(58)【調査した分野】(Int.Cl.,DB名)
高温流体の流路が設けられた複数の高温流路層と低温流体の流路が設けられた複数の低温流路層とが交互に積層されて形成された流路層積層体と、前記高温流体の入口および出口と、前記低温流体の入口および出口を有する熱交換器本体と、前記熱交換器本体の前記高温流路の入口に接続され外部から前記高温流体を前記高温流路に流入させる高温入口管と、前記熱交換器本体の前記高温流路の出口に接続され前記高温流路から外部に前記高温流体を流出させる高温出口管と、前記熱交換器本体の前記低温流路の入口に接続され外部から前記低温流体を前記低温流路に流入させる低温入口管と、前記熱交換器本体の前記低温流路の出口に接続され前記低温流路から外部に前記低温流体を流出させる低温出口管と、前記熱交換器本体の積層方向に固定され、前記高温入口管と前記高温出口管と前記低温入口管と前記低温出口管のうち少なくとも一つの管内の流体と接する感知点が配置されるように前記熱交換器本体の前記積層方向に挿入される温度センサーを少なくとも搭載する制御基板とを具備することを特徴とするマイクロ流路熱交換器。
【背景技術】
【0002】
熱交換器は冷凍サイクルの一つの要素として使用され、冷凍サイクル内の作動流体の温度を目標温度に変えるための不可欠なパーツである。熱交換器には様々な種類が存在する。その中でマイクロ流路熱交換器の卓越した性能が認識されつつあり、実用化に向けて開発が進められている。
【0003】
このようなマイクロ流路熱交換器には積層型マイクロ流路熱交換器がある。この積層型マイクロ流路熱交換器は、例えば、表面に微細な高温流路が形成された伝熱板と、表面に微細な低温流路が形成された伝熱板を交互に積層して構成された積層体の上面と底面に耐圧用の金属板を重ねて、真空の状態で加圧・加熱することによって各伝熱板および各金属板が互いに拡散接合されて一体化される(例えば非特許文献1)。
【0004】
積層型マイクロ流路熱交換器をプレート式熱交換器と比較した場合の構造上の特徴としては、各層により多くの流路を形成できること、短流路を形成できることなどが挙げられる。これにより、積層型マイクロ流路熱交換器はプレート式熱交換器に比べ小型化が可能である。
【0005】
また、積層型マイクロ流路熱交換器は伝熱性、冷媒充填量の低減および高耐圧、耐熱面でも従来の熱交換器より優れた点を有する。例えば、伝熱面(板)を介した作動流体同士の熱通過率が高い、流路形状損失が低い、プレート式熱交換器と流動損失が同じ場合では流路面積を縮小できる、圧縮された作動流体の圧力損失を低減できる、熱交換器全体の容積減少による冷凍サイクルに充填される作動流体の量を減少させることができる、等である。
【0006】
積層型マイクロ流路熱交換器の作動流体が出入する出入口には温度センサーがそれぞれ設けられる。温度センサーを設ける目的は、温度センサーで測定した温度をもとに熱交換器で熱交換された熱量を算出したり、流出する作動流体を目標温度にまで制御したりするためである。
【0007】
この目的を達成するには、温度センサーが作動流体の温度を正確に測定できる必要がある。例えば、2つの作動流体の間で熱交換を行う場合、流入する作動流体と流出する作動流体の温度差から、熱交換器の熱交換能力(伝熱量)は次の式で求めることができる。
Q([J/s]=[W])
=cp,l([J/kgK])×Gl([kg/s])×(TLow,out−TLow,in)([K])
=cp,h([J/kgK])×Gh([kg/s])×(THigh,in−THigh,out)([K])
Q:伝熱量[J/s]=[W]
cp,l:低温作動流体の比熱[J/kgK]
cp,h:高温作動流体の比熱[J/kgK]
Gl:低温作動流体の質量流量[kg/s]
Gh:高温作動流体の質量流量[kg/s]
(TLow,out−TLow,in):(低温作動流体の熱交換器出口温度と低温作動流体の入口温度との温度差[K])
(THigh,in−THigh,out):(高温作動流体の熱交換器入口温度と低温作動流体の出口温度との温度差[K])
【0008】
