特許第6361375号(P6361375)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社JVCケンウッドの特許一覧

特許6361375画像処理装置、画像処理方法、画像表示装置
<>
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000003
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000004
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000005
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000006
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000007
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000008
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000009
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000010
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000011
  • 特許6361375-画像処理装置、画像処理方法、画像表示装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6361375
(24)【登録日】2018年7月6日
(45)【発行日】2018年7月25日
(54)【発明の名称】画像処理装置、画像処理方法、画像表示装置
(51)【国際特許分類】
   H04N 17/04 20060101AFI20180712BHJP
   G09G 3/20 20060101ALI20180712BHJP
   G09G 3/36 20060101ALI20180712BHJP
【FI】
   H04N17/04 C
   G09G3/20 642A
   G09G3/20 641P
   G09G3/20 642P
   G09G3/20 631V
   G09G3/36
【請求項の数】6
【全頁数】13
(21)【出願番号】特願2014-171282(P2014-171282)
(22)【出願日】2014年8月26日
(65)【公開番号】特開2016-46751(P2016-46751A)
(43)【公開日】2016年4月4日
【審査請求日】2016年9月29日
(73)【特許権者】
【識別番号】308036402
【氏名又は名称】株式会社JVCケンウッド
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【弁理士】
【氏名又は名称】高橋 俊一
(72)【発明者】
【氏名】生越 大輔
【審査官】 佐野 潤一
(56)【参考文献】
【文献】 特開2006−084729(JP,A)
【文献】 特開2011−209639(JP,A)
【文献】 特開2001−069373(JP,A)
【文献】 特開2007−140152(JP,A)
【文献】 特開平09−138673(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 17/00−17/06
H04N 9/12−9/31
H04N 9/44−9/78
G09G 3/00−5/42
(57)【特許請求の範囲】
【請求項1】
R信号,G信号,B信号を表示部に供給して画像表示させたときの前記表示部の画面上の輝度むらを補正するため、前記R信号に乗算するR信号用のユニフォミティ補正データと、前記G信号に乗算するG信号用のユニフォミティ補正データと、前記B信号に乗算するB信号用のユニフォミティ補正データを発生するユニフォミティ補正データ発生部と、
前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算し、前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算し、前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算する乗算器と、
を備え、
前記乗算器が前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算するときの画素の位置とを互いにずらしている
