  • 特許6361314-センサ 図000006
  • 特許6361314-センサ 図000007
  • 特許6361314-センサ 図000008
  • 特許6361314-センサ 図000009
  • 特許6361314-センサ 図000010
  • 特許6361314-センサ 図000011
  • 特許6361314-センサ 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6361314
(24)【登録日】2018年7月6日
(45)【発行日】2018年7月25日
(54)【発明の名称】センサ
(51)【国際特許分類】
   G01N 27/22 20060101AFI20180712BHJP
【FI】
   G01N27/22 C
【請求項の数】6
【全頁数】11
(21)【出願番号】特願2014-128597(P2014-128597)
(22)【出願日】2014年6月23日
(65)【公開番号】特開2016-8861(P2016-8861A)
(43)【公開日】2016年1月18日
【審査請求日】2017年5月18日
(73)【特許権者】
【識別番号】000000170
【氏名又は名称】いすゞ自動車株式会社
(74)【代理人】
【識別番号】100068021
【弁理士】
【氏名又は名称】絹谷 信雄
(72)【発明者】
【氏名】内山 正
(72)【発明者】
【氏名】村澤 直人
(72)【発明者】
【氏名】塙 哲史
(72)【発明者】
【氏名】今井 博之
【審査官】 吉田 将志
(56)【参考文献】
【文献】 特開2008−064621(JP,A)
【文献】 特開2011−012577(JP,A)
【文献】 特開2013−160617(JP,A)
【文献】 特開2010−275977(JP,A)
【文献】 特開2012−117383(JP,A)
【文献】 特開2012−241642(JP,A)
【文献】 米国特許出願公開第2014/0157881(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/00−10
14−24
(57)【特許請求の範囲】
【請求項1】
多孔質性隔壁で区画されて排気ガス中の粒子状物質を捕集する複数のセルを有するフィルタ部材と、
筒状に形成されてその筒内に前記フィルタ部材を収容すると共に、導入口から筒内に導入した排気ガスを前記フィルタ部材に通過させて導出口から筒外に導出するケース部材と、
前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材と、
前記一対の電極部材間の静電容量に基づいて排気ガス中の粒子状物質量を推定する推定部と、を備え
前記ケース部材は、その軸方向が内燃機関の排気管の管径方向に延びるように前記排気管内に配置され、
前記フィルタ部材は、前記セルの流路方向が前記ケース部材の軸方向と略平行となるように前記ケース部材内に配置され、
前記ケース部材の軸方向の一端部は、前記排気管の軸中心側に位置され、
前記ケース部材の軸方向の一端部に、前記導入口が配置される、センサ。
【請求項2】
前記フィルタ部材に捕集された粒子状物質量が所定値に達すると当該堆積した粒子状物質を燃焼除去するフィルタ再生を実行可能なフィルタ再生手段をさらに備え、
前記推定部は、再生インターバル間の静電容量変化量から当該再生インターバル間に前記フィルタ部材で捕集された粒子状物質量を算出すると共に、算出した各再生インターバル間の粒子状物質量を順次積算することで、排気ガス中の粒子状物質量をリアルタイムに推定する
請求項1に記載のセンサ。
【請求項3】
前記推定部は、前記電極部材間の単位時間当たりの静電容量変化量に基づいて瞬時の粒子状物質量をリアルタイムに推定する
請求項1に記載のセンサ。
【請求項4】
前記導入口の開口面積が前記導出口の開口面積よりも小さく形成された
請求項1から3の何れか一項に記載のセンサ。
【請求項5】
