(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した特許文献1の構成にあっては、反力をペダルアームに出力するための伝達レバーの軸と、駆動源であるモータの回転軸と、が直結されているため、アクセルペダルが急激に戻された場合に、モータ側の回転フリクションが伝達レバーの戻り方向の回動抵抗となる。これにより、アクセルペダルに対する伝達レバーの追従が遅れることになる。そして、アクセルペダルに対する伝達レバーの追従が大きく遅れると、アクセルペダルと伝達レバーとの間にスペースができ、その状態からアクセルペダルが再度踏み込まれたときに、モータによる反力出力が遅れることが懸念される。
【0005】
そこで、本発明は、このような事情に考慮してなされたもので、その目的は、反力出力時の応答性を高め、操作フィーリングを向上させることができるとともに、クラッチレバーと係合部との係合時に発生する衝突音を小さくできる反力出力装置を提供することである。
【課題を解決するための手段】
【0006】
本発明は、上記課題を解決するために以下の手段を提供する。
本発明に係る反力出力装置は、操作部に対して操作方向とは逆向き
である戻り方向の動力を出力する駆動源と、前記操作部と前記駆動源との間に介在し、前記操作部への動力の伝達を断接するクラッチ機構と、を備え、前記クラッチ機構は、前記駆動源側に接続されるとともに、前記駆動源の動力が伝達される第1回転体と、前記操作部側に接続されるとともに、前記第1回転体と同軸に配置され、前記第1回転体に対して相対回転可能な第2回転体と、前記第1回転体及び前記第2回転体の一方の回転体に回動可能に支持されたクラッチレバーと、前記第1回転体及び前記第2回転体の他方の回転体に配設され、前記クラッチレバーに係合される係合部と、を備え、前記クラッチレバーは、前記一方の回転体の軸線方向から見た平面視で径方向に交差する方向に延在するとともに、その先端面が前記係合部との係合面とされ、前記係合部は、前記
第1回転体が前記
第2回転体に対して
前記戻り方向に先行して回転するとき、
及び前記第2回転体が前記第1回転体に対して前記操作方向に先行して回転するとき、前記係合面を介して前記クラッチレバーを延在方向に沿って押圧して前記クラッチレバーに係合し、前記
第2回転体が前記
第1回転体に対して
前記戻り方向に先行して回転するとき、前記クラッチレバーを回動軸回りに押圧して前記係合部との係合を解除することを特徴とする。
【0007】
この構成によれば、他方の回転体が一方の回転体に対して先行して回転するときに、係合部が一方の回転体のクラッチレバーを回動軸回りに押圧して係合部との係合が解除される。この場合、例えば操作部が戻し方向(操作方向とは逆向き)に急激に戻されたときに、一方の回転体と他方の回転体との接続状態が解除される。そのため、駆動源側の回転フリクションによって操作部の戻し方向への移動が阻害されるのを抑制できる。したがって、操作部の戻り動作に迅速に追従させることができ、その直後に操作部が再度踏み込まれる場合にも、駆動源による反力出力を操作部に迅速に作用させることができる。
特に、一方の回転体が他方の回転体に対して戻し方向に先行して回転するとき、係合部がクラッチレバーを延在方向に押圧することで、クラッチレバーに係合するため、例えば係合部とクラッチレバーとがクラッチレバーの回動方向で係合する構成に比べて、係合部とクラッチレバーとが係合し易くなる。そのため、係合部における他方の回転体の径方向の高さを小さくし、周方向で隣り合う係合部間のピッチを狭くすることができる。よって、クラッチレバーと係合部とを迅速に係合させることができ、一方の回転体及び他方の回転体間での空転量を小さくできる。
その結果、反力出力装置の応答性を向上させ、操作フィーリングを向上させることができるとともに、クラッチレバーと係合部との係合時に発生する衝突音を小さくできる。
しかも、本発明の構成によれば、クラッチレバーが、一方の回転体の径方向に対して交差する方向に延在しているため、例えば一方の回転体の径方向に沿って延在する構成に比べてクラッチレバーの回動範囲を小さくできる。そのため、クラッチレバーと係合部との係合時に発生する衝突音を小さくできる。
【0008】
また、本発明に係る反力出力装置は、前記係合面は、前記クラッチレバーの延在方向の外側に向けて突の湾曲面とされていてもよい。