また、給湯機などでは、マイクロ流路熱交換器の出口を流れる作動流体の温度を正確に測定することは、作動流体が目標温度に達しているかを確認するために必要である。また、マイクロ流路熱交換器の入口を流れる作動流体の温度を正確に測定することは、貯湯タンクから流出した作動流体を加熱する必要があるかを確認するために必要であり、また作動流体を目標温度にまで加熱するために必要な熱量を導くためにも必要である。
【0009】
積層型マイクロ流路熱交換器の出入口を流れる作動流体の温度の測定には、熱電対などの温度センサーを用いている。温度センサーの感知点によって測定された熱起電力は、感知点に繋がっている熱電対素線を介して熱起電力−温度変換回路に伝達される。多くの場合、温度センサーは熱交換器の作動流体の入口および出口に取り付けられている配管の外表面に半田などで固定されている。この場合、温度センサーの感知点は作動流体と直接接していないため、作動流体の正確な温度を測定することができない。
【0010】
よって、測定した温度には、熱交換器を形成する金属の熱伝導による誤差1と、温度センサーを取り付けた位置の温度と実際の出入口を流れる作動流体の温度との温度差による誤差2と、出入口に接続される各出入口管内を流れる作動流体の温度境界層による管の中心付近を流れる作動流体の温度と管の壁面付近を流れる作動流体の温度との温度差による誤差3と、温度センサーによる測定方法の測定誤差4などが含まれる。
【発明を実施するための形態】
【0022】
以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の第1の実施形態に係るマイクロ流路熱交換器を、制御基板であるプリント基板を外した状態で示す斜視図、
図2は
図1のマイクロ流路熱交換器の熱交換器本体を一部分解して示す斜視図である。
【0023】
[全体の構成]
これらの図に示すように、このマイクロ流路熱交換器1は、流路層積層体である熱交換器本体2と、高温側外殻板3Aと、低温側外殻板3Bと、高温流体を流入させる高温入口管5Aと、高温流体を流出させる高温出口管5Bと、低温流体を流入させる低温入口管5Cと、低温流体を流出させる低温出口管5Dと、プリント基板4とを有する。なお、以下の記載では、高温入口管5A、高温出口管5B、低温入口管5Cおよび低温出口管5Dを総称して出入口管と呼ぶ。
【0024】
図中、熱交換器本体2のZ軸の矢印の方向と反対の方向の面を「高温側の面」または「下面」、各部材の、Z軸の矢印の方向の面を「低温側の面」または「上面」とする。熱交換器本体2の高温側の面には高温側外殻板3Aが接合され、熱交換器本体2の低温側の面には低温側外殻板3Bが接合されている。
【0025】
熱交換器本体2は、2種類の伝熱板2A、2Bを交互に複数枚積層して構成される。2種類の伝熱板の構成については後で説明する。
【0026】
熱交換器本体2を構成する2種類の伝熱板2A、2Bと、高温側外殻板3Aと、低温側外殻板3Bは、例えば、熱伝導率が高い同じ種類の金属板からなる。より具体的には、ステンレス鋼などが用いられる。これらの金属板は積層された後、拡散接合によって互いに接合されることによって略直方体形状の積層体となる。なお、伝熱板2A、2Bの板厚は、高温流路または低温流路を形成できると共に、拡散接合が出来るものであれば、どのような厚みでもよい。
【0027】
以降、説明上の必要に応じて、マイクロ流路熱交換器1のZ軸に垂直な面を「主面」と呼び、主面以外のX軸やY軸に垂直な4つの面を「側面」と呼ぶこととする。
【0028】
図2に示すように、マイクロ流路熱交換器1の各側面には、各々、熱交換器本体2内の高温流路に作動流体の1つである高温流体を流入させる高温入口ヘッダ21と、熱交換器本体2内の高温流路から高温流体を流出させる高温出口ヘッダ22と、熱交換器本体2内の低温流路に作動流体の他の1つである低温流体を流入させる低温入口ヘッダ23と、熱交換器本体2内の低温流路から低温流体を流出させる低温出口ヘッダ24が形成されている。
【0029】
図1に示したように、高温入口ヘッダ21には外から高温入口管5Aが挿入され、溶接などによって熱交換器本体2に接合される。この高温入口管5Aの外側端部には、高温流体を流入させるための図示しない外部配管が着脱可能に接続される。高温出口ヘッダ22には外から高温出口管5Bが挿入され、熱交換器本体2に溶接などにより接合されている。この高温出口管5Bには、高温流体を流出させるための図示しない外部配管が着脱可能に接続される。低温入口ヘッダ23には外から低温入口管5Cが挿入され、熱交換器本体2に溶接などにより接合されている。この低温入口管5Cには低温流体を流入させるための図示しない外部配管が着脱可能に接続される。低温出口ヘッダ24には外から低温出口管5Dが挿入され、熱交換器本体2に溶接などにより接合されている。この低温出口管5Dには低温流体を流出させるための図示しない外部配管が着脱可能に接続される。