前記フィルタ部材が、前記複数のセルの上流側と下流側とを交互に目封止して形成されたフィルタ部材であり、上流側が目封止された電極用セルと、下流側が目封止された測定用セルとを有し、
前記一対の電極部材が、前記測定用セルを挟んで対向する前記電極用セルに下流側から交互に挿入されてコンデンサを形成する
請求項1から4の何れか一項に記載のセンサ。
【請求項6】
前記一対の電極部材が、導電性の金属線によって形成される
請求項5に記載のセンサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサに関し、特に、排気ガス中に含まれる粒子状物質(以下、PMという)を検出するPMセンサに関する。
【背景技術】
【0002】
従来、内燃機関から排出される排気ガス中のPMを検出するセンサとして、電気抵抗型PMセンサが知られている。一般的に、電気抵抗型PMセンサは、絶縁性基板の表面に一対の導電性電極を対向配置し、これら電極に付着する導電性のPM(主に、スート成分)によって電気抵抗値が変化することを利用してPM量を推定している(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012−83210号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、電気抵抗型PMセンサは、各電極にPMを付着させる簡素な構造のため、特に排気流量が多くなる運転状態では、電極に付着したPMの一部が離脱する可能性があり、推定精度を担保できない課題がある。また、電極に付着したPMの電気抵抗が排気流量の影響を受けると変化するため、PM量を正確に推定できない課題もある。さらに、電極間の電気抵抗値は、PMの堆積によって電極が互いに繋がるまで変化を示さない。このため、エンジンから排出されるPM量をリアルタイムで検出することはできず、その用途はディーゼル・パティキュレイト・フィルタ(以下、DPFという)よりも下流側で故障をオンボードで診断するものに限定されてしまう課題もある。
【0005】
本発明の目的は、排気ガス中に含まれるPM量をリアルタイムに推定することができるPMセンサを提供することにある。
【課題を解決するための手段】
【0006】
上述の目的を達成するため、本発明のセンサは、多孔質性隔壁で区画されて排気ガス中の粒子状物質を捕集する複数のセルを有するフィルタ部材と、筒状に形成されてその筒内に前記フィルタ部材を収容すると共に、一端開口部から筒内に導入した排気ガスを前記フィルタ部材に通過させて他端開口部から筒外に導出するケース部材と、前記セルを挟んで対向配置されてコンデンサを形成する少なくとも一対の電極部材と、前記一対の電極部材間の静電容量に基づいて排気ガス中の粒子状物質量を推定する推定部とを備える。
【0007】
また、前記フィルタ部材に捕集された粒子状物質量が所定値に達すると当該堆積した粒子状物質を燃焼除去するフィルタ再生を実行可能なフィルタ再生手段をさらに備え、前記推定部は、再生インターバル間の静電容量変化量から当該再生インターバル間に前記フィルタ部材で捕集された粒子状物質量を算出すると共に、算出した各再生インターバル間の粒子状物質量を順次積算することで、排気ガス中の粒子状物質量をリアルタイムに推定するものでもよい。
【0008】
また、前記推定部は、前記電極部材間の単位時間当たりの静電容量変化量に基づいて瞬時の粒子状物質量をリアルタイムに推定するものでもよい。
【0009】
また、前記ケース部材が内燃機関の排気管内に管径方向に突出して設けられると共に、前記一端開口部の開口面積が前記他端開口部の開口面積よりも小さく形成されてもよい。
【0010】
また、前記ケース部材が内燃機関の排気管内に設けられて排気ガス中の粒子状物質を捕集可能なフィルタ装置を迂回するバイパス管であってもよい。
【0011】
また、前記フィルタ部材が前記複数のセルを一方向に並列に配置したフィルタ層であり、前記一対の電極部材が前記フィルタ層を挟んで対向する平板状の第1及び第2電極板であってもよい。
【0012】