ことを特徴とする画像処理装置。
【請求項2】
前記ユニフォミティ補正データ発生部は、
前記画面上の水平方向及び垂直方向に配列した複数のポイントそれぞれにおける基準補正値よりなる基準ユニフォミティ補正データを記憶するユニフォミティ補正データ記憶部と、
前記基準ユニフォミティ補正データに基づいて、前記複数のポイント以外のポイントにおける補正値を補間して、前記ユニフォミティ補正データを生成するユニフォミティ補正データ補間部と、
を有することを特徴とする請求項1記載の画像処理装置。
【請求項3】
前記ユニフォミティ補正データ補間部は、前記画面上の水平方向及び垂直方向それぞれの位置情報を用いて、前記複数のポイント以外のポイントにおける補正値を補間し、
前記ユニフォミティ補正データ補間部が前記R信号用のユニフォミティ補正データを生成するときに用いる位置情報と、前記ユニフォミティ補正データ補間部が前記G信号用のユニフォミティ補正データを生成するときに用いる位置情報と、前記ユニフォミティ補正データ補間部が前記B信号用のユニフォミティ補正データを生成するときに用いる位置情報とを水平方向及び垂直方向にずらすことによって、前記乗算器が前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算するときの画素の位置とを水平方向及び垂直方向にずらす
ことを特徴とする請求項2記載の画像処理装置。
【請求項4】
前記R信号,G信号,B信号のうちのいずれかの色信号レベルが所定の閾値未満であるとき、色信号レベルが所定の閾値未満である色信号に乗算するユニフォミティ補正データによるユニフォミティ補正を弱めるように、当該ユニフォミティ補正データを補正するレベル補正部をさらに備えることを特徴とする請求項1〜3のいずれか1項に記載の画像処理装置。
【請求項5】
R信号,G信号,B信号を表示部に供給して画像表示させたときの前記表示部の画面上の輝度むらを補正するため、前記R信号に乗算するR信号用のユニフォミティ補正データと、前記G信号に乗算するG信号用のユニフォミティ補正データと、前記B信号に乗算するB信号用のユニフォミティ補正データとをそれぞれ発生させ、
前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算し、
前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算し、
前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算し、
前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算するときの画素の位置とを互いにずらす
ことを特徴とする画像処理方法。
【請求項6】
請求項1〜4のいずれか1項に記載の画像処理装置と、
前記表示部と、
を備えることを特徴とする画像表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、輝度むらを低減させることができる画像処理装置、画像処理方法、画像表示装置に関する。
【背景技術】
【0002】
液晶パネル,プラズマディスプレイパネル,有機エレクトロルミネセンスパネル等のマトリクス型表示パネルを用いた画像表示装置においては、画面上の輝度は画面の全体で一定とは限らず、輝度むらが発生することがある。製品の物理的なばらつきに起因して、輝度むらが発生することもある。
【0003】
スタジオモニタや医療用モニタでは輝度むらに対する要求精度が高く、輝度むらを極力低減させることが必要である。画面上の輝度を均一化するよう輝度むらを補正することを、ユニフォミティ補正と称する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−115400号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来の画像処理装置によって画面上の輝度を画面の全体でほぼ一定となるようにユニフォミティ補正したとしても、所定の形状の輝度むらが発生することが明らかとなった。
【0006】
