特許第6361486号(P6361486)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セントラル硝子株式会社の特許一覧

特許6361486非水電解液電池用電解液、及びこれを用いた非水電解液電池
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6361486
(24)【登録日】2018年7月6日
(45)【発行日】2018年7月25日
(54)【発明の名称】非水電解液電池用電解液、及びこれを用いた非水電解液電池
(51)【国際特許分類】
   H01M 10/0567 20100101AFI20180712BHJP
   H01M 10/0568 20100101ALI20180712BHJP
   H01M 10/052 20100101ALI20180712BHJP
   H01M 10/0569 20100101ALI20180712BHJP
   H01M 10/054 20100101ALI20180712BHJP
【FI】
   H01M10/0567
   H01M10/0568
   H01M10/052
   H01M10/0569
   H01M10/054
【請求項の数】11
【全頁数】31
(21)【出願番号】特願2014-243288(P2014-243288)
(22)【出願日】2014年12月1日
(65)【公開番号】特開2016-105370(P2016-105370A)
(43)【公開日】2016年6月9日
【審査請求日】2017年9月25日
(73)【特許権者】
【識別番号】000002200
【氏名又は名称】セントラル硝子株式会社
(74)【代理人】
【識別番号】100108671
【弁理士】
【氏名又は名称】西 義之
(72)【発明者】
【氏名】森中 孝敬
(72)【発明者】
【氏名】久保 誠
(72)【発明者】
【氏名】河端 渉
(72)【発明者】
【氏名】山本 建太
(72)【発明者】
【氏名】高橋 幹弘
【審査官】 近藤 政克
(56)【参考文献】
【文献】 特開2014−203748(JP,A)
【文献】 特開2014−162680(JP,A)
【文献】 特開2010−168308(JP,A)
【文献】 国際公開第2010/122867(WO,A1)
【文献】 米国特許出願公開第2012/0258357(US,A1)
【文献】 国際公開第2012/118063(WO,A1)
【文献】 特開2006−286532(JP,A)
【文献】 国際公開第2006/008921(WO,A1)
【文献】 国際公開第2008/069207(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/0567
H01M 10/052
H01M 10/054
H01M 10/0568
H01M 10/0569
JSTPlus(JDreamIII)
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)〜(4)で示される2価のイミドアニオンを有する塩を含有することを特徴とする、非水電解液電池用電解液。
[式(1)〜(3)中、R〜R はそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
式(2)及び(4)中、Xは、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルキル基、炭素数が2〜10のアルケニル基、炭素数が2〜10のアルキニル基、炭素数が3〜10の、シクロアルキル基、シクロアルケニル基、炭素数が6〜10のアリール基、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。M、Mはそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
【請求項2】
前記イミドアニオンを有する塩が、少なくとも一つのP−F結合またはS−F結合を有することを特徴とする、請求項1に記載の非水電解液電池用電解液。
【請求項3】
前記R〜Rが、フッ素原子、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基であることを特徴とする、請求項1に記載の非水電解液電池用電解液。
【請求項4】
前記アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択されることを特徴とする、請求項3に記載の非水電解液電池用電解液。
【請求項5】
前記Xが、フッ素原子、炭素数が1〜10のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基であることを特徴とする、請求項1に記載の非水電解液電池用電解液。
【請求項6】
前記アルコキシ基が、メトキシ基、エトキシ基、プロポキシ基からなる群から選択され、前記アルケニルオキシ基が、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基からなる群から選択され、前記アルキニルオキシ基が、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択されることを特徴とする、請求項5に記載の非水電解液電池用電解液。
【請求項7】
前記イミドアニオンを有する塩中のイミドアニオンの対カチオンM及びMが、プロトン、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンであることを特徴とする、請求項1〜6のいずれかに記載の非水電解液電池用電解液。
【請求項8】
前記イミドアニオンを有する塩の濃度が、非水電解液電池用電解液の総量に対して0.01〜5.0質量%の範囲であることを特徴とする、請求項1〜7のいずれかに記載の非水電解液電池用電解液。