また、前記第1電極板、前記第2電極板及び、前記フィルタ層をそれぞれ複数有すると共に、前記複数の第1及び第2電極板が前記複数のフィルタ層を一層ずつ挟んで交互に積層されてもよい。
【発明の効果】
【0013】
本発明のPMセンサによれば、排気ガス中に含まれるPM量をリアルタイムに推定することができる。
【図面の簡単な説明】
【0014】
図1】第一実施形態のPMセンサが適用された排気系の一例を示す概略構成図である。
図2】第一実施形態のPMセンサを示す模式的な部分断面図である。
図3】第一実施形態に係るフィルタ再生を説明するタイミングチャート図である。
図4】第一実施形態に係るマップの一例を示す図である。
図5】第二実施形態のPMセンサを示す模式的な部分断面図である。
図6】(A)は、第三実施形態に係るPMセンサの模式的な斜視図、(B)は、第三実施形態に係るPMセンサの模式的な分解斜視図である。
図7】他の実施形態のPMセンサが適用された排気系の一例を示す概略構成図である。
図8】他の実施形態のPMセンサを示す模式的な部分断面図である。
【発明を実施するための形態】
【0015】
以下、添付図面に基づいて、本発明の各実施形態に係るPMセンサを説明する。同一の部品には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。
【0016】
[第一実施形態]
図1は、第一実施形態のPMセンサ10Aが適用されたディーゼルエンジン(以下、単にエンジンという)100の排気系の一例を示す概略構成図である。エンジン100の排気管110内には、排気上流側から順に酸化触媒210、DPF220、NOx浄化触媒230等が設けられている。本実施形態のPMセンサ10Aは、例えば、DPF220よりも上流側の排気管110又は、DPF220よりも下流側の排気管110の何れに設けてもよい。
【0017】
次に、図2に基づいて第一実施形態に係るPMセンサ10Aの詳細構成について説明する。
【0018】
PMセンサ10Aは、排気管110内に挿入されたケース部材11と、ケース部材11を排気管110に取り付ける台座部20と、ケース部材11内に収容されたセンサ部30と、コントロールユニット40とを備えている。
【0019】
ケース部材11は、底部側(図示例では下端側)を閉塞した有底円筒状に形成されている。ケース部材11の筒軸方向の長さLは、その底部側の筒壁部が排気管110の軸中心CL近傍まで突出するように、排気管110の半径Rと略同一の長さで形成されている。なお、以下の説明では、ケース部材11の底部側を先端側、底部側とは反対側をケース部材11の基端側とする。
【0020】
ケース部材11の先端側筒壁部には、周方向に間隔を隔てて配置された複数の導入口12が設けられている。また、ケース部材11の基端側筒壁部には、周方向に間隔を隔てて配置された複数の導出口13が設けられている。導入口12の総開口面積S12は、導出口13の総開口面積S13よりも小さく形成されている(S12<S13)。すなわち、導入口12付近の排気流速V12が導出口13付近の排気流速V13よりも遅くなることで(V12<V13)、導入口12側の圧力P12は導出口13側の圧力P13よりも高くなる(P12>P13)。これにより、導入口12からはケース部材11内に排気ガスが円滑に取り込まれると同時に、導出口13からはケース部材11内の排気ガスが排気管110内に円滑に導出される。
【0021】
台座部20は、雄ネジ部21と、ナット部22とを備えている。雄ネジ部21はケース部材11の基端部に設けられており、ケース部材11の基端側開口部を閉塞する。この雄ネジ部21は、排気管110に形成されたボス部110Aの雌ネジ部と螺合される。ナット部22は、例えば六角ナットであって、雄ネジ部21の上端部に固定されている。これら雄ネジ部21及びナット部22には、後述する導電線32A,33A等を挿通させる貫通孔(不図示)が形成されている。
【0022】
センサ部30は、フィルタ部材31と、複数対の電極32,33と、電気ヒータ34とを備えている。
【0023】