本発明は、画面上の輝度を画面の全体でほぼ一定となるようにユニフォミティ補正することができ、さらに、所定の形状の輝度むらも低減させることができる画像処理装置、画像処理方法、画像表示装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、上述した従来の技術の課題を解決するため、R信号,G信号,B信号を表示部に供給して画像表示させたときの前記表示部の画面上の輝度むらを補正するため、前記R信号に乗算するR信号用のユニフォミティ補正データと、前記G信号に乗算するG信号用のユニフォミティ補正データと、前記B信号に乗算するB信号用のユニフォミティ補正データを発生するユニフォミティ補正データ発生部と、前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算し、前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算し、前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算する乗算器とを備え、前記乗算器が前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記乗算器が前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算するときの画素の位置とを互いにずらしていることを特徴とする画像処理装置を提供する。
【0008】
また、本発明は、上述した従来の技術の課題を解決するため、R信号,G信号,B信号を表示部に供給して画像表示させたときの前記表示部の画面上の輝度むらを補正するため、前記R信号に乗算するR信号用のユニフォミティ補正データと、前記G信号に乗算するG信号用のユニフォミティ補正データと、前記B信号に乗算するB信号用のユニフォミティ補正データとをそれぞれ発生させ、前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算し、前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算し、前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算し、前記R信号を構成するそれぞれの画素信号に前記R信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記G信号を構成するそれぞれの画素信号に前記G信号用のユニフォミティ補正データを乗算するときの画素の位置と、前記B信号を構成するそれぞれの画素信号に前記B信号用のユニフォミティ補正データを乗算するときの画素の位置とを互いにずらすことを特徴とする画像処理方法を提供する。
【0009】
さらに、本発明は、上述した従来の技術の課題を解決するため、上記の画像処理装置と、前記表示部とを備えることを特徴とする画像表示装置を提供する。
【発明の効果】
【0010】
本発明の画像処理装置、画像処理方法、画像表示装置によれば、画面上の輝度を画面の全体でほぼ一定となるようにユニフォミティ補正することができ、さらに、所定の形状の輝度むらも低減させることができる。
【図面の簡単な説明】
【0011】
図1】一実施形態の画像処理装置及び画像表示装置を示すブロック図である。
図2】基準ユニフォミティ補正データを生成するために、二次元輝度測定器によって画面上のXYZ刺激値を測定している状態を示す概念図である。
図3】画面上に設定する基準座標の例を示す図である。
図4図1におけるユニフォミティ補正データ補間部12が、基準ユニフォミティ補正データに基づいてユニフォミティ補正データを補間する動作を説明するための図である。
図5】ユニフォミティ補正データ補間部12が補間によって生成する補正値の例を示す図である。
図6】画面上の輝度の特性とユニフォミティ補正データとの関係を示す特性図である。
図7図1におけるレベル補正データ記憶部14が記憶するレベル補正データの例を示す特性図である。
図8図1におけるレベル補正データ補間部15が出力するレベル補正データの例を示す特性図である。
図9図8に示すレベル補正データによるユニフォミティ補正データの補正の状態を示す特性図である。
図10】画面上に発生する格子状の輝度むらの例を示す図である。
【発明を実施するための形態】
【0012】
以下、一実施形態の画像処理装置、画像処理方法、画像表示装置について、添付図面を参照して説明する。
【0013】
図1において、画像処理装置10Rは、表示パネル20に表示される画像の輝度むらを補正するために、RGB信号におけるR信号を処理する。画像処理装置10G,10Bは、それぞれ、表示パネル20に表示される画像の輝度むらを補正するために、RGB信号におけるG信号,B信号を処理する。
【0014】
表示パネル20は、一例として画素が水平方向に1920画素、垂直方向に1080画素、マトリクス状に配置されたマトリクス型表示パネルである。表示パネル20は、RGB信号のような映像信号に基づいて画像表示する表示部の一例である。表示パネル20の解像度は必ずしも水平方向1920画素、垂直方向1080画素に限定されない。