この構成によれば、クラッチレバーの係合面が延在方向の外側に向けて突の湾曲面とされているため、係合面と係合部との当接部分において、係合面の曲率中心に向けてクラッチレバーが押圧されることになる。そのため、クラッチレバーを延在方向に沿って効果的に押圧でき、係合部とクラッチレバーとをより簡単に係合させることができる。
【0009】
また、本発明に係る反力出力装置は、周方向で隣り合う前記係合部同士が、前記他方の回転体の径方向に突の湾曲部を介して接続されていてもよい。
この構成によれば、周方向で隣り合う係合部同士が湾曲部を介して接続されているため、各係合部間が滑らかに連なる。そのため、係合部間のピッチを狭くすることができ、クラッチレバーと係合部とを迅速に係合させることができる。
【0010】
また、本発明に係る反力出力装置は、前記駆動源の駆動を制御する制御回路を備え、前記制御回路は、前記駆動源の駆動が所定時間停止していると判断した場合に、前記駆動源を駆動させて前記第1回転体を回転させ、前記クラッチレバーの前記係合面を前記係合部に係合させてもよい。
この構成によれば、駆動源の駆動が停止した場合に、クラッチレバー及び係合部間に周方向の空間が生じた場合であっても、その後踏み込み時や反力制御時までにその空間を詰めておくことができる。そのため、クラッチレバーの係合面と、係合部と、が接近する方向に第1回転体及び第2回転体が相対回転する際、第1回転体及び第2回転体の空転量を小さくし、クラッチレバーと係合部とが速やかに係合することになる。
その結果、反力出力装置の応答性を向上させ、操作フィーリングを向上させることができるとともに、クラッチレバーと係合部との係合時に発生する衝突音を小さくできる。
【発明の効果】
【0011】
本発明によれば、反力出力時の応答性を高め、操作フィーリングを向上させることができる。
【発明を実施するための形態】
【0013】
次に、本発明の実施形態を図面に基づいて説明する。以下の説明では、車両のアクセルペダル装置に本発明の反力出力装置を搭載した場合について説明する。
【0014】
[アクセルペダル装置]
図1は、アクセルペダル装置1の側面図である。
図1に示すように、アクセルペダル装置1は、運転席の足元に設置されるペダルユニット2と、ペダルユニット2に連結された反力出力装置10と、を備えている。
【0015】
<ペダルユニット>
ペダルユニット2は、車体に取り付けられた保持ベース3と、保持ベース3に設けられた支軸3aに回動可能に連結された操作ペダル(操作部)4と、を備えている。
保持ベース3と操作ペダル4との間には、操作ペダル4を初期位置に向けて付勢する図示しないリターンスプリングが介在している。
【0016】
操作ペダル4は、基端部が上述した支軸3aに片持ち状に支持されたペダルアーム5と、ペダルアーム5の先端部に設けられ、運転者によって踏み込まれるペダル部6と、ペダルアーム5の基端部に連結された反力伝達レバー7と、を備えている。
操作ペダル4には、ペダルアーム5の操作量(回動角度)に応じて内燃機関の図示しないスロットルバルブの開度を操作するための図示しないケーブルが接続されている。但し、内燃機関が電子制御スロットルを採用する場合には、ペダルユニット2にペダルアーム5の回動角度を検出するための回転センサを設け、その回転センサの検出信号を基にしてスロットルバルブの開度を制御するようにしてもよい。
【0017】
反力伝達レバー7は、ペダルアーム5の延在方向とほぼ相反する方向に延在し、ペダルアーム5と一体で回動する。具体的に、反力伝達レバー7は、基端部がペダルアーム5の基端部に連結される一方、先端部が反力出力装置10の後述する出力レバー45に連結される。
【0018】
<反力出力装置>
図2は、反力出力装置10の内部構造を示す図である。
図2に示すように、反力出力装置10は、モータ(駆動源)12と、モータ12の駆動力を操作ペダル4に向けて出力する出力軸15を有する反力出力部16と、操作ペダル4とモータ12との間に介在し、操作ペダル4への駆動力の伝達を断接するクラッチ機構17と、を備えている。そして、反力出力装置10は、上述した各構成品がハウジング11内に収納されて構成されている。なお、
図2中の符号18は、モータ12を駆動するための制御回路を実装した回路基板である。
【0019】
モータ12は、図示しない回転子及び固定子を収納するモータケース21と、回転子に固定されるとともに、モータケース21から突出する回転軸22と、を備えている。回転軸22のうち、モータケース21から突出した部分には、クラッチ機構17に接続されるウォーム23が連結されている。なお、以下の説明では、モータ12の回転軸22に沿う方向を回転軸方向といい、出力軸15に沿う方向を出力軸方向という場合がある。