【請求項9】
前記溶質が、LiPF、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBF、NaPF、NaPF(C、NaPF(C)、NaP(C、NaBF(C)、NaB(C、NaPO、NaN(FPO)、NaN(FSO、NaN(CFSO、及びNaBFからなる群から選ばれる少なくとも一つの溶質であることを特徴とする、請求項1〜8のいずれかに記載の非水電解液電池用電解液。
【請求項10】
前記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つの非水溶媒であることを特徴とする、請求項1〜9のいずれかに記載の非水電解液電池用電解液。
【請求項11】
少なくとも、正極と、負極と、請求項1〜10のいずれかに記載の非水電解液電池用電解液とを備えることを特徴とする、非水電解液電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サイクル特性及び低温特性に優れた非水電解液二次電池を構成する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。
【背景技術】
【0002】
近年、情報関連機器、又は通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型機器で、かつ高エネルギー密度を必要とする用途向けの蓄電システムや電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ、ナトリウムイオン電池等の非水電解液電池が盛んに開発されている。
【0003】
これらの非水電解液電池は既に実用化されているものも多いが、各特性に於いて種々の用途で満足できるものではない。特に、電気自動車等の車載用途等の場合、寒冷時期においても高い入出力特性が要求されるため、低温特性の向上が重要であり、さらに高温環境下で繰り返し充放電させた場合においてもその特性を維持する(内部抵抗の増加が少ない)といった高温サイクル特性が要求される。
【0004】
これまで非水電解液電池の高温特性及び充放電を繰り返した場合の電池特性(サイクル特性)を改善する手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されてきた。非水電解液関連技術もその例外ではなく、活性な正極や負極の表面で電解液が分解することによる劣化を種々の添加剤で抑制することが提案されている。例えば、特許文献1には、電解液にビニレンカーボネートを添加することにより、電池特性を向上させることが提案されている。しかしながら、高温での電池特性は向上するものの内部抵抗の上昇が著しく低温特性が低下してしまうことが課題となっている。また、電解液にイミド塩を添加する検討も数多く行われおり、例えば、特定のスルホンイミド塩やホスホリルイミド塩とオキサラト錯体とを組み合わせることで高温サイクル特性や高温貯蔵特性の劣化を抑制する方法(特許文献2)、特定のスルホンイミド塩とフルオロリン酸塩とを組み合わせることでサイクル特性や出力特性の劣化を抑制する方法(特許文献3)等が提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−123867号公報
【特許文献2】特開2013−051122号公報
【特許文献3】特開2013−030465号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
先行技術文献に開示されている非水電解液を用いた非水電解液電池により得られる低温特性、及び高温サイクル特性は、十分に満足のいくものではなく改善の余地があった。本発明は、−30℃以下での優れた低温出力特性や45℃以上の高温での優れたサイクル特性を発揮することができる非水電解液電池用電解液、及びこれを用いた非水電解液電池を提供するものである。
【課題を解決するための手段】
【0007】
本発明者らは、かかる問題を解決するために鋭意検討の結果、非水溶媒と溶質とを含む非水電解液電池用非水電解液において、特定の構造の2価のイミドアニオンを有する塩を電解液に含有させることにより、該電解液を非水電解液電池に用いた場合に、該非水電解液電池が優れた低温出力特性及び高温サイクル特性を発揮できることを見出し、本発明に至った。
【0008】
すなわち本発明は、非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)〜(4)で示される2価のイミドアニオンを有する塩(以降、単に「イミドアニオンを有する塩」と記載する場合がある)を含有することを特徴とする、非水電解液電池用電解液(以降、単に「非水電解液」または「電解液」と記載する場合がある)を提供するものである。
[式(1)〜(3)中、R〜R はそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
式(2)及び(4)中、Xは、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルキル基、炭素数が2〜10のアルケニル基、炭素数が2〜10のアルキニル基、炭素数が3〜10の、シクロアルキル基、シクロアルケニル基、炭素数が6〜10のアリール基、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。M、Mはそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
【0009】