【0015】
画像処理装置10R,10G,10Bは、一実施形態の画像処理装置を構成する。画像処理装置10G,10Bの内部構成は、画像処理装置10Rと同じである。画像処理装置10R,10G,10B及び表示パネル20は、一実施形態の画像表示装置を構成する。
【0016】
画像処理装置10R,10G,10Bに入力されるユニフォミティ補正前のRGB信号を、入力R信号R0,入力G信号G0,入力B信号B0と称することとする。入力R信号R0,入力G信号G0,入力B信号B0は10ビットであるとする。
【0017】
画像処理装置10R,10G,10Bによってユニフォミティ補正されたRGB信号を、出力R信号R1,出力G信号G1,出力B信号B1と称することとする。
【0018】
入力R信号R0,入力G信号G0,入力B信号B0は、表示パネル20の解像度と同じ解像度を有する色信号であるとする。
【0019】
ユニフォミティ補正データ記憶部11は、入力R信号R0,入力G信号G0,入力B信号B0それぞれをユニフォミティ補正するための基準ユニフォミティ補正データを記憶している。
【0020】
図2及び図3を用いて、基準ユニフォミティ補正データをどのように生成するかについて説明する。表示パネル20は、信号発生器31が発生する測定用テストパターンを表示する。測定用テストパターンは、例えば50%ホワイト信号である。
【0021】
二次元輝度測定器32は、表示パネル20の画面全体におけるXYZ刺激値を測定する。パーソナルコンピュータ33は、二次元輝度測定器32が測定したXYZ刺激値を取り込む。
【0022】
図3に示すように、パーソナルコンピュータ33は、一例として、表示パネル20における水平方向9ポイント、垂直方向6ポイントよりなる54ポイントを基準座標Pとして設定する。基準座標の数は表示パネル20の解像度に伴い、最適な数を決定する。基準座標Pは、水平方向に等間隔、垂直方向に等間隔で設定される。
【0023】
パーソナルコンピュータ33は、基準座標Pを含む円にて示す所定の範囲のXYZ刺激値の平均値を算出する。1つの範囲のXYZ刺激値の平均値を基準XYZ刺激値と称することとする。なお、所定の範囲は、基準座標Pに位置する画素を含む数画素から数十画素程度の範囲とすればよい。
【0024】
これによって、パーソナルコンピュータ33は、54ポイントの基準XYZ刺激値を得ることができる。
【0025】
パーソナルコンピュータ33は、54ポイントの基準XYZ刺激値をRGB値に変換する。基準XYZ刺激値をRGB値に変換した値を基準RGB値と称することとする。
【0026】
54ポイントの基準RGB値は、通常、一定値とはならず、輝度むらが生じている。一般的には、画面周辺部よりも中央部の方が、基準RGB値が高い。基準RGB値のばらつきの仕方は、個々の表示パネル20によって異なることがある。
【0027】
パーソナルコンピュータ33は、輝度むらを補正するために、54ポイントの基準RGB値のうちの最も輝度が低いポイントの基準RGB値を基準とし、他の基準RGB値を下げることによって輝度を均一化する基準補正値よりなる基準ユニフォミティ補正データを生成する。
【0028】
ユニフォミティ補正データ記憶部11は、以上のように生成した54ポイントの基準補正値よりなる基準ユニフォミティ補正データを記憶している。
【0029】
図1に戻り、ユニフォミティ補正データ補間部12には、ユニフォミティ補正データが入力される。ユニフォミティ補正データ補間部12は、水平方向及び垂直方向に隣接する基準座標Pと対角方向に位置する基準座標Pの4点の基準補正値を用い、2次元の線形補間によって基準座標P以外の補正値を生成する。
【0030】
図4において、基準座標P0,P1,P2,P3は、54ポイントの基準座標Pのうち、水平方向及び垂直方向に隣接する基準座標Pと対角方向に位置する基準座標Pよりなる任意の4点を示している。
【0031】
基準座標P0,P1間、基準座標P2,P3間の間隔(画素数)をm、基準座標P0,P2間、基準座標P1,P3間の間隔(画素数)をnとし、基準座標P0から水平方向にh、垂直方向にvだけ離れた位置の座標を座標P(h,v)とする。
【0032】
基準座標P0,P1,P2,P3における基準補正値をD0,D1,D2,D3、座標P(h,v)における補正値をD(h,v)とすると、補正値D(h,v)は2次元の線形補間による次の式(1)で求めることができる。
【0033】
【数1】
【0034】