【0030】
[熱交換器本体2の構成]
次に、熱交換器本体2の構成を説明する。
前述したように、熱交換器本体2は、2種類の伝熱板2A、2Bを交互に複数枚積層して構成される。これらの伝熱板2A、2Bにはエッチング処理によって溝および切り欠き部が形成されている。伝熱板2A、2Bでは、それぞれの溝に流す作動流体が異なるので、溝のパターンは異なっているが、切り欠き部は、伝熱板2Aおよび2Bの積層後に各ヘッダ部となるように形成されるので、切り欠き部の形状は同一である。なお、伝熱板2Aおよび2Bに溝や切り欠き部を形成する処理はエッチング処理だけでなく、例えば、レーザ加工、精密プレス加工、切削加工などでもよい。また、3Dプリンターのような積層造形技術を用いることで溝のへりを形成してもよい。
【0031】
図3および
図4は2種類の伝熱板2A、2Bを示す斜視図である。ここで、
図3に示す伝熱板2Aは「高温伝熱板2A」、
図4に示す伝熱板2Bは「低温伝熱板2B」である。
【0032】
(高温伝熱板2Aの構成)
図3に示すように、高温伝熱板2Aには、高温流体の流路を形成する溝25A、30A、31Aおよび切り欠き部26A、27A、28A、29Aがそれぞれ設けられている。溝25A、30A、31Aは高温伝熱板2Aの一方の面にのみ設けられる。溝25A、30A、31Aの深さはどこも均一であってよい。切り欠き部26A、27A、28A、29Aは、高温伝熱板2Aの基材の4辺に各々対応する所定の部位を基材の厚み分除去することによって形成される。
【0033】
以後、説明の必要に応じて、高温伝熱板2Aの各々の切り欠き部26A、27A、28A、29Aを、第1の切り欠き部26A(高温分配部)、第2の切り欠き部27A(高温合流部)、第3の切り欠き部28A、および第4の切り欠き部29Aと呼ぶ。
【0034】
高温伝熱板2Aにおいて、図中Y軸方向の両端部にそれぞれ設けられる第1の切り欠き部26Aと第2の切り欠き部27Aとの間の領域には、これら第1の切り欠き部26Aと第2の切り欠き部27Aとの間を連通する複数の溝25A、30A、31Aが形成されている。なお、
図3において、溝25Aの数は3本であるが、もっと幅の小さい数多くの溝を形成するようにしても良い。
【0035】
高温伝熱板2Aにおける上記の各溝25A、30A、31Aは、X軸方向に沿って形成された複数の溝25Aと、Y軸方向に沿って形成された2本の溝30A、31Aで構成される。Y軸方向に沿って形成された2本の溝30A、31Aのうち一方の溝30Aは一端が第1の切り欠き部26Aと連通し、他方の溝31Aは一端が第2の切り欠き部27Aと連通する。X軸方向に沿って形成された複数の溝25Aは各々2本の溝30A、31Aの間を連通する。これにより、後述のように形成される高温伝熱板2Aの高温入口ヘッダ21および高温出口ヘッダ22と、低温伝熱板2Bの低温入口ヘッダ23および低温出口ヘッダ24との位置関係を互いに90度異なるようにしている。
【0036】
(低温伝熱板2Bの構成)
図4に示すように、低温伝熱板2Bには、低温流体の流路を形成する溝25Bおよび切り欠き部26B、27B、28B、29Bがそれぞれ設けられている。溝25Bは低温伝熱板2Bの一方の面にのみ設けられる。溝25Bの深さはどこも均一であってよい。切り欠き部26B、27B、28B、29Bは、低温伝熱板2Bの基材の4辺に各々対応する所定の部位を基材の厚み分除去することによって形成される。
【0037】
以後、説明の必要に応じて、低温伝熱板2Bの各々の切り欠き部26B、27B、28B、29Bを、第5の切り欠き部26B、第6の切り欠き部27B、第7の切り欠き部28B(低温分配部)、および第8の切り欠き部29B(低温合流部)と呼ぶ。
【0038】