本発明による電池特性向上の作用機構については、明確ではないが、本発明のイミドアニオンを有する塩は、正極と電解液との界面、及び負極と電解液との界面において一部分解し、皮膜を形成すると考えられる。この皮膜は、非水溶媒や溶質と活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。また、メカニズムは定かではないが、イミドアニオンにリン酸イオン部位(−P(=O)R)または、スルホン酸イオン部位(−SO)を有することが重要で、上記皮膜にリン酸イオン部位またはスルホン酸イオン部位が取り込まれることで、形成した皮膜の電荷に偏りが生じ、リチウム導電性の高い、すなわち抵抗の小さい皮膜(出力特性が良好な皮膜)となっていると考えられる。さらに、上記の効果は、イミドアニオンに電子吸引性の高い部位(例えばフッ素原子や含フッ素アルコキシ基)が含まれることで電荷の偏りがより大きくなり、より抵抗の小さい皮膜(出力特性がより良好な皮膜)が形成されると考えられる。以上の理由から、本発明のイミドアニオンを有する塩を含有する非水電解液により、高温サイクル特性と低温出力特性の向上効果が発現すると推測される。
【0010】
上記イミドアニオンを有する塩が、少なくとも一つのP−F結合またはS−F結合を有すると、より優れた低温特性が得られるため好ましい。上記イミドアニオンを有する塩中のP−F結合やS−F結合の数が多いほど低温特性をさらに向上することが出きるため、さらに好ましい。
【0011】
上記R〜Rが、フッ素原子、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基であると、より優れた高温サイクル特性が得られるため好ましい。
また、上記アルケニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
また、上記アルキニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
【0012】
上記Xが、フッ素原子、炭素数が1〜10のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、及び炭素数が2〜10のアルキニルオキシ基からなる群から選ばれる有機基であると、より優れた高温サイクル特性が得られるため好ましい。
また、上記アルコキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、メトキシ基、エトキシ基、プロポキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
また、上記アルケニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、1−プロペニルオキシ基、2−プロペニルオキシ基、3−ブテニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
また、上記アルキニルオキシ基の炭素数が6以下であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特に、2−プロピニルオキシ基、1,1−ジメチル−2−プロピニルオキシ基からなる群から選択される基であると、高温サイクル特性及び低温出力特性により優れた非水電解液電池を得られるため好ましい。
【0013】
上記イミドアニオンを有する塩中のイミドアニオンの対カチオンM及びMが、プロトン、アルカリ金属カチオン、又はオニウムカチオンであることが好ましい。その中でも、非水電解液における溶解度やイオン電導度を考慮すると、プロトン、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、及びテトラアルキルホスホニウムイオンからなる群から選ばれる少なくとも一つのカチオンであることがより好ましい。
【0014】
上記イミドアニオンを有する塩の濃度の下限は、非水電解液電池用電解液の総量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。また、該濃度の上限は5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.0質量%以下がさらに好ましい。上記濃度が0.01質量%を下回ると、電池特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が5.0質量%を超えると、それ以上の効果は得られずに無駄であるだけでなく、電解液の粘度が上昇しイオン伝導度が低下する傾向があり、抵抗が増加し電池性能の劣化を引き起こし易いため好ましくない。これらのイミドアニオンを有する塩は、5.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
【0015】
また、上記溶質が、LiPF、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBF、NaPF、NaPF(C、NaPF(C)、NaP(C、NaBF(C)、NaB(C、NaPO、NaN(FPO)、NaN(FSO、NaN(CFSO、及びNaBFからなる群から選ばれる少なくとも一つの溶質であることが好ましい。
【0016】
上記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つであることが好ましい。
【0017】
また、本発明は、少なくとも、正極と、負極と、上記の非水電解液電池用電解液とを備えることを特徴とする、非水電解液電池を提供するものである。
【発明の効果】
【0018】
本発明の非水電解液電池用電解液を非水電解液電池に用いた場合に、−30℃以下での優れた低温出力特性や45℃以上の高温での優れたサイクル特性を発揮することができる。
【発明を実施するための形態】
【0019】
以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
【0020】
本発明の非水電解液電池用電解液は、非水溶媒、溶質、及び、少なくとも1種の下記一般式(1)〜(4)で示される2価のイミドアニオンを有する塩を含有することを特徴とする、非水電解液電池用電解液である。