ユニフォミティ補正データ補間部12には、水平カウンタ13Hより水平カウント値が、垂直カウンタ13Vより垂直カウント値が入力される。水平カウント値は、画面上の水平方向の位置を示す位置情報の一例である。垂直カウント値は、画面上の垂直方向の位置を示す位置情報の一例である。
【0035】
ユニフォミティ補正データ補間部12は、水平カウント値及び垂直カウント値に基づいて、画面上の水平方向及び垂直方向の位置を知ることができる。
【0036】
ユニフォミティ補正データ補間部12は、水平カウント値及び垂直カウント値に基づいて補正値D(h,v)を生成する。
【0037】
図5の(a),(b)は、ユニフォミティ補正データ補間部12が生成する補正値の例を示している。
【0038】
図5の(a)は、基準座標P0,P1,P2,P3における基準補正値D0,D1,D2,D3が、245,237,232,255なる値であった場合に、ユニフォミティ補正データ補間部12が生成する補正値を示している。
【0039】
図5の(b)は、基準座標P0,P1,P2,P3における基準補正値D0,D1,D2,D3が、248,238,250,255なる値であった場合に、ユニフォミティ補正データ補間部12が生成する補正値を示している。
【0040】
図5の(a),(b)では、簡略化のため、補正値を2段階ごとに分けて、それぞれの段階の補正値の分布を示している。図5の(a),(b)より分かるように、ユニフォミティ補正データ補間部12は、線形補間によって、基準座標P0,P1,P2,P3間で滑らかに変化する補正値D(h,v)を生成することができる。
【0041】
以上のようにして、ユニフォミティ補正データ補間部12は、基準補正値の間を補間することによって、入力R信号R0,入力G信号G0,入力B信号B0のそれぞれのフレーム全体を補正することができるユニフォミティ補正データを出力する。
【0042】
ところで、水平方向1920画素を8分割すれば、図4における間隔mは240、垂直方向1080画素を5分割すれば、図4における間隔nは216となる。ユニフォミティ補正データ補間部12は、間隔m,nを240,216として補正値を生成してもよいが、本実施形態においては、補正回路にて演算しやすいように間隔m,nを256,256として補正値を生成する。この間隔は表示パネル20の解像度、ユニフォミティ補正データの許容量、求める品位によって決定する。
【0043】
ユニフォミティ補正データ補間部12が水平方向及び垂直方向に隣接する基準座標間の間隔を2のべき乗とすれば、式(1)による補正値の算出が容易となる。
【0044】
ユニフォミティ補正データ補間部12が間隔m,nを256,256として補正値を生成すると、水平方向2048、垂直方向1280の補正値が生成されることになる。入力R信号R0,入力G信号G0,入力B信号B0が水平方向1920画素、垂直方向1080画素であれば、水平方向2048、垂直方向1280の補正値のうちの、水平方向1920、垂直方向1080の補正値を用いればよい。
【0045】
表示パネル20の画面上の輝度が、図6の(a)に示すように、水平方向の中央部で高い特性を有するとする。ここでは簡略化のため、水平方向のみの特性を示す。
【0046】
ユニフォミティ補正データ記憶部11及びユニフォミティ補正データ補間部12は、以上説明した動作によって、図6の(b)に示すように、水平方向の中央部で輝度を下げるようなユニフォミティ補正データを生成して出力する。
【0047】
ユニフォミティ補正データ記憶部11及びユニフォミティ補正データ補間部12は、R信号に乗算するR信号用のユニフォミティ補正データと、G信号に乗算するG信号用のユニフォミティ補正データと、B信号に乗算するB信号用のユニフォミティ補正データを発生するユニフォミティ補正データ発生部である。
【0048】
図6の(a)に示す特性を有するRGB信号に図6の(b)に示すユニフォミティ補正データを乗算すれば、画面上の輝度が均一化して輝度むらを補正することができる。
【0049】
本実施形態においては、ユニフォミティ補正データ発生部を、ユニフォミティ補正データ記憶部11とユニフォミティ補正データ補間部12とで構成しているが、それに限定されるものではない。
【0050】
但し、ユニフォミティ補正データ記憶部11は、複数のポイントの基準補正値よりなる基準ユニフォミティ補正データを記憶するだけであるので、画面上の全てのポイントの補正値を記憶する場合と比較して、記憶すべきデータ量を削減することができる。
【0051】
ところで、色信号レベルが低い領域において、図6の(b)に示すユニフォミティ補正データを乗算すると、入力R信号R0,入力G信号G0,入力B信号B0それぞれがレベル0に近付く。すると、ホワイトバランスがずれてしまうことがある。
