(58)【調査した分野】(Int.Cl.,DB名)
電子部品を実装するための配線パターン形状のリードフレームに形成した導体板と、前記導体板の前記配線パターン形状のリードフレーム間に設けられた絶縁材とにより構成され、前記導体板の電子部品配置面の板面と前記絶縁材の電子部品配置面側の板面とを同一面上に形成し、
前記導体板の前記電子部品配置面の裏面の板面と前記絶縁材の電子部品配置面側の裏面の板面とを同一面上に形成した電子部品搭載用放熱基板であって、
前記配線パターン形状のリードフレームは、少なくとも2種類以上の相互に異なる厚さを有し、
前記配線パターン形状のリードフレームの前記電子部品配置面の裏面の板面と前記絶縁材の電子部品配置面側の裏面の板面とは、前記リードフレームのうち最も厚みを有する前記リードフレームの前記電子部品配置面の裏面の板面に合わせて、同一面上に形成し、
前記相互に異なる厚さを有するリードフレームは、相互に交差や重なり合いを生ずることなく配線パターンを形成すると共に、前記電子部品が実装されることにより、前記相互に異なる厚みを有するリードフレームが電子回路を形成するように構成され、
前記電子部品配置面を上面から見た場合に厚みの厚いリードフレームと厚みの薄いリードフレームとは混在して配置され、
前記リードフレームの両側面は、前記電子部品配置面の板面の表面から裏面にかけて前記板面に垂直な平面に形成される電子部品搭載用放熱基板であって、
前記電子部品搭載用放熱基板上には、機能的なまとまりを有する3つの発熱性電子部品群が、前記発熱性電子部品群への入口から前記発熱性電子部品群の出口までの電流経路の長さが略同一となるように、前記電子部品搭載用放熱基板の略中央部を中心とした正三角形の各頂点部周辺に配置されていることを特徴とする電子部品搭載用放熱基板。
前記機能的なまとまりを有する3つの発熱性電子部品群は、3相電動モータの各相の制御を行うパワーデバイスであり、前記パワーデバイスから前記電動モータの接続部までの電流経路の長さが、前記3相とも略同一である請求項1に記載の電子部品搭載用放熱基板。
前記正三角形の各頂点部周辺に配置された前記機能的なまとまりを有する3つの発熱性電子部品群、又は、前記パワーデバイスからの出力方向は、前記機能的なまとまりを有する3つの発熱性電子部品群、又は、前記パワーデバイスからのリード線の引出し方向が、前記正三角形の重心から前記正三角形の各頂点の延長方向に向いている請求項1又は2に記載の電子部品搭載用放熱基板。
前記厚みの薄いリードフレームの配線幅は前記厚みの厚いリードフレームの配線幅よりも狭く形成される請求項1乃至3のいずれか1項に記載の電子部品搭載用放熱基板。
前記リードフレームの部品配置面の裏面の板面であって、前記部品配置面のうち前記部品を配置しない部分の裏面に当たる部分に、前記裏面の板面に裏面側凹部を設けて前記絶縁材により被覆し、
前記裏面側凹部を被覆する前記絶縁材の表面は、前記リードフレームの部品配置面の裏面の板面と前記絶縁材の前記部品配置面側の裏面側の表面とで連続した一つの面を形成した請求項1乃至5のいずれか1項に記載の電子部品搭載用放熱基板。
前記導体板に形成した配線パターン形状のリードフレームの一部は、前記絶縁材の周縁より内側又は外側で、その一部を前記導体板の板面に対して上方又は下方に屈曲した形状を有する請求項1乃至7のいずれか1項に記載の電子部品搭載用放熱基板。
前記導体板に形成した配線パターン形状のリードフレームの全部又は一部は、前記絶縁材の周縁より外側で、折り曲げ可能に形成された請求項1乃至8のいずれか1項に記載の電子部品搭載用放熱基板。
前記導体板に形成した配線パターン形状のリードフレームの全部又は一部は、前記絶縁材の周縁より外側で、熱伝導体に当接される請求項1乃至9のいずれか1項に記載の電子部品搭載用放熱基板。
前記電子部品搭載用放熱基板2枚を介挿シートを介して1枚の電子部品搭載用放熱基板として構成し、前記1枚の電子部品搭載用放熱基板を構成する前記介挿シートを挟んだ一方の電子部品搭載用放熱基板の上面を前記1枚の電子部品搭載用放熱基板の表面側として用い、前記1枚の電子部品搭載用放熱基板を構成する前記介挿シートを挟んだ他の一方の電子部品搭載用放熱基板の下面を前記1枚の電子部品搭載用放熱基板の裏面側として用いる請求項1乃至10のいずれか1項に記載の電子部品搭載用放熱基板。
前記電子部品搭載用放熱基板の表面側の略中央部を重心とした正三角形状の各頂点部周辺に前記機能的なまとまりを有する3つの発熱性電子部品群、又は、前記電動モータの制御を行うパワーデバイスを分散配置した場合に、
前記分散配置を前記電子部品搭載用放熱基板の裏面側についても同様に行い、
前記裏面側に分散配置を行う際には、前記正三角形状の頂点に相当する位置を上記表面側と裏面側とで、前記正三角形状の重心を基準にして相互に略60度回転させた異なる位置で行う請求項11に記載の電子部品搭載用放熱基板。