[式(1)〜(3)中、R〜R はそれぞれ互いに独立して、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。
式(2)及び(4)中、Xは、フッ素原子、炭素数が1〜10の直鎖あるいは分岐状のアルキル基、炭素数が2〜10のアルケニル基、炭素数が2〜10のアルキニル基、炭素数が3〜10の、シクロアルキル基、シクロアルケニル基、炭素数が6〜10のアリール基、炭素数が1〜10の直鎖あるいは分岐状のアルコキシ基、炭素数が2〜10のアルケニルオキシ基、炭素数が2〜10のアルキニルオキシ基、炭素数が3〜10の、シクロアルコキシ基、シクロアルケニルオキシ基、及び、炭素数が6〜10のアリールオキシ基から選ばれる有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。M、Mはそれぞれ互いに独立して、プロトン、金属カチオンまたはオニウムカチオンである。]
【0021】
上記イミドアニオンを有する塩中のイミドアニオンの対カチオンとしては、プロトンや、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオン、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルホスホニウム等のオニウムカチオン(対カチオンが1価のカチオンである場合は、2種類のカチオンを混合してもよい。また、例えば、Mが2価のカチオンであればMは存在しない)が挙げられる。
【0022】
上記一般式(1)〜(3)において、R〜Rで表される、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基、ペンチルオキシ基、トリフルオロメトキシ基、2,2−ジフルオロエトキシ基、2,2,2−トリフルオロエトキシ基、2,2,3,3−テトラフルオロプロポキシ基、及び1,1,1,3,3,3−ヘキサフルオロイソプロポキシ基等の炭素原子数1〜10のアルコキシ基や含フッ素アルコキシ基が挙げられ、アルケニルオキシ基としては、例えば、ビニルオキシ基、1−プロペニルオキシ基、2−プロペニルオキシ基、イソプロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、及び1,3−ブダジエニルオキシ基等の炭素原子数2〜10のアルケニルオキシ基や含フッ素アルケニルオキシ基が挙げられ、アルキニルオキシ基としては、例えば、エチニルオキシ基、2−プロピニルオキシ基、及び1,1−ジメチル−2−プロピニルオキシ基等の炭素原子数2〜10のアルキニルオキシ基や含フッ素アルキニルオキシ基が挙げられ、シクロアルコキシ基としては、例えば、シクロペンチルオキシ基、及びシクロヘキシルオキシ基等の炭素数が3〜10のシクロアルコキシ基や含フッ素シクロアルコキシ基が挙げられ、シクロアルケニルオキシ基としては、例えば、シクロペンテニルオキシ基、及びシクロヘキセニルオキシ基等の炭素数が3〜10のシクロアルケニルオキシ基や含フッ素シクロアルケニルオキシ基が挙げられ、アリールオキシ基としては、フェニルオキシ基、トリルオキシ基、及びキシリルオキシ基等の炭素原子数6〜10のアリールオキシ基や含フッ素アリールオキシ基が挙げられる。
【0023】
上記一般式(2)及び(4)において、Xで表される、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、ペンチル基、トリフルオロメチル基、2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基、及び1,1,1,3,3,3−ヘキサフルオロイソプロピル基等の炭素原子数1〜10のアルキル基や含フッ素アルキル基が挙げられ、アルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、イソプロペニル基、2−ブテニル基、3−ブテニル基、及び1,3−ブダジエニル基等の炭素原子数2〜10のアルケニル基や含フッ素アルケニル基が挙げられ、アルキニル基としては、例えば、エチニル基、2−プロピニル基、及び1,1−ジメチル−2−プロピニル基等の炭素原子数2〜10のアルキニル基や含フッ素アルキニル基が挙げられ、シクロアルキル基としては、例えば、シクロペンチル基、及びシクロヘキシル基等の炭素数が3〜10のシクロアルキル基や含フッ素シクロアルキル基が挙げられ、シクロアルケニル基としては、例えば、シクロペンテニル基、及びシクロヘキセニル基等の炭素数が3〜10のシクロアルケニル基や含フッ素シクロアルケニル基が挙げられ、アリール基としては、例えば、フェニル基、トリル基、及びキシリル基等の炭素原子数6〜10のアリール基や含フッ素アリール基が挙げられる。
【0024】
上記一般式(1)〜(4)中で記載された2価のイミドアニオンとしては、より具体的には、例えば以下の化合物No.1〜No.18等が挙げられる。但し、本発明で用いられるイミドアニオンは、以下の例示により何ら制限を受けるものではない。
【0025】


【0026】
上記一般式(1)〜(4)で示されるイミドアニオンを有する塩は種々の方法により製造できる。製造法としては、限定されることはないが、例えば、対応するリン酸アミド(HNP(=O)R)やスルファミン酸(HNSO)と、対応するホスホニルクロリド(P(=O)RCl)やスルホニルクロリド(XSOCl)を有機塩基または無機塩基の存在下で反応させることで得ることができる。
【0027】