低温伝熱板2Bにおいて、図中X軸方向の両端部にそれぞれ設けられる第7の切り欠き部28Bと第8の切り欠き部29Bとの間には、これら第7の切り欠き部28Bと第8の切り欠き部29Bとの間を連通する複数の溝25Bが形成されている。これら複数の溝25Bは、高温伝熱板2Aに形成された複数の溝25Aと、Y軸方向にて同じ位置に各々形成されている。
【0039】
(高温伝熱板2Aと低温伝熱板2Bとの積層構造)
上記のような構成を有する高温伝熱板2Aおよび低温伝熱板2Bは、
図5および
図6に示すように、双方の溝25A、25B、30A、31Aが設けられた面の向きを一致させて、各々複数交互に重ね合わせて積層される。このようにして熱交換器本体2が構成される。
【0040】
この熱交換器本体2において、高温伝熱板2Aの第1の切り欠き部26Aと低温伝熱板2Bの第5の切り欠き部26Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、高温入口ヘッダ21を形成する。
【0041】
高温伝熱板2Aの第2の切り欠き部27Aと低温伝熱板2Bの第6の切り欠き部27Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、高温出口ヘッダ22を形成する。
【0042】
高温伝熱板2Aの第3の切り欠き部28Aと低温伝熱板2Bの第7の切り欠き部28Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、低温入口ヘッダ23を形成する。
【0043】
高温伝熱板2Aの第4の切り欠き部29Aと低温伝熱板2Bの第8の切り欠き部29Bは、高温伝熱板2Aと低温伝熱板2Bとが交互に複数積層されることで、低温出口ヘッダ24を形成する。
【0044】
(高温流路と低温流路について)
図5は熱交換器本体2における高温流路を示す斜視図である。
高温流路は、高温伝熱板2Aの各溝25A、30A、31Aと低温伝熱板2Bの下面との間に形成される。高温流体は、高温入口ヘッダ21から流入し、溝30Aを通って複数の溝25Aに分配される。複数の溝25Aを通過した高温流体は溝31Aで合流し、高温出口ヘッダ22より流出する。このような高温流体の流れが各々の高温伝熱板2Aに対応する高温流路層において生じる。なお、高温流路層は、高温伝熱板2Aの各溝25A、30A、31Aと、第1の切り欠き部26Aと、第2の切り欠き部27Aとで形成される。
【0045】
図6は熱交換器本体2における低温流路を示す斜視図である。
低温流路は、低温伝熱板2Bの溝25Bと低温側外殻板3Bの下面および高温伝熱板2Aの下面との間に形成される。低温流体は、低温入口ヘッダ23から流入し、複数の溝25Bを通って低温出口ヘッダ24から流出する。このような低温流体の流れが各々の低温伝熱板2Bに対応する低温流路層において生じる。なお、低温流路層は、低温伝熱板2Bの各溝25Bと、第7の切り欠き部28Bと、第8の切り欠き部29Bとで形成される。
【0046】
熱交換器本体2において高温流路層と低温流路層は交互に積層されているので、高温伝熱板2Aおよび低温伝熱板2Bを介して高温流体と低温流体との間での熱交換が行われる。
【0047】
[プリント基板4の構成]
図1に示したように、プリント基板4の上側の面4a(以下「主面」と呼ぶ。)には、各種の集積回路41と、外部の配線との接続用のコネクタ42、送信デバイスである無線モジュール43、表示器44、および複数の温度センサー45A、45B、45C、45Dなどの電子部品群が実装される。また、プリント基板4の主面4aには、複数の温度センサー45A、45B、45C、45Dと集積回路41における起電力処理回路411(
図11参照)との接続をはじめとする上記の各電子部品を電気的に接続する配線パターン46が設けられる。
【0048】
このプリント基板4は、熱交換器本体2との間にスペーサー52を挟んで複数の固定ネジ47で固定される。すなわち、プリント基板4には固定ネジ47を通すネジ通し孔47aが設けられ、熱交換器本体2にはネジ通し孔47aを通した固定ネジ47を受けるネジ孔51が設けられる。
【0049】
温度センサー45A、45B、45C、45Dは、高温入口管5Aを流れる高温流体、高温出口管5Bを流れる高温流体、低温入口管5Cを流れる低温流体および低温出口管5Dを流れる低温流体の各々の温度を測定するためのものである。
【0050】
[温度センサーの取り付け構造]