請求項1乃至10のいずれか1項に記載の電子部品搭載用放熱基板を用いる放熱構造であって、少なくとも2枚以上の前記電子部品搭載用放熱基板の部品配置面の裏面を熱伝導体を介して取り付けて前記電子部品搭載用放熱基板からの放熱を行う前記電子部品搭載用放熱基板を用いる放熱構造。
請求項1乃至12のいずれか1項に記載の電子部品搭載用放熱基板、又は、請求項13に記載の放熱構造、又は請求項14に記載のパワーモジュールに用いるシャント抵抗の接続構造であって、
前記電子部品搭載用放熱基板は、前記厚みの厚いリードフレーム上に、前記シャント抵抗の2つの端子を接続する2つの接続部を有し、
前記2つの接続部のそれぞれの近傍に前記厚みの薄いリードフレームの一端を配設するか、若しくは、前記厚みの薄いリードフレームの一端を、前記2つの接続部の一部にそれぞれ設けられた切り欠き部に配置し、
前記シャント抵抗の2つの端子の接続は、前記2つの接続部の上に前記シャント抵抗の2つの端子をそれぞれ載置して接続した構造を有するシャント抵抗の接続構造。
【発明を実施するための形態】
【0041】
以下に、本発明の実施形態を、車両に搭載される電動パワーステアリング装置の制御装置に用いた場合を例として説明する。
【0042】
ここで、上記電動パワーステアリング装置は、車両のステアリング機構に電動モータの回転力で操舵補助力(アシスト力)を付与するものであり、モータの駆動力を減速機構を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。そして、このような電動パワーステアリング装置(EPS)は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。
【0043】
かかるフィードバック制御は、操舵補助指令値(電流指令値)と電動モータ電流検出値との差が小さくなるように電動モータ印加電圧を調整するものであり、電動モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティ(Duty)の調整で行っている。
【0044】
上記の電動パワーステアリング装置の一般的な構成を
図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速機構3の減速ギア、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10及び操舵角θを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速機構3の減速ギア(ギア比n)を介してコラム軸2に連結されている。
【0045】
そして、上記の電動パワーステアリング装置を制御する制御装置30であるコントロールユニット(ECU)は、マイクロコントロールユニット(MCU)を基幹部品として構成され、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。
【0046】
このように構成される制御装置30では、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Velとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって電動モータ20に供給する電流を制御する。なお、舵角センサ14は必須のものではなく、配設されていなくても良く、電動モータに連結されたレゾルバ等の回転位置センサから操舵角を取得することも可能である。
【0047】
また、上記制御装置30には、車両の各種情報を授受するCAN(Controller Area Network)50が接続されており、車速VelはCAN50から受信することも可能である。また、制御装置30には、CAN50以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN51も接続されている。
【0048】
そして、上記のように構成される電動パワーステアリング装置において、上記制御装置30の内部に設けられる、本発明の電子部品搭載用放熱基板は、次のように構成されている。なお、以下の説明では、同一の構成要素については、他の形態を採り得るものについても同一の記号を用い、重複する説明や構成については、一部省略する場合がある。また、図面に示す各構成要素の大きさや比率などは説明の便宜のため実際のものと異なる場合が有る。
【0049】
図2は、本発明の電子部品搭載用放熱基板100(s)の例を図示したものであり、(A)は上面図、(B)は側面図である。本発明の上記電子部品搭載用放熱基板100(s)は、例えば、上記
図2で示したように、基本的には配線パターン形状に打ち抜き等の手段により形成されたリードフレーム110と、このリードフレーム110の間に一体成型された絶縁材130とにより構成されている。なお、上記