本発明の非水電解液電池用電解液に用いる非水溶媒の種類は、特に限定されず、任意の非水溶媒を用いることができる。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ―ブチロラクトン、γ―バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン等の環状エーテル、ジメトキシエタン、ジエチルエーテル等の鎖状エーテル、ジメチルスルホキシド、スルホラン等のスルホン化合物やスルホキシド化合物等が挙げられる。また、非水溶媒とはカテゴリーが異なるがイオン液体等も挙げることができる。また、本発明に用いる非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。これらの中ではその酸化還元に対する電気化学的な安定性と熱や上記溶質との反応に関わる化学的安定性の観点から、特にプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが好ましい。
【0028】
本発明の非水電解液電池用電解液に用いる上記溶質の種類は、特に限定されず、任意の電解質塩を用いることができる。具体例としては、リチウム電池及びリチウムイオン電池の場合には、LiPF、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBF、LiClO、LiAsF、LiSbF、LiCFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(C、LiB(CF、LiBF(C)などに代表される電解質塩が挙げられ、ナトリウムイオン電池の場合には、NaPF、NaPF(C、NaPF(C)、NaP(C、NaBF(C)、NaB(C、NaPO、NaN(FPO)、NaN(FSO、NaN(CFSO、NaBF、NaClO、NaAsF、NaSbF、NaCFSO、NaN(CSO、NaN(CFSO)(CSO)、NaC(CFSO、NaPF(C、NaB(CF、NaBF(C)などに代表される電解質塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、LiPF、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBF、NaPF、NaPF(C、NaPF(C)、NaP(C、NaBF(C)、NaB(C、NaPO、NaN(FPO)、NaN(FSO、NaN(CFSO、及びNaBFが好ましい。
【0029】
上記溶質の好適な組合せとしては、例えば、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBFからなる群から選ばれる少なくとも1つと、LiPFとを組み合わせたもの等が好ましい。
【0030】
溶質として、LiPF(C、LiPF(C)、LiP(C、LiBF(C)、LiB(C、LiPO、LiN(FPO)、LiN(FSO、LiN(CFSO、LiBFからなる群から選ばれる少なくとも1つと、LiPFとを組み合わせて使用した場合の比率(LiPFを1モルとしたときのモル比)は、通常、1:0.001〜1:0.5、好ましくは1:0.01〜1:0.2の範囲である。上記のような比率で溶質を組み合わせて用いると種々の電池特性をさらに向上させる効果がある。一方、1:0.5よりもLiPFの割合が低いと電解液のイオン伝導度が低下し、抵抗が上昇してしまう傾向がある。
【0031】
これら溶質の濃度については、特に制限はないが、下限は0.5mol/L以上が好ましく、0.7mol/L以上がより好ましく、0.9mol/L以上がさらに好ましい。また、上限は2.5mol/L以下が好ましく、2.0mol/L以下がより好ましく、1.5mol/L以下がさらに好ましい。なお、複数種類の溶質を用いる場合も溶質の総量の濃度が上記の範囲であることが好ましい。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下する傾向があり、一方、2.5mol/Lを超えると非水電解液電池用電解液の粘度が上昇することにより、やはりイオン伝導度を低下させる傾向があり、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
【0032】
一度に多量の該溶質を非水溶媒に溶解すると、溶質の溶解熱のため液温が上昇することがある。該液温が著しく上昇すると、フッ素を含有した電解質塩の分解が促進されてフッ化水素が生成する恐れがある。フッ化水素は電池性能の劣化の原因となるため好ましくない。このため、該溶質を非水溶媒に溶解する際の液温は特に限定されないが、−20〜80℃が好ましく、0〜60℃がより好ましい。
【0033】
以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般的に用いられる添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t−ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、スクシノニトリル、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
【0034】
次に本発明の非水電解液電池の構成について説明する。本発明の非水電解液電池は、上記の本発明の非水電解液電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水電解液電池に使用されているものが用いられる。即ち、カチオンの吸蔵及び放出が可能な正極及び負極、集電体、セパレータ、容器等から成る。
【0035】
負極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、リチウム金属、リチウム金属と他の金属との合金、又は金属間化合物や種々の炭素材料(人造黒鉛、天然黒鉛など)、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。