フィルタ部材31は、例えば、多孔質セラミックスの隔壁で区画された格子状の排気流路をなす複数のセルの上流側と下流側とを交互に目封止して形成されている。このフィルタ部材31は、セルの流路方向をケース部材11の軸方向(図中上下方向)と略平行にした状態で、ケース部材11の内周面にクッション部材31Aを介して保持されている。導入口12からケース部材11内に取り込まれた排気ガス中のPMは、排気ガスが下流側を目封止されたセルから上流側を目封止されたセルに流れ込むことで、隔壁表面や細孔に捕集される。なお、以下の説明では、下流側が目封止されたセルを測定用セルといい、上流側が目封止されたセルを電極用セルという。
【0024】
電極32,33は、例えば導電性の金属線であって、測定用セルを挟んで対向する電極用セルに下流側(非目封止側)から交互に挿入されてコンデンサを形成する。これら電極32,33は、コントロールユニット40に内蔵された図示しない静電容量検出回路に導電線32A,33Aを介してそれぞれ接続されている。
【0025】
電気ヒータ34は、例えば電熱線であって、通電により発熱して測定用セルを加熱することで、測定用セル内に堆積したPMを燃焼除去するいわゆるフィルタ再生を実行する。このため、電気ヒータ34は、連続S字形に屈曲して形成されており、互いに平行な直線部分を各測定用セル内に流路に沿って挿入されている。
【0026】
コントロールユニット40は、フィルタ再生制御部41と、PM量推定演算部42とを各機能要素として備えている。これら機能要素は、一体のハードウェアであるコントロールユニット40に含まれるものとして説明するが、別体のハードウェアに設けることもできる。
【0027】
フィルタ再生制御部41は、静電容量検出回路(不図示)によって検出される各電極32,33間の静電容量Cpに応じて電気ヒータ34をON(通電)にするフィルタ再生制御を実行する。電極32,33間の静電容量Cpは、電極32,33間の媒体の誘電率ε、電極32,33の表面積S、電極32,33間の距離dとする以下の数式1で表される。
【0028】
【数1】
【0029】
数式1において、電極32,33の表面積Sは一定であり、測定用セルに捕集されたPMによって誘電率ε及び距離dが変化すると、これに伴い静電容量Cpも変化する。すなわち、電極32,33間の静電容量Cpとフィルタ部材31のPM堆積量との間には比例関係が成立する。フィルタ再生制御部41は、電極32,33の静電容量CpがPM上限堆積量を示す所定の静電容量上限閾値CP_maxに達すると、電気ヒータ34をONにするフィルタ再生を開始する(図3の時間t1、t2、t3参照)。このフィルタ再生は、静電容量CpがPMの完全除去を示す所定の静電容量下限閾値CP_minに低下するまで継続される。
【0030】
PM量推定演算部42は、再生インターバルTn間(フィル再生終了から次のフィルタ再生開始)における静電容量変化量ΔCpnに基づいて、エンジン100から排出される排気ガス中の総PM量mPM_sumを推定する。再生インターバルTn間にフィルタ部材31で捕集されるPM量mPM_nは、静電容量変化量ΔCpnに一次の係数βを乗算した以下の数式2で得られる。
【0031】
【数2】
【0032】
PM量推定演算部42は、数式2から算出される各再生インターバルTn間のPM量mPM_nを順次積算する以下の数式3に基づいて、エンジン100から排出される排気ガス中の総PM量mPM_sumをリアルタイムに演算する。
【0033】
【数3】
【0034】
なお、静電容量Cpの単位時間当たりの変化量ΔCp/Δtから、排気ガス中に含まれる瞬時のPM量mPM_newをリアルタイムに推定することもできる。この場合、瞬時のPM量mPM_newは、予め実験等により求めた静電容量CpとPM量mPMとの関係を示すマップ(図4参照)を用い、このマップに瞬時の静電容量変化量ΔCp/Δtを乗算することにより求めることができる。このように瞬時のPM量mPM_newを推定する場合は、PMセンサ10AをDPF220よりも上流側の排気管110に設ければ、エンジン100から排出される瞬時のPM量mPM_newをリアルタイムに推定できるため、スモークリミット等のエンジン制御を効果的に行うことが可能になる。