図2において白い閉曲線で囲まれた部分がリードフレーム110を表しており、
図2(A)の灰色の網掛け部分乃至
図2(B)の斜線部分が絶縁材130を表している。
【0050】
上記本発明の電子部品搭載用放熱基板100(s)のうち、リードフレーム110は、導体板により形成されるため、全体としては平板状に形成されており、上面側から見て、電子部品が実装される回路の配線パターン形状に形成されている。そして、上記導体板の配線パターン形状のリードフレーム110への成形手段は、特に限定を設けるものではないが、例えば、プレス加工や打ち抜き加工、又はレーザで加工切断された金属製(例えば、アルミニウム製や銅製)等の板材等のようなものを採用することが可能である。
【0051】
また、上記成形をエッチングによって行うことも可能ではあるが、本発明では、上記導体板の板厚を厚くすることで、当該導体により形成されるリードフレーム110の厚さを増加させ、配線抵抗の減少を図っている。そのため、上記エッチングにより加工を行う場合であっても、材質が銅である場合には、少なくとも70μm程度の厚さ以上に形成することによって、従来のエッチングにより回路パターンを形成した基板よりも放熱特性が改善される。また更に、上記エッチングにより加工を行わず、プレス加工や打ち抜き加工等により上記配線パターン形状のリードフレーム110を形成する場合には、上記導体板の板厚としては、例えば、銅を使用した場合には、少なくとも300μm以上であることが更に望ましい。
【0052】
また、本発明では、上記導体板の板厚は任意に設定することが可能であるため、上記導体板により形成されるリードフレームの信号線を、小電流を流すものと大電流を流すものとで厚さの異なるものを混在させて用いることが可能であり、その場合には、上記プレス加工等における送りさん幅を板厚により変更して加工することも可能である。
【0053】
そのため、上記のように高電流を使用する電子部品に対しては、基板表面上の面積の大小(例えば、リードフレーム110の線幅の大小)などの調整により、線幅の狭い小電流用のリードフレーム110(l)や線幅の広い大電流用のリードフレーム110(h)として対応することも可能ではあるが、これに限らず、上記板厚を増加させることによる体積の増加によって、配線抵抗を減少させると共に放熱性をも改善させる対応が可能であり、その結果として、部品の実装密度を一層向上させることが可能である。
【0054】
そして更に、本発明では、上記導体板として、少なくとも2種類以上の相互に異なる厚さのものを用いるなどして、少なくとも2種類以上の相互に異なる厚さを有する配線パターン形状のリードフレーム110を形成することも可能である。そしてその場合には、これら相互に異なる厚さを有するリードフレームは、相互に混在して配置することも可能である。
【0055】
したがって、上記のように板厚の異なるリードフレームを混在させて用いる構成を採用した場合には、実装される電子部品に通電される電流量に応じたリードフレームを高密度に配置することが可能であり、使用材料や寸法の縮小等を通じて関連コストの削減を図ることも可能である。
【0056】
すなわち、リードフレームを上述のように、例えば、抜き加工で行う場合には、ブランキングと呼ばれる、プレス加工でリードフレーム配線部の輪郭形状を作る作業を行う。そして上記ブランキングの際には材料は最終成形品よりも大きくしたものが用いられ、その大きくした部分は,さん(bridge)と呼ばれ、上記さんには「送りさん幅」と「縁さん幅」とが有る。そして、一般的に上記さん幅の必要最小幅は、板厚をt(mm)とした場合には、「送りさん幅」は1.0t〜1.5tmm程度であり、「縁さん幅」は1.5×「送りさん幅」となっており、上記さん幅を小さくし過ぎると正常な抜きが出来なくなり、パンチ、ダイの摩耗が早まりバリ発生の原因になるといわれている。
【0057】
そこで本発明では、大電流用と小電流(小信号)用のリードフレームとして同じ板厚のものを用いることに代えて、
図3に示したように、上記各電流に対応する複数のリードフレームを用いてこれを混在させることも可能である。なおここで、上記
図3(A)は同一の厚さを有するリードフレームにより構成される本発明の基板の上記リードフレームの延伸方向から見た断面図を示したものであり、
図3(B)は異なる厚さを有するリードフレームにより構成される本発明の基板の上記リードフレームの延伸方向から見た断面図を示したものである。
【0058】
図3(A)で示したように、2つの大電流用のライン110H(幅はそれぞれ、W4、W6)と小信号用のライン110L(幅W5)とに、同一の厚さを有するリードフレーム110を用いた場合には、上記リードフレーム間の間隔は、上記リードフレーム110の厚みt(ここではt=A)に応じた送りさん幅γが必要とされる。そのため、例えば、