炭素材料とは、例えば、易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素(ハードカーボン)や、(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解性炭素、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭あるいはカーボンブラック類などがある。このうち、コークス類にはピッチコークス、ニードルコークスあるいは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものをいう。炭素材料は、リチウムの吸蔵および放出に伴う結晶構造の変化が非常に少ないため、高いエネルギー密度が得られると共に優れたサイクル特性が得られるので好ましい。なお、炭素材料の形状は、繊維状、球状、粒状あるいは鱗片状のいずれでもよい。また、非晶質炭素や非晶質炭素を表面に被覆した黒鉛材料は、材料表面と電解液との反応性が低くなるため、より好ましい。
【0036】
正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO、LiNiO、LiMnO、LiMn等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO、LiCoPO、LiMnPO等の遷移金属のリン酸化合物、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
【0037】
正極や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、黒鉛、結着材としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が加えられ、シート状に成型されることにより電極シートにすることができる。
【0038】
正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、及びガラス繊維等で作られた不織布や多孔質シートが使用される。
【0039】
以上の各要素からコイン形、円筒形、角形、アルミラミネートシート型等の形状の非水電解液電池が組み立てられる。
【実施例】
【0040】
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
【0041】
[実施例1−1]
非水溶媒としてエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてLiPFを1.0mol/Lの濃度となるように、2価のイミドアニオンを有する塩として上記化合物No.1のジリチウム塩を1.0質量%の濃度となるように溶解し、表1に示すように非水電解液電池用電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
【0042】
この電解液を用いてLiNi1/3Mn1/3Co1/3を正極材料、黒鉛を負極材料としてセルを作製し、実際に電池のサイクル特性、及び低温出力特性を評価した。試験用セルは以下のように作製した。
【0043】
LiNi1/3Mn1/3Co1/3粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量%に、バインダーとして10質量%のPVDFを混合し、さらにN−メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。
以上のような方法で作製したセルを用いて充放電試験を実施し、高温サイクル特性、低温出力特性を評価した。評価結果を表4に示す。
【0044】
[高温サイクル特性試験]
45℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電は、4.3V、放電は3.0Vまで行い、電流密度5.7mA/cmで充放電サイクルを繰り返した。そして、200サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
<200サイクル後の放電容量維持率>
放電容量維持率(%)=(200サイクル後の放電容量/初放電容量)×100
【0045】
[低温出力特性試験]
25℃の環境温度下、充電上限電圧4.3Vまで定電流定電圧法で、電流密度0.38mA/cmで充放電を行った。このときの放電容量を放電容量Aとする。この後、−30℃の環境温度下、充電上限電圧4.3Vまで定電流定電圧法で、電流密度0.38mA/cmで充電した後、放電終止電圧3.0Vまで電流密度9.5mA/cmの定電流で放電した。このときの放電容量を放電容量Bとし、「(放電容量B/放電容量A)×100」から求めた値を高出力容量維持率(%)とし、セルの低温出力特性を評価した。
【0046】
[実施例1−2〜1−155、比較例1−1〜1−17]
表1〜3に示すように、溶質の種類と濃度(mol/L)およびイミドアニオンを有する塩の種類と濃度(質量%)を変えたこと以外は実施例1−1と同様に非水電解液電池用電解液の調製、及びセルの作製を行い、電池の評価を実施した。評価結果を表4〜6に示す。なお、実施例1−1〜1−155、比較例1−1〜1−17の評価結果は、比較例1−1の値を100とした場合の相対値である。
【0047】
なお、比較例1−2〜1−7においてイミドアニオンを有する塩として以下の化合物No.19〜24を用いた。
【0048】
【0049】
【表1】
【0050】
【表2】
【0051】
【表3】
【0052】
【表4】
【0053】
【表5】
【0054】
【表6】
【0055】
以上の結果を比較すると、2価のイミドアニオンを有する塩を添加した実施例1−1〜1−24は、該塩を添加していない比較例1−1に対し、高温サイクル特性及び低温出力特性が共に向上していることが確認できた。また同様に、1価のイミドアニオンを有する塩を用いる比較例1−2〜1−7に対し、本発明の2価のイミドアニオンを有する塩を同濃度(1.0質量%)含有させた実施例1−1、1−8〜1−24では、高温サイクル特性及び低温出力特性が向上していることが確認できた。