【0020】
モータ12には、ホールIC等の図示しない回転センサが取り付けられている。ホールICは、モータ12の回転に応じて変化する磁束密度を検出し、検出した磁束密度をパルス状の電圧として出力する。この出力電圧に基づいてモータ12の回転量(例えば回転数)等を検出することができる。
【0021】
また、モータ12(回転子)の回転は、回路基板18に実装された制御回路によって制御される。回路基板18には、上位ECU(Electronic Control Unit)と制御回路とで信号を送受信するためのCAN(Controller Area Network)ケーブルが接続されている。また、回路基板18とモータ12とはケーブルを介して接続されており、回路基板18から送られる制御信号に基づいて、モータ12の回転が制御される。
【0022】
クラッチ機構17は、ハウジング11から立設された支持ピン24に回転可能に支持された第1回転体25と、第1回転体25と同軸、かつ第1回転体25に対して回転可能に支持ピン24に支持された第2回転体26と、を有している。なお、支持ピン24は、出力軸15と平行に延在している。
【0023】
図3はクラッチ機構17の分解斜視図である。また、
図4はクラッチ機構17の内部構造を説明するための断面図である。
図3、
図4に示すように、第1回転体25は、支持ピン24と同軸上に配置された有底筒状とされ、第2回転体26側に向けて開放されている。第1回転体25のうち、筒部の外周面には、上述したウォーム23に噛合するウォームギヤ31が形成されている。
第1回転体25の底壁部には、第2回転体26側に向けてボス部32が突設されている。そして、ボス部32に形成された軸孔32a内に上述した支持ピン24が挿通されている。第1回転体25の底壁部のうち、ボス部32に対して径方向の両側に位置する部分には、底壁部を出力軸方向に貫通する一対の貫通孔33が形成されている。これら貫通孔33内には、クラッチレバー36(詳細は後述する)を回動可能に支持するクラッチシャフト34が、第1回転体25に対して第2回転体26側とは反対側から各別に挿通されている。
【0024】
クラッチシャフト34のうち、第2回転体26側に位置する端部には、第1回転体25との間でクラッチレバー36を出力軸方向で保持するクラッチプレート35が固定されている。クラッチプレート35は、第1回転体25の径方向を長手方向とする帯状とされ、その中央部に上述したボス部32が挿通される挿通孔35a(
図3参照)が形成されている。そして、クラッチプレート35のうち、挿通孔35aに対して両側に位置する部分に、クラッチシャフト34がカシメ固定されている。
【0025】
第2回転体26は、外径が第1回転体25よりも小さい有底筒状とされ、その開放端側を第1回転体25に向けた状態で、第1回転体25内に収容されている。第2回転体26の筒部には、径方向の内側に向けて突出する係合部41が周方向に間隔をあけて形成されている。
【0026】
図5は、
図4のV部拡大図である。
図4、
図5に示すように、係合部41は、出力軸方向から見た平面視で、径方向の内側に向けて突の半円状とされている。具体的に、係合部41は、モータ12の駆動時における第1回転体25の回転方向(
図5に示す第1回転体25の戻し方向C2)に対して手前側の面が、頂部に向かうに従い湾曲する湾曲面41aとされている。一方、係合部41のうち、第1回転体25の戻し方向C2に対して奥側の面が頂部に向かうに従い径方向の内側に向けて延びる傾斜面41bとされている。また、周方向で隣り合う係合部41同士は、径方向の外側に向けて突の湾曲部42を介して接続されている。これにより、各係合部41は、湾曲部42を介して滑らかに連なっている。
【0027】
図2、
図3に示すように、第2回転体26の底壁部には、クラッチ機構17と反力出力部16とを接続するピニオンギヤ43が取り付けられている。ピニオンギヤ43は、第2回転体26と同軸上に配置されるとともに、その基端部が第2回転体26の底壁部に埋め込み固定(スプライン嵌合)されている。
【0028】
図2に示すように、反力出力部16は、ハウジング11に回転可能に支持された出力軸15と、出力軸15に固定されたセクタギヤ44及び出力レバー45と、を備えている。
出力軸15は、ハウジング11を貫通して設けられ、出力軸方向の一端部がハウジング11から突出している。
【0029】