【0052】
図1における乗算器17,レベル補正データ記憶部14,レベル補正データ補間部15,遅延器16は、ユニフォミティ補正したときに色信号レベルが低い領域においてホワイトバランスがずれることを防止するために設けている。
【0053】
レベル補正データ記憶部14には、例えば6ビットのレベル補正データが記憶されている。図7に示すように、レベル補正データは、入力R信号R0,入力G信号G0,入力B信号B0を6ビットで表現したときの色信号レベルに対して、白丸で示すレベル補正値を規定するデータである。レベル補正データ記憶部14は、ルックアップテーブルで構成することができる。
【0054】
レベル補正データは、色信号レベルが0のときレベル補正値は1.0を超える例えば1.2であり、色信号レベルが所定の低レベルである閾値TH1までレベル補正値が段階的に1.0まで漸減し、閾値TH1以降、1.0の一定値である。
【0055】
レベル補正データ補間部15には、入力R信号R0,入力G信号G0,入力B信号B0と、レベル補正データ記憶部14より読み出されたレベル補正データとが入力される。
【0056】
レベル補正データ補間部15は、6ビットのレベル補正データに基づいて、10ビットの入力R信号R0,入力G信号G0,入力B信号B0の色信号レベルに対応したレベル補正値を補間する。
【0057】
レベル補正データ補間部15がレベル補正値を補間することによって、レベル補正データ補間部15からは、図8に示すような、10ビットの色信号レベルに対してレベル補正値を規定するレベル補正データが出力される。
【0058】
図8において、閾値TH1は、例えば色信号レベル80のように適宜の値に設定すればよい。閾値TH1は、色信号レベルが60〜100程度の低レベル領域に設定すればよく、具体的にどの値とするかは設計的事項として決定すればよい。
【0059】
レベル補正データ補間部15から出力された10ビットのレベル補正データは、遅延器16に入力される。遅延器16は、レベル補正データを、ユニフォミティ補正データ記憶部11及びユニフォミティ補正データ補間部12がユニフォミティ補正データを生成して出力するタイミングと一致させるように遅延させて、乗算器17に供給する。
【0060】
乗算器17は、図6の(b)に示すユニフォミティ補正データと、図8に示すレベル補正データとを乗算する。色信号レベルが閾値TH1以上であれば、乗算器17は、入力されたユニフォミティ補正データをそのまま出力する。
【0061】
色信号レベルが閾値TH1未満であれば、乗算器17は、入力されたユニフォミティ補正データに対して、色信号レベルが小さくなるほど大きなレベル補正値を乗算して出力する。
【0062】
よって、色信号レベルが閾値TH1未満のとき、乗算器17より出力されるユニフォミティ補正データは、図9に示すように、実線で示す補正値が一点鎖線で示す補正値へと補正される。即ち、色信号レベルが閾値TH1未満のときには、ユニフォミティ補正が弱められる。よって、ホワイトバランスがずれることが防止される。
【0063】
以上説明したレベル補正データ記憶部14〜乗算器17の部分は、入力R信号R0,入力G信号G0,入力B信号B0の色信号レベルが所定の閾値TH1未満のとき、各色のユニフォミティ補正データの大きさを小さくするように補正するレベル補正部となっている。
【0064】
レベル補正部は、色信号レベルが低い領域においてホワイトバランスがずれることを防止するための構成であるので、ホワイトバランスを重視しない場合には省略可能である。レベル補正部を省略した構成は、色信号レベルの全領域において、ユニフォミティ補正を重視する構成である。
【0065】
本実施形態においては、レベル補正部を、レベル補正データ記憶部14とレベル補正データ補間部15とを含む構成としているが、それに限定されるものではない。
【0066】
レベル補正データ記憶部14を10ビットのレベル補正データを記憶するルックアップテーブルで構成して、レベル補正データ補間部15を省略してもよい。但し、レベル補正データ記憶部14を6ビットのレベル補正データを記憶するルックアップテーブルで構成すれば、記憶すべきデータ量を削減することができる。
【0067】
乗算器17より出力されたユニフォミティ補正データは、乗算器19に入力される。
【0068】
入力R信号R0,入力G信号G0,入力B信号B0は、遅延器18にも入力される。遅延器18は、入力R信号R0,入力G信号G0,入力B信号B0を、ユニフォミティ補正データを生成して出力するタイミングと一致させるように遅延させて、乗算器19に供給する。