図7および
図8は、
図1に示す切断線A−Aと切断線B−Bで熱交換器本体2を切断した第1の温度センサー45Aの取り付け構造を示す断面図である。
図7は高温入口管5Aにおける軸方向(流体の流通方向)に温度センサー45Aの取り付け構造を見た場合のX−Z断面図であり、
図8はそのY−Z断面図である。他の温度センサー45B、45C、45Dの取り付け構造も同様であるため、ここでは第1の温度センサー45Aの取り付け構造のみ説明する。
図1に示すように、温度センサー45A、45B、45C、45Dが取付けられたプリント基板4は熱交換器本体2の上面に固定ネジ47で取付けられる。
【0051】
プリント基板4には、第1の温度センサー45Aである熱電対を差し込むための孔部48が設けられる。熱交換器本体2の低温側外殻板3Bには、プリント基板4の孔部48に連通する孔部32が設けられる。さらに、熱交換器本体2の入口に挿入された高温入口管5Aの低温側外殻板3B側の部位には、低温側外殻板3Bの孔部32に連通する孔部33が設けられる。
【0052】
プリント基板4と低温側外殻板3Bの各孔部48、32には、例えばステンレス製などの金属保護管34が配置される。金属保護管34内の第1の温度センサー45Aの熱電対素線35、35は絶縁・断熱部材36によって被覆される。第1の温度センサー45Aの熱電対素線35、35には例えば直径が0.5mmから1mm程度のものを用いることができ、セラミック薄膜などによって耐久性を高めたものであることが望ましい。第1の温度センサー45Aの熱電対素線35、35の先端に設けられた温接点37(温度センサーの感知点)は、高温入口管5A内を流通する流体に直接触れられるように配置される。温接点37は、流体からの圧力をできるだけ受けないよう、例えば、直径が0.5mmや1mm程度の球体であることが望ましい。
【0053】
プリント基板4の孔部48と金属保護管34との隙間はシール材61によって塞がれる。また、低温側外殻板3Bの孔部32は下側よりシール材62によって塞がれる。
【0054】
以上、第1の温度センサー45Aの取り付け構造を説明したが、第2の温度センサー45B、第3の温度センサー45C、第4の温度センサー45Dの取り付け構造も同様である。
【0055】
このように、第1の温度センサー45Aの温接点37が熱交換器本体2の入口の高温入口管5A内を流通する高温流体に直に触れることによって、熱交換器本体2に流入する高温流体の温度を直接測定することができる。同様に、熱交換器本体2より流出する高温流体、熱交換器本体2に流入する低温流体、熱交換器本体2より流出する低温流体の各々の温度を、第2の温度センサー31B、第3の温度センサー31C、第4の温度センサー31Dによって直接測定することができる。
【0056】
しかしながら、各出入口管5A、5B、5C、5D内を流れる作動流体は、各出入口管5A、5B、5C、5Dの内壁近傍では流れが減速されることによって不均一な温度分布が形成される。このため、作動流体の温度を直接測定しても必ずしも正確な温度が測定できるとは限らない。
【0057】
そこで、熱交換器本体2の各出入口管5A、5B、5C、5D内に作動流体の速度および温度が略一定となるコア領域を形成するための整流リングを配置した。この整流リングの下流域に形成されるコア領域に温度センサーの温接点を配置した。
【0058】
図7および
図8に示したように、高温入口管5A内には整流リング71が配置される。整流リング71は高温入口管5Aに対して同軸に開口部71aを有し、この開口部71aの入口側の径Dは高温入口管5Aの内径と等しく、出口側71cの径dは入口側の径Dのおよそ三分の二の大きさである。そして開口部71aの入口側から出口側71cまでの間はすり鉢状のテーパー面となっている。この構造は、熱交換器本体2の低温流体が流入する入口に接続された低温入口管5Cについても同様である。
【0059】
図9は、
図1に示す切断線C−Cで切断した熱交換器本体2の高温流体が流出する出口に接続された高温出口管5Bおよび整流リング71を示すY−Z断面図である。
同図に示すように、熱交換器本体2の高温流体が流出する出口に接続された高温出口管5B内にも同様に整流リング71が配置される。
この構造は、熱交換器本体2の低温流体が流出する出口に接続された低温出口管5Dについても同様である。