セクタギヤ44は、出力軸方向から見た平面視で扇状を呈し、その外周縁がピニオンギヤ43に噛合されている。セクタギヤ44は、ハウジング11内に収容され、出力軸15のうちハウジング11内に位置する部分に固定されている。また、セクタギヤ44とハウジング11との間には、反力出力部16を初期位置に向けて付勢するコイルスプリング46が介在している。
【0030】
出力レバー45は、その基端部が出力軸15における一端部(ハウジング11から突出した部分)に固定され、セクタギヤ44とともに回動可能とされている。出力レバー45の先端部は、上述した操作ペダル4における反力伝達レバー7の先端部に回動方向で当接可能とされている。この場合、出力レバー45と反力伝達レバー7とは、操作ペダル4が運転者によって踏み込まれたときに相互に当接する。なお、出力レバー45と反力伝達レバー7とが常時当接する構成としても構わない。
【0031】
ここで、
図4、
図5に示すように、上述したクラッチレバー36は、出力軸方向から見た平面視で径方向に交差する方向(図示の例では、径方向のうち、クラッチシャフト34及び支持ピン24の中心を通る一方向に直交する方向)に延在する平板状とされている。クラッチレバー36は、クラッチシャフト34の中心を回動中心として第2回転体26の筒部に接近離間する方向(径方向)に回動する。具体的に、クラッチレバー36は、係合部41に係合する係合位置と、係合部41との係合が解除された係合解除位置と、の間を回動する。また、クラッチレバー36と、第1回転体25と、の間には、クラッチレバー36を係合位置に向けて付勢する付勢部材47が介在している。
【0032】
クラッチレバー36は、延在方向の基端部に位置してクラッチシャフト34が挿通されるベース部51と、延在方向の先端部に位置して上述した係合部41に係合される爪部52と、を備えている。
爪部52は、先端側に向かうに従い漸次拡幅されている。この場合、爪部52の側面のうち、延在方向の先端面は、上述した係合部41の湾曲面41aに対して第1回転体25の戻し方向C2で対向し、係合部41がクラッチレバー36の延在方向で係合する係合面52aとして機能する。係合面52aは、延在方向の外側に向けて突の円弧状を呈している。本実施形態の係合面52aは、クラッチレバー36の回動中心(クラッチシャフト34の中心)を曲率中心とする円弧状を呈している。
【0033】
また、爪部52の側面のうち、係合面52aに対して径方向の外側に連なる面は、係合部41の傾斜面41bが摺動する摺動面52bとして機能する。摺動面52bは、クラッチレバー36における延在方向の先端側に向かうに従い径方向の外側に向けて延在している。また、爪部52のうち、係合面52a及び摺動面52bにより構成される角部は、径方向の外側に向けて先細る先鋭形状とされ、爪部52が係合部41に係合する係合位置において、係合部41の回転軌跡上に位置している。一方、爪部52の側面のうち、係合面52aに対して径方向の内側に連なる面、及び係合面52aにより構成される角部は、径方向の内側に向けて突の湾曲面を呈している。
【0034】
[作用]
次に、上述したアクセルペダル装置1の作用について説明する。
<ペダル踏み込み時>
図6は、操作ペダル4の踏み込み時の作用を説明するための説明図であって、ハウジング11を取り除いた状態の反力出力装置10の平面図である。
図6に示すように、操作ペダル4が運転者によって踏み込まれると、操作ペダル4が初期位置から支軸3a回りの踏み込み方向A1(
図1中反時計回り)に回転し、その回転角に応じて内燃機関のスロットルバルブの開度が調整される。操作ペダル4が踏み込み方向A1に向けて回転すると、反力伝達レバー7が反力出力部16の出力レバー45に当接し、反力出力部16を出力軸15回りの踏み込み方向B1(
図6中反時計回り)に回動させる。
【0035】
反力出力部16が回動すると、その回動力が反力出力部16のセクタギヤ44を介してピニオンギヤ43に伝達される。すると、第2回転体26が第1回転体25に対して先行して支持ピン24回りの踏み込み方向C1に回転する。
【0036】
図7は、操作ペダル4の踏み込み時の作用を説明するための説明図であって、
図4に相当する図である。
ここで、