【0069】
乗算器19は、遅延器18によって遅延された入力R信号R0,入力G信号G0,入力B信号B0に対して乗算器17より出力されたユニフォミティ補正データを乗算する。これによって、乗算器19は、ユニフォミティ補正された出力R信号R1,出力G信号G1,出力B信号B1を出力する。
【0070】
出力R信号R1,出力G信号G1,出力B信号B1は表示パネル20に供給されて、画像表示される。
【0071】
以上説明した構成及び動作によって、本実施形態の画像処理装置、画像処理方法、画像表示装置は、画面上の輝度を画面の全体でほぼ一定となるようにユニフォミティ補正することができる。また、R信号,G信号,B信号の輝度むらを個別に補正することで、結果として色むらを補正することができる。
【0072】
ところが、本発明者による検証によって、画面上の輝度を画面の全体でほぼ一定となるようにユニフォミティ補正したとしても、図10に示すように、格子状の輝度むら50が発生することが明らかとなった。図10における黒丸は画素Pxlを示す。
【0073】
格子状の輝度むら50は、表示パネル20に表示される出力R信号R1に基づく赤色画像、出力G信号G1に基づく緑色画像、出力B信号B1に基づく青色画像のそれぞれで発生する。
【0074】
そこで、本実施形態の画像処理装置、画像処理方法、画像表示装置においては、次のようにして、格子状の輝度むら50を低減させる。
【0075】
図1において、画像処理装置10Rの乗算器19は、R信号の画素信号にR信号用のユニフォミティ補正データを乗算する。画像処理装置10Gの乗算器19は、G信号の画素信号にG信号用のユニフォミティ補正データを乗算する。画像処理装置10Bの乗算器19は、B信号の画素信号にB信号用のユニフォミティ補正データを乗算する
【0076】
このとき、画像処理装置10R,10G,10Bの乗算器19は、RGB信号の画素信号にユニフォミティ補正データを乗算するときの画素の位置を互いにずらしている。
【0077】
前述のように、ユニフォミティ補正データ補間部12は、画面上の水平方向及び垂直方向それぞれの位置情報を用いて、複数の基準となるポイント以外のポイントにおける補正値を補間する。
【0078】
画像処理装置10R,10G,10Bにおけるそれぞれのユニフォミティ補正データ補間部12は、R信号用,G信号用,B信号用のユニフォミティ補正データを生成するときに用いる位置情報を水平方向及び垂直方向にずらす。これによって、RGB信号の画素信号にユニフォミティ補正データを乗算するときの画素の位置を互いにずらすことができる。
【0079】
具体的には、例えば次のようにすればよい。画像処理装置10Rの水平カウンタ13Hによる水平カウント値と垂直カウンタ13Vによる垂直カウント値を0から開始させる。画像処理装置10Gの水平カウンタ13Hによる水平カウント値と垂直カウンタ13Vによる垂直カウント値を10から開始させる。
【0080】
画像処理装置10Bの水平カウンタ13Hによる水平カウント値と垂直カウンタ13Vによる垂直カウント値を20から開始させる。
【0081】
このように、水平カウント値と垂直カウント値の開始値をずらすことによって、RGB信号の画素信号にユニフォミティ補正データを乗算するときの画素の位置を数画素から数十画素程度、容易にずらすことができる。
【0082】
図10に示す格子状の輝度むら50は、赤色画像と緑色画像と青色画像とで位置がずれることから大方相殺され、輝度むら50の発生を大幅に低減させることができる。
【0083】
図3で説明したように、基準RGB値は、基準座標Pに位置する画素を含む数画素から数十画素程度の範囲のXYZ刺激値の平均値に基づいて算出されている。よって、RGB信号の画素信号にユニフォミティ補正データを乗算するときの画素の位置をずらすことによる弊害は特に発生しない。
【0084】
本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
【符号の説明】
【0085】
10R,10G,10B 画像処理装置
11 ユニフォミティ補正データ記憶部(ユニフォミティ補正データ発生部)
12 ユニフォミティ補正データ補間部(ユニフォミティ補正データ発生部)
14 レベル補正データ記憶部(レベル補正部)
15 レベル補正データ補間部(レベル補正部)
16 遅延器(レベル補正部)
17 乗算器(レベル補正部)
19 乗算器
20 表示パネル(表示部)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10