【0060】
図10は、整流リング71の上流域および下流域での作動流体の速度分布を示す図である。整流リング71が入口管に設けられている場合、開口部71aの出口側71cが熱交換器本体2の入口との境界72になる。
外部もしくは熱交換器本体2より各出入口管5A、5B、5C、5Dに流入してきた作動流体は、整流リング71の上流域において各出入口管5A、5B、5C、5Dの内壁近傍で減速されることによって、各出入口管5A、5B、5C、5Dの中心軸からの距離が大きくなるに従って速度が低くなる不均一な速度分布を示す。整流リング71の上流域において各出入口管5A、5B、5C、5Dの内壁近傍を流れていた作動流体は、整流リング71の開口部71aのテーパー面71bによって各出入口管5A、5B、5C、5Dの中心軸に向かう方向に誘導され、整流リング71の開口部71aの中心付近を通過する他の流れと混ざり合う。この結果、整流リング71の開口部71aの直後の下流域に、作動流体の速度が整流リング71の上流域での各出入口管5A、5B、5C、5D内の作動流体の平均速度よりも高速で略一定のコア領域Cが発生する。一例として、整流リング71の入口側の径をDとし、出口側71cの径を2/3Dとしたとき、整流リング71の開口部71aの出口側71cから下流側に6D離れた位置までの間にコア領域Cが形成される(径方向でも軸方向でもほぼ均一な温度分布領域を大きく形成できることで、熱電対の設置がし易くなり、流体の温度の測定も正確になる)。コア領域Cの外は速度境界層および温度境界層である。このコア領域Cでは、作動流体の速度が略一定であり、温度分布も略均一であるから、このコア領域Cに温度センサーの温接点37を配置することによって、速度境界層および温度境界層の影響を受けることなく作動流体の温度を正確に測定することができる。
【0061】
本実施形態では、
図8および
図9に示すように、整流リング71の開口部71aの出口側71cの位置から下流側に2Dの距離の位置に温接点37がくるように温度センサー45A、45Bを配置した。これにより、速度境界層および温度境界層の影響を受けることなく、熱交換器本体2の入口または出口に流入または流出する作動流体の温度を正確に測定することができる。これにより、熱交換熱量の算出や、流出する作動流体の目標温度への制御などをより正確に行うことができる。
【0062】
なお、整流リング71の開口部71aの形状に関して、開口部71aのテーパー面71bは断面において一定の傾斜面であってよいが、本発明はこれに限定したものではなく、開口部71aの面積を徐々に狭くすればよく、サイン波面、放物曲線面、あるいは双曲線面であってもよい。
【0063】
[プリント基板4に実装された各種電子部品による機能的な構成]
図11は、プリント基板4に実装された各電子部品の電気的な接続関係を含む構成を機能ブロック化して示す図である。
同図に示すように、このプリント基板4は、上記の4つの温度センサー45A、45B、45C、45Dと、起電力処理回路411と、統計処理回路412と、出力処理回路413と、表示処理回路414と、外部接続用のコネクタ42と、無線モジュール43と、表示器44とを備える。ここで、起電力処理回路411と、統計処理回路412と、出力処理回路413と、表示処理回路414は1以上の集積回路41によって構成される。あるいは、各々が別々の集積回路41によって構成されもよい。
【0064】
起電力処理回路411は、各温度センサー45A、45B、45C、45Dの熱電対素線35、35間の出力電圧に対応する温度データを生成し、統計処理回路412に供給する。
【0065】
統計処理回路412は、起電力処理回路411より供給された温度センサー毎の温度データに対して各種の統計処理を行う。統計処理回路412は、例えば、測定時間毎の温度データの平均値、最大値、最小値などの算出を行う。あるいは、統計処理回路412は、朝などの特定の時間帯のような条件付きの平均値、最大値、最小値などの算出を行う。統計処理回路412は、メモリ素子を有し、上記演算結果を記憶することができる。
【0066】
出力処理回路413は、統計処理回路412より得た統計処理の結果を外部出力コネクタ42を通じて外部の機器に出力したり、無線モジュール43を使って外部の機器に送信したりすることができる。