【0056】
また、例えば、電解液の組成比が同じである、実施例1−1、1−8〜1−24において、P−F結合やS−F結合を持つイミドアニオンを有する塩を用いた実施例(実施例1−1、1−8〜1−17、1−21〜1−24)は、P−F結合及びS−F結合を持たないイミドアニオンを有する塩を用いた実施例(実施例1−18〜1−20)に比べて、より優れた低温出力特性を示すことが確認された。さらに、上記イミドアニオンを有する塩中のP−F結合やS−F結合の数が多いほど、低温特性がさらに向上されるが確認された。
【0057】
また、例えば、一般式(1)で示される2価のイミドアニオンを有する塩を用いた実施例1−1、1−8〜1−11において、R〜Rがフッ素原子、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1−1、1−8〜1−10は、R〜Rのうち上記に該当しない有機基を持つ実施例1−11よりも優れた高温サイクル特性を示すことが確認された。
【0058】
また、例えば、一般式(2)で示される2価のイミドアニオンを有する塩を用いた実施例1−12〜1−16において、Xがフッ素原子、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1−12、1−14〜1−16は、Xが上記に該当しない有機基である実施例1−13よりも優れた高温サイクル特性を示すことが確認された。
【0059】
また、例えば、一般式(3)で示される2価のイミドアニオンを有する塩を用いた実施例1−21〜1−24において、R及びRがフッ素原子、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1−21、22は、R及びRのうち上記に該当しない有機基を持つ実施例1−23、24よりも優れた高温サイクル特性を示すことが確認された。
【0060】
また、例えば、一般式(4)で示される2価のイミドアニオンを有する塩を用いた実施例1−17〜1−20において、Xがフッ素原子、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である実施例1−17、1−19、1−20は、Xが上記に該当しない有機基である実施例1−18よりも優れた高温サイクル特性を示すことが確認された。
【0061】
実施例1−25〜1−80において、すなわち2価のイミドアニオンの対カチオンを種々変更した系においても同様の効果が得られることが確認された。
【0062】
さらに、溶質がLiPFと別の溶質が混合された場合においても、2価のイミドアニオンを有する塩を添加した実施例1−81〜1−155では、2価のイミドアニオンを有する塩を添加していない比較例1−8〜1−17に対し、高温サイクル特性及び低温出力特性が向上しており、同様の効果が得られることが確認された。
【0063】
[実施例2−1〜2−21、比較例2−1〜2−12]
表7に示すように、負極体及び電解液を変えたこと以外は実施例1−1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。
なお、負極活物質がLiTi12である負極体は、LiTi12粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.5Vとした。
また、負極活物質が黒鉛(ケイ素含有)である負極体は、黒鉛粉末81質量%、ケイ素粉末9質量%に、バインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合しさらにN−メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧と放電終止電圧は実施例1−1と同様とした。
また、負極活物質がハードカーボンである負極体は、ハードカーボン粉末90質量%に、バインダーとして5質量%のPVDF、導電剤としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.2Vとした。
評価結果を表7に示す。なお、実施例2−1〜2−7及び比較例2−1〜2−4の評価結果は、比較例2−1の値を100とした場合の相対値である。また、実施例2−8〜2−14及び比較例2−5〜2−8の評価結果は、比較例2−5の値を100とした場合の相対値である。また、実施例2−15〜2−21及び比較例2−9〜2−12の評価結果は、比較例2−9の値を100とした場合の相対値である。
【0064】
【表7】
【0065】
[実施例3−1〜3−28、比較例3−1〜3−16]
表8に示すように、正極体、負極体及び電解液を変えたこと以外は実施例1−1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。
なお、正極活物質がLiCoOである正極体は、LiCoO粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。
実施例1−1と同様に負極活物質が黒鉛である実施例3−1〜3−7及び比較例3−1〜3−4において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
実施例2−1と同様に負極活物質がLiTi12である実施例3−8〜3−14及び比較例3−5〜3−8において、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。
実施例2−8と同様に負極活物質が黒鉛(ケイ素含有)である実施例3−15〜3−21及び比較例3−9〜3−12において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
実施例2−15と同様に負極活物質がハードカーボンである実施例3−22〜3−28及び比較例3−13〜3−16において、電池評価の際の充電終止電圧を4.1V、放電終止電圧を2.2Vとした。