図7に示すように、クラッチレバー36は、付勢部材47により係合位置に向けて付勢されているため、第2回転体26が踏み込み方向C1に向けて回転すると、係合部41の湾曲面41aがクラッチレバー36の係合面52aに当接する。すると、クラッチレバー36が係合面52aと、係合部41の湾曲面41aと、の当接部分において、係合面52aの法線方向(クラッチレバー36の延在方向)に向けてクラッチレバー36が押圧される。この場合、係合面52aは、クラッチレバー36の回動中心を中心とする円弧状とされているため、クラッチレバー36の回動中心に向けて押圧力が作用する。そのため、クラッチレバー36と係合部41とがクラッチレバー36の延在方向(クラッチレバー36の回動方向に交差する方向)で係合する。これにより、第1回転体25と第2回転体26とが、クラッチレバー36及び係合部41を介して接続状態となり、第2回転体26の回転力が第1回転体25に伝達される。したがって、第1回転体25が第2回転体26とともに踏み込み方向C1に回転する。
そして、第1回転体25の回転力がウォーム23を介して回転軸22に伝達されることで、ウォーム23及び回転軸22が踏み込み方向D1(モータ12の回転方向とは逆方向)に回転する。
【0037】
<反力制御時>
図8は、反力制御時の作用を説明するための説明図であって、
図6に相当する図である。
上述した踏み込み時において、操作ペダル4の踏込速度や車両の運転状況に応じて踏み込み過ぎと判断されると、反力出力装置10による反力制御を開始する。具体的には、
図8に示すように、反力出力装置10のモータ12が駆動し、回転軸22が戻し方向D2(モータ12の回転方向)に回転する。すると、モータ12の駆動力がウォーム23を介して第1回転体25に伝達されることで、第1回転体25が第2回転体26に対して先行して支持ピン24回りの戻し方向C2に回転する。
【0038】
図9、
図10は、反力制御時の作用を説明するための説明図であって、
図4に相当する図である。
図9に示すように、第1回転体25が戻し方向C2に向けて回転すると、クラッチレバー36の係合面52aが係合部41の湾曲面41aに当接する。このとき、クラッチレバー36が係合面52aと、係合部41の湾曲面41aと、の当接部分において、係合面52aの法線方向に向けてクラッチレバー36が押圧されることで、クラッチレバー36と係合部41とがクラッチレバー36の延在方向で係合する。これにより、第1回転体25と第2回転体26とが、クラッチレバー36及び係合部41を介して接続状態となり、第1回転体25の回転力が第2回転体26に伝達される。したがって、
図10に示すように、第2回転体26が第1回転体25とともに戻し方向C2に回転する。
【0039】
そして、
図8に示すように、第2回転体26の回転力がセクタギヤ44を介して反力出力部16に伝達されることで、反力出力部16が出力軸15回りの戻し方向B2に回動する。反力出力部16が戻し方向B2に回動すると、その回動力が出力レバー45を介して操作ペダル4の反力伝達レバー7に伝達される。そして、反力伝達レバー7を介して操作ペダル4に戻し方向A2への回動力が伝達される。このとき、操作ペダル4には踏込速度や車両の運転状況に応じた駆動力が、反力として反力出力装置10から付与される。そのため、運転者は、ペダル部6を踏む足裏を通して、内燃機関の加速状態や「踏み込み過ぎ」等の情報が伝えられる。
【0040】
<ペダル戻り時>
図11は、操作ペダル4のペダル戻り時の作用を説明するための説明図であって、
図6に相当する図である。
図11に示すように、操作ペダル4が踏み込まれた状態から、操作ペダル4(ペダル部6)に対する運転者の踏力が急激に解除されると、操作ペダル4は図示しないリターンスプリングの復元力によって初期位置(戻し方向A2)に戻ろうとする。すると、反力出力部16はコイルスプリング46の付勢力を受けて操作ペダル4の戻り動作に追従することで、初期位置(戻し方向B2)に向けて回動する。反力出力部16が戻し方向B2に向けて回動すると、この回動力がピニオンギヤ43を介して第2回転体26に伝達されることで、第2回転体26が第1回転体25に対して先行して戻し方向C2に回転する。
【0041】
図12は、ペダル戻り時の作用を説明するための説明図であって、
図4に相当する図である。
ここで、
図12に示すように、第2回転体26が戻し方向C2に回転すると、係合部41の傾斜面41bがクラッチレバー36の摺動面52bに当接する。この状態で、第2回転体26が戻し方向C2に回転することで、摺動面52bと傾斜面41bとが摺動しながら、クラッチレバー36がクラッチシャフト34回りの係合解除位置(付勢部材47の付勢力に抗する方向)に向けて押圧される。これにより、クラッチレバー36と係合部41との係合が解除されることで、第2回転体26のみが第1回転体25に対して戻り方向C2に回転する。なお、クラッチレバー36は、付勢部材47により係合位置に向けて付勢されているため、係合部41がクラッチレバー36を通過するたびに上述した動作が行われる。