【0067】
表示処理回路414は、統計処理回路412より得た統計処理の結果から表示用のデータを生成し、表示器44に出力する。
【0068】
表示器44は、例えば、液晶表示パネルなどで構成され、プリント基板4の主面4aに沿った表示画面を備える。表示器44は、表示処理回路414より供給された表示データを表示画面に表示する。
【0069】
図12は、同時刻に算出された熱交換器本体2の高温流体の入口、高温流体の出口、低温流体の入口、低温流体の出口での各々の作動流体の温度を表示器44の表示画面に表示させた場合の一例である。このようにマイクロ流路熱交換器1のプリント基板4に取り付けられた表示器44の表示画面を通して各温度を目視で確認することができる。
【0070】
以上のように、本実施形態によれば、複数の温度センサー45A、45B、45C、45Dを予め搭載したプリント基板4を熱交換器本体2の上面に取り付けるようにしたことによって、熱交換器本体2に複数の温度センサー45A、45B、45C、45Dを同時に設置することができ、温度センサーの取付け作業を容易に行うことができる。また、温度センサー45A、45B、45C、45Dが測定したデータを処理する回路を含む集積回路41をプリント基板4に搭載することによって、温度センサー45A、45B、45C、45Dと集積回路41をプリント基板4に形成された配線パターンで容易に接続することができる。さらに、温度センサー45A、45B、45C、45Dが測定した温度データを表示するための表示器44もプリント基板4に搭載したことにより、温度データを目視で確認するための外部モニターを接続する必要がなくなる。さらに、外部接続用のコネクタ42および無線モジュール43もプリント基板4に搭載したことにより、温度データを外部の機器に随時送信することができる。
【0071】
なお、本実施形態では温度センサー45A、45B、45C、45Dをプリント基板4に予め搭載しているが、本技術はこれに限定したものではなく、温度センサー45A、45B、45C、45Dを熱交換器本体2に取り付けた後に、プリント基板4を熱交換器本体2に取り付けてプリント基板4に温度センサー45A、45B、45C、45Dを搭載するようにしても良い。また、本技術のようにプリント基板4を熱交換器本体2に取り付ける技術は各温度センサー45A、45B、45C、45D間の距離が短くプリント基板4が小型化できるマイクロ流路熱交換器のような小型の熱交換器に有利である。
【0072】
また、本実施例ではプリント基板4は熱交換器本体2との間にスペーサー52を挟んで固定しているが、スペーサー52の代わりに断熱シートや弾性のあるクッション材を挟んで固定してもよい。また必要が無ければプリント基板4を直接熱交換器本体2に固定してもよい。
【0073】
[その他の実施形態]
次に、第2の実施形態を説明する。なお、本実施形態のマイクロ流路熱交換器は、第1の実施形態のマイクロ流路熱交換器と各構成が同じであるため、各構成の説明は省略する。
【0074】
給湯運転時に、マイクロ流路熱交換器内で水と冷媒を熱交換させて温水を生成する場合、室外熱交換器には霜が付く。この霜を溶かすためにリバース除霜運転が行われる。リバース除霜運転では、冷凍サイクルの冷媒の流れが給湯運転と逆になる。
そのため、除霜運転中にマイクロ流路熱交換器に流れ込む冷媒は低温である。これにより、マイクロ流路熱交換器内に流れ込んだ水は低温の冷媒によって冷却され、氷になり、水の流路を破壊するおそれがあった。
【0075】
そこで、
図13に示すように、本実施形態のマイクロ流路熱交換器1Aでは、温度センサーと同じように、プリント基板4に接続されるヒーター81を水の流路25Bの近傍に設けられた孔部82に配置した。水の流路(低温流体の流路を形成する溝25B)内に温度センサー45C、45Dを設けているため、流路25B内の水が氷になる温度(零度)を検出することができる。よって、温度センサー45C、45Dの値が零度以下(水が氷になる温度)になった時、ヒーター81を作動させることで、流路25B内を流れる水を温めて凍結を防止することができる。
【0076】
その他、本技術は、上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。