【0035】
次に、本実施形態に係るPMセンサ10Aの作用効果を説明する。
【0036】
電極間の電気抵抗値に基づいてPM量を推定する電気抵抗型PMセンサでは、排気流量が多くなるとPMを確実に電極に付着させておくことが難しくなるため、推定精度を担保できない課題がある。また、電極に付着したPMの電気抵抗が排気流量の影響を受けると変化するため、PM量を正確に推定できない課題もある。さらに、電極間の電気抵抗値は、PMの堆積によって電極が互いに繋がるまで変化を示さないため、PM量をリアルタイムで推定できない課題もある。
【0037】
これに対し、本実施形態のPMセンサ10Aは、排気ガス中のPMをフィルタ部材31で確実に捕集しつつ、各再生インターバルTnのPM量mPM_nを順次積算することで、エンジン100から排出される排気ガス中の総PM量mPM_sumをリアルタイムに演算するように構成されている。したがって、本実施形態のPMセンサ10Aによれば、エンジン100から排出される総PM量mPM_sumを高精度且つリアルタイムに推定することができる。特に、単位時間当たりの静電容量変化量ΔCp/Δtから瞬時のPM量mPM_newを推定するように構成すれば、PMセンサ10AをDPF220よりも上流側に設けることでエンジン制御を効果的に行うことが可能になる。また、PMセンサ10AをDPF220の下流側に設けた場合は、DPF220の故障をオンボードで高精度且つ早期に検知することが可能になる。
【0038】
また、センサ部30を収容したケース部材11は、その先端部を排気管110内で排気流速が最も速い軸中心CL近傍まで突出させている。このケース部材11の先端側筒壁部には、ケース部材11内に排気ガスを取り込む導入口12が設けられている。また、ケース部材11の基端側筒壁部には、導入口12よりも開口面積を大きく形成した導出口13が設けられている。すなわち、導入口12を排気流速が速い排気管110の軸中心CL近傍に配置し、導出口13の開口面積を大きくしたことで、導入口12と導出口13との静圧差を大きく確保することが可能となり、センサ部30を通過する排気ガスの流れを効果的に促進させることができる。
【0039】
[第二実施形態]
次に、図5に基づいて、第二実施形態に係るPMセンサ10Bの詳細について説明する。第二実施形態のPMセンサ10Bは、第一実施形態のPMセンサ10Aにおいて、ケース部材11を二重管構造にしたものである。他の構成要素については同一構造となるため、詳細な説明は省略する。また、導電線32A,33Aやコントロールユニット40については図示を省略している。
【0040】
第二実施形態のケース部材11は、有底円筒状の内側ケース部11Aと、内側ケース部11Aの円筒外周面を囲む円筒状の外側ケース部11Bとを備えている。
【0041】
内側ケース部11Aは、先端側が外側ケース部11Bよりも突出するように、その軸方向長さを外側ケース部11Bよりも長く形成されている。また、内側ケース部11Aの底部には、内側ケース部11A内の排気ガスを排気管110内に導出する導出口13が設けられている。さらに、内側ケース部11Aの基端側の筒壁部には、周方向に間隔を隔てて配置された複数の通過口14が設けられている。この通過口14は、内側ケース部11Aの外周面と外側ケース部11Bの内周面とで区画された流路15内の排気ガスを内側ケース部11A内に通過させる。
【0042】
流路15の下流端には、内側ケース部11Aの先端側筒壁部と外側ケース部11Bの先端部とにより区画された円環状の導入口12が形成されている。導入口12の開口面積S12は、導出口13の開口面積S13よりも小さく形成されている(S12<S13)。
【0043】