したがって、反力出力部16は、モータ12の回転フリクションの影響を受けずに戻し方向B2に回動し、操作ペダル4の戻り動作に追従する。
【0042】
このように、本実施形態によれば、第2回転体26が第1回転体25に対して戻し方向C2に先行して回転するときに、係合部41が第1回転体25のクラッチレバー36を回動方向に沿う係合解除位置に向けて押圧する構成とした。
この構成によれば、操作ペダル4が急激に戻されたときに、第1回転体25と第2回転体26との接続が解除されるため、モータ12側の回転フリクションによって出力レバー45の戻し方向B2への回動が阻害されるのを抑制できる。したがって、出力レバー45を操作ペダル4の戻り動作に迅速に追従させることができ、その直後に操作ペダル4が再度踏み込まれる場合にも、モータ12による反力出力を操作ペダル4に迅速に作用させることができる。
【0043】
特に、本実施形態では、第1回転体25が第2回転体26に対して戻し方向C2に先行して回転するとき、係合部41がクラッチレバー36を延在方向に押圧することで、クラッチレバー36に係合する構成とした。
この構成によれば、係合部41とクラッチレバー36とがクラッチレバー36の延在方向で係合するため、例えば係合部41とクラッチレバー36とがクラッチレバー36の回動方向で係合する構成に比べて、係合部41とクラッチレバー36とが係合し易くなる。そのため、係合部41における径方向の高さを小さくし、周方向で隣り合う係合部41間のピッチを狭くすることができる。よって、クラッチレバー36と係合部41とを迅速に係合させることができ、第1回転体25及び第2回転体26の空転量を小さくできる。
その結果、反力出力装置10の応答性を向上させ、操作フィーリングを向上させることができるとともに、クラッチレバー36と係合部41との係合時に発生する衝突音を小さくできる。
【0044】
また、本実施形態では、クラッチレバー36が、第1回転体25の径方向に対して交差する方向に延在しているため、例えば第1回転体25の径方向に沿って延在する構成に比べてクラッチレバー36の回動範囲を小さくできる。そのため、クラッチレバー36と係合部41との係合時に発生する衝突音を小さくできる。
【0045】
しかも、クラッチレバー36の係合面52aが延在方向の外側に向けて突の湾曲面とされているため、係合面52aと湾曲面41aとの当接部分において、係合面52aの曲率中心に向けてクラッチレバー36が押圧されることになる。そのため、クラッチレバー36を延在方向に沿って効果的に押圧でき、係合部41とクラッチレバー36とをより簡単に係合させることができる。
【0046】
さらに、本実施形態では、周方向で隣り合う係合部41同士が径方向の外側に向けて突の湾曲部42を介して接続されているため、係合部41間のピッチを狭くすることができ、クラッチレバー36と係合部41とを迅速に係合させることができる。
【0047】
なお、本実施形態において、モータ12の回転が停止している場合に、モータ12を駆動させ、クラッチレバー36の係合面52aと、係合部41の湾曲面41aと、の間の空間K(
図15参照)を詰める、いわゆる空転抑制制御を行っても構わない。
【0048】
図13は、空転抑制制御を説明するためのタイムチャートである。また、
図14は、空転抑制制御を説明するためのフローチャートである。なお、
図13中に示す「指示値」は、例えば操作ペダル4の操作量に応じて上位ECUにより制御されるスロットルバルブの開度指示値である。また、以下のルーチンは主に回路基板18の制御回路により実行される。
【0049】
まず、
図13、
図14に示すように、ステップS1において、ホールICの検出結果に基づき、モータ12の駆動が停止しているか否かを判断する。具体的には、ホールICから出力される出力電圧が一定時間の間変化しない場合(ゼロである場合)に、モータ12の回転が停止していると判断する(
図13中の時間t1〜t2)。
【0050】
次に、ステップS1における判断結果が「YES」の場合(モータ12の駆動が停止している場合)、ステップS2に進む。
一方、ステップS1における判断結果が「NO」の場合(モータ12が駆動中の場合)には、上述した反力制御中であり、クラッチレバー36と係合部41とが係合していると判断し、本ルーチンを終了する。
【0051】