評価結果を表8に示す。なお、実施例3−1〜3−7及び比較例3−1〜3−4の評価結果は、比較例3−1の値を100とした場合の相対値である。また、実施例3−8〜3−14及び比較例3−5〜3−8の評価結果は、比較例3−5の値を100とした場合の相対値である。また、実施例3−15〜3−21及び比較例3−9〜3−12の評価結果は、比較例3−9の値を100とした場合の相対値である。また、実施例3−22〜3−28及び比較例3−13〜3−16の評価結果は、比較例3−13の値を100とした場合の相対値である。
【0066】
【表8】
【0067】
[実施例4−1〜4−21、比較例4−1〜4−12]
表9に示すように、正極体及び電解液を変えたこと以外は実施例1−1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。なお、正極活物質がLiNi0.8Co0.15Al0.05である正極体は、LiNi0.8Co0.15Al0.05粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。
また、正極活物質がLiMnである正極体は、LiMn粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。
また、正極活物質がLiFePOである正極体は、非晶質炭素で被覆されたLiFePO粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.5Vとした。
評価結果を表9に示す。なお、実施例4−1〜4−7及び比較例4−1〜4−4の評価結果は、比較例4−1の値を100とした場合の相対値である。また、実施例4−8〜4−14及び比較例4−5〜4−8の評価結果は、比較例4−5の値を100とした場合の相対値である。また、実施例4−15〜4−21及び比較例4−9〜4−12の評価結果は、比較例4−9の値を100とした場合の相対値である。
【0068】
【表9】
【0069】
表7〜9の結果から、負極活物質や正極活物質の種類によらず、電解液中に上記2価のイミドアニオンを有する塩を添加すると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び低温出力特性を発揮し、上述と同様の効果が得られることが確認された。
【0070】
[実施例5−1]
非水溶媒としてエチレンカーボネートとジエチルカーボネートの体積比1:1の混合溶媒を用い、該溶媒中に、溶質としてNaPFを1.0mol/Lの濃度となるように、イミドアニオンを有する塩として上記化合物No.1のジナトリウム塩を0.1質量%の濃度となるように溶解し、表10に示すように非水電解液電池用電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
【0071】
この電解液を用いてNaFe0.5Co0.5を正極材料、ハードカーボンを負極材料とした以外は実施例1−1と同様にセルの作製を行い、実施例1−1と同様に電池の評価を実施した。なお、正極活物質がNaFe0.5Co0.5である正極体は、NaFe0.5Co0.5粉末90質量%にバインダーとして5質量%のPVDF、導電材としてアセチレンブラックを5質量%混合し、さらにN−メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し電池評価の際の充電終止電圧を3.8V、放電終止電圧を1.5Vとした。評価結果を表11に示す。
【0072】
[実施例5−2〜5−14、比較例5−1〜5−5]
表10に示すように、溶質の種類と濃度及びイミドアニオンを有する塩の種類と濃度を変えたこと以外は実施例5−1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。評価結果を表11に示す。なお、実施例5−1〜5−14、比較例5−1〜5−5の評価結果は、比較例5−1の値を100とした場合の相対値である。
【0073】
【表10】
【0074】
【表11】
【0075】
表11の結果から、ナトリウムイオン電池においても、電解液に上記2価のイミドアニオンを有する塩を添加した実施例5−1〜5−7は、該塩を添加していない比較例5−1に対し、高温サイクル特性及び低温出力特性が共に向上していることが確認できた。
また同様に、1価のイミドアニオンを有する塩を用いる比較例5−2〜5−4に対し、本発明の2価のイミドアニオンを有する塩を同濃度(0.1質量%)含有させた実施例5−1〜5−7では、高温サイクル特性及び低温出力特性が向上していることが確認できた。
【0076】
また、ナトリウムイオン電池においても、P−F結合やS−F結合を持つイミドアニオンを有する塩を用いると、より優れた低温出力特性を示すことが確認された。さらに、上記イミドアニオンを有する塩中のP−F結合やS−F結合の数が多いほど、低温特性がさらに向上されるが確認された。
また、一般式(1)や(3)のR〜Rがフッ素原子、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である2価のイミドアニオンを有する塩を用いると、より優れた高温サイクル特性を示すことが確認された。
また、一般式(2)や(4)のXがフッ素原子、アルコキシ基、アルケニルオキシ基、及びアルキニルオキシ基からなる群から選ばれる有機基である2価のイミドアニオンを有する塩を用いると、より優れた高温サイクル特性を示すことが確認された。
【0077】
また、溶質がNaPFと別の溶質が混合された場合においても、2価のイミドアニオンを有する塩を添加した実施例5−8〜5−14では、2価のイミドアニオンを有する塩を添加していない比較例5−5に対し、高温サイクル特性及び低温出力特性が向上しており、同様の効果が得られることが確認された。