すなわち、排気管110を流れる排気ガスは、外側ケース部11Bよりも突出した内側ケース部11Aの筒壁面に当たり、排気管110の軸中心CL近傍に配置された導入口12から流路15内に円滑に取り込まれる。さらに、流路15内を流れる排気ガスは、通過口14から内側ケース部11Aに取り込まれ、フィルタ部材31を通過した後に、排気管110の軸中心CL近傍に配置された導出口13から排気管110内に円滑に導出されるようになっている。このように、第二実施形態のPMセンサ10Bでは、導入口12と導出口13とを、排気管110内で排気流速が最も速くなる軸中心CL近傍に配置したことで、フィルタ部材31を通過する排気流量を効果的に高めることが可能になる。
【0044】
[第三実施形態]
次に、図6に基づいて、第三実施形態に係るPMセンサの詳細について説明する。第三実施形態のPMセンサは、第一実施形態のセンサ部30を積層タイプにしたものである。他の構成要素については同一構造となるため、詳細な説明及び図示は省略する。
【0045】
図6(A)は、第三実施形態のセンサ部60の斜視図、図6(B)はセンサ部60の分解斜視図をそれぞれ示している。センサ部60は、複数のフィルタ層61と、複数枚の第1及び第2電極板62,63とを備えている。
【0046】
フィルタ層61は、例えば、多孔質セラミックス等の隔壁で区画されて排気流路をなす複数のセルの上流側と下流側とを交互に目封止し、これらセルを一方向に並列に配置した直方体状に形成されている。排気ガス中に含まれるPMは、図6(B)中に破線矢印で示すように、排気ガスが下流側を目封止されたセルC1から上流側を目封止されたセルC2に流れ込むことで、セルC1の隔壁表面や細孔に捕集される。なお、以下の説明では、セル流路方向をセンサ部60の長さ方向(図6(A)中の矢印L)とし、セル流路方向と直交する方向をセンサ部60の幅方向(図6(A)中の矢印W)とする。
【0047】
第1及び第2電極板62,63は、例えば、平板状の導電性部材であって、その長さ方向L及び幅方向Wの外形寸法をフィルタ層61と略同一に形成されている。これら第1及び第2電極板62,63は、フィルタ層61を挟んで交互に積層されると共に、導電線62A,63Aを介してコントロールユニット40に内蔵された図示しない静電容量検出回路にそれぞれ接続されている。
【0048】
すなわち、第1電極板62と第2電極板63とを対向配置し、これら電極板62,63間にフィルタ層61を挟持させたことで、セルC1全体がコンデンサを形成するようになっている。このように、第三実施形態のPMセンサでは、平板状の電極板62,63によりセルC1全体をコンデンサにしたことで、電極表面積Sを効果的に確保することが可能となり、検出可能な静電容量絶対値を高めることが可能になる。また、電極間距離dがセルピッチとなり均一化されることで、初期静電容量のバラツキを効果的に抑制することができる。
【0049】
なお、セルC1に堆積したPMを燃焼除去する場合は、電極板62,63に電圧を直接印加するか、あるいは、フィルタ層61と電極板62,63との間に図示しないヒータ基板等を介設すればよい。
【0050】
[その他]
本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
【0051】
例えば、図7に示すように、排気管110に酸化触媒210とDPF220との間から分岐してNOx浄化触媒230よりも上流側で合流するバイパス管120を接続し、第一実施形態のセンサ部30又は、第三実施形態のセンサ部60をバイパス管120内に配置して構成してもよい。
【0052】
また、図8に示すように、第一実施形態(又は、第二実施形態)において、導入口12と導出口13との位置を入れ替えて、ケース部材11内に導入される排気ガスの流れを逆向きにしてもよい。この場合は、フィルタ部材31をケース部材11内に反転させて収容すればよい。
【符号の説明】
【0053】
10 PMセンサ
11 ケース部材
12 導入口
13 導出口
20 台座部
21 雄ネジ部
22 ナット部
30 センサ部
31 フィルタ部材
32,33 電極
34 電気ヒータ
40 コントロールユニット
41 フィルタ再生制御部
42 PM量推定演算部
図1
図2
図3
図4
図5
図6
図7
図8