ステップS2において、空間詰め動作を行う。具体的に、モータ12を駆動し、正転方向に回転させる。すると、
図15に示すように、モータ12の駆動力がウォーム23を介して第1回転体25に伝達され、第1回転体25が支持ピン24回りの戻し方向C2に回転することで、クラッチレバー36の係合面52aが係合部41の湾曲面41aに当接する。これにより、クラッチレバー36の係合面52aと、係合部41の湾曲面41aと、の間の空間Kが詰められる。なお、空間詰め動作において、モータ電流値は、モータ12の駆動力が接続状態のクラッチ機構17を回転させない程度(第1回転体25のみを回転させる程度)に設定する。これにより、クラッチレバー36の係合面52aが係合部41の湾曲面41aに当接した状態で、第1回転体25の戻し方向C2への回転が規制される。
【0052】
次に、ステップS3において、クラッチレバー36及び係合部41間の空間が詰められたか否かを判断する。ステップS3では、例えば上述したステップS1と同様の方法により、ホールICから出力される出力電圧が一定時間の間変化しない場合(
図13中の時間t3以降)に、クラッチレバー36及び係合部41間に、空間が生じていないと判断する。すなわち、クラッチレバー36及び係合部41間の空間が詰められた状態では、モータ12は回転しないため、ホールICからの出力電圧はゼロとなる。
【0053】
そして、ステップS3における判断結果が「YES」の場合、クラッチレバー36及び係合部41間の空間が詰められた状態であると判断し、本ルーチンを終了する。
一方、ステップS3における判断結果が「NO」の場合、クラッチレバー36及び係合部41間に空間があり、モータ12が未だ回転していると判断する。この場合には、ステップS3のルーチンを繰り返す。
以上により、空転抑制制御を終了する。
【0054】
この構成によれば、上述したペダル戻り時において、モータ12の駆動が停止した場合に、クラッチレバー36及び係合部41間に周方向の空間Kが生じた場合であっても、その後踏み込み時や反力制御時までにその空間Kを詰めておくことができる。そのため、クラッチレバー36の係合面52aと、係合部41の湾曲面41aと、が接近する方向に第1回転体25及び第2回転体26が相対回転する際、第1回転体25及び第2回転体26の空転量を小さくし、クラッチレバー36と係合部41とが速やかに係合することになる。
その結果、反力出力装置10の応答性を向上させ、操作フィーリングを向上させることができるとともに、クラッチレバー36と係合部41との係合時に発生する衝突音を小さくできる。なお、上位ECUにより制御されるスロットルバルブの開度指示値に基づいて、操作ペダル4が初期位置にあると判断した場合に、上述した空間詰め動作を行っても構わない。
【0055】
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
例えば、反力出力装置10は、急加速を抑制するためだけでなく、操作ペダル4とスロットルバルブとの連結を省略した、いわゆるドライブバイワイヤを採用した場合において、操作ペダル4の自然な踏み心地を運転者に与えるためにも使用することができる。
また、上述した実施形態では、本発明の反力出力装置10をアクセルペダル装置1に採用した場合について説明したが、これに限らず、ブレーキペダルや、ステアリングホイール、ゲーム機の操作デバイス等に採用しても構わない。
【0056】
また、上述した実施形態では、係合面52aの曲率中心がクラッチレバー36の回動中心に一致する場合について説明したが、これに限られない。この場合、係合部41が係合面52aを介してクラッチレバー36を延在方向に沿って押圧する構成(クラッチレバー36の回動方向に交差する方向に沿って押圧する構成)であれば構わない。すなわち、回動中心回りのモーメントによりクラッチレバー36が係合解除位置に回動しない構成であれば構わない。
さらに、係合面52aは、円弧状に限らず、直線状(曲率半径が無限大)であっても構わない。
【0057】
また、クラッチレバー36は、その延在方向が径方向に交差する方向であれば構わない。
また、上述した実施形態では、第1回転体25側にクラッチレバー36を設け、第2回転体26側に係合部41を設ける構成について説明したが、これとは逆に、第1回転体25側に係合部41を設け、第2回転体26側にクラッチレバー36を設ける構成としても構わない。
【0058】
その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。