図3(A)に示した例では、上記複数のリードフレーム110の幅と上記送りさん幅(充填剤が充填される部分)の配列の合計は概ねα(α≒2γ+W4+W5+W6)となる。
【0059】
その一方、
図3(B)で示したように、2つの大電流用のライン110H(幅はそれぞれ、W1、W3)と小信号用のライン110L(幅W2)とに、異なる厚さ(大電流用のラインの厚さt=A、小電流用のラインの厚さt=B)を有するリードフレーム110を用いた場合には、上記複数のリードフレーム間の相互間隔は、上記大電流ライン110Hの間に小電流ライン110Lを配置することができる為に、上記複数のリードフレーム110の幅と上記送りさん幅(充填剤が充填される部分)の配列の合計は概ねβ(β≒γ+W1+W3)となる。
【0060】
そのため、上記のように構成する結果、上記複数のリードフレーム110と前縁材とにより形成される幅を比較すると、α>βとなり、上記小信号用のライン110Lの厚みを大電流用のライン110Hよりも薄くすることにより、配線密度を高くすることが可能であり、上記小電流ラインのためのリードフレーム110Lは、より板厚の薄い導体板を使用することができる為、使用材料等の節約によるコストの削減等も図ることが可能である。
【0061】
そのため、例えば、リードフレームを作成するための導体板として、板厚tがt=A(但し、A=1.0mm)とt=B(但し、B=0.25mm)を用いた場合に、大電流用のライン110Hを上記板厚がAのもので加工し、小信号用のライン110Lを上記板厚がBのもので加工して、これらを組み合わせて本発明の基板に用いることにより、上記基板の小型化を図ることが可能である。
【0062】
したがって、これを更に具体的な例により説明すると、例えば、
図4及び次に示すように、上記基板に実装される回路を緻密化して、単一の厚さのリードフレームを用いた基板よりも小型化を図ることが可能である。
【0063】
ここで、
図4(A)は単一種類の厚みを有するリードフレーム110を用いて、本発明の電子部品搭載用放熱基板400に回路を構成した上面図であり、
図4(B)は上述したような異なる厚みと幅を有するリードフレーム110Hと110Lとの2種類を用いて、本発明の電子部品搭載用放熱基板450に同様の回路を構成した例を示す上面図である。
【0064】
なお、上記
図4では、上記基板に電子部品EC等を実装した状態を示しており、上記回路は、上述した電動パワーステアリング装置に用いられる3相ブラシレスモータのインバータ回路の例を示している。
【0065】
上記
図4(A)で示したように、上記回路において使用されるFET等の比較的大電流が流れる配線系と、これらの制御の信号に用いられる比較的小電流が流れる配線系とを単一種類の厚み(例えば、1mm)を有するリードフレーム110を用いて、構成した場合には、例えば上記のようにFETを10個搭載した例では、基板表面積は概ね4800mm2程度になる。
【0066】
その一方、上記
図4(B)で示したように、異なるリードフレーム110を用いて、上記回路において使用されるFET等の比較的大電流が流れる配線系に厚みの厚い(例えば、1mm程度)大電力用のリードフレーム110Hを用い、これらの制御の信号に用いられる比較的小電流が流れる配線系に厚みの薄い(例えば、0.25mm程度)小電力用のリードフレーム110Lを用いた場合には、上記リードフレームの厚みに応じたリードフレームの幅の縮小も可能となるため、上記と同様の回路の基板表面積を概ね4032mm2程度に小型化することが可能である。
【0067】
そのため、上記のように異なる厚みのリードフレームを用いることにより、上記基板450では、上記基板400よりも15パーセント程度の表面積の削減が可能である。
【0068】
なお、上記リードフレームを形成する導体板の素材は、上記の様な銅やアルミニウム等の比較的安価な金属の良導体などで形成されコストの低減等を図ることが可能であるが、上記導体板はリードフレーム110を形成し、電子部品をはんだ付け等で実装するものであるから、熱伝導性が高いと同時に上記電子部品の実装に当たり適合性の良いものであることが望ましい。
【0069】
図2に戻って説明を続けると、上記本発明の電子部品搭載用放熱基板100(s)のうち、絶縁材130は、上記導体板により形成される配線パターン形状のリードフレーム110間の隙間の空間を埋めるように構成されており、上記リードフレーム間の隙間に充填することで上記リードフレームを相互に接着し、全体の構造を基本的には平板上に安定的に保持するようになっている。
【0070】
そして、上記
図2に示した実施形態100(s)のように、上記導体板から形成される上記リードフレーム110の板厚が相互に同じ場合には、上記リードフレーム110の電子部品を実装する側を上記
図2(A)の紙面に垂直な手前の方向(
図2(B)の場合には上記図の上側方向)を上面側とした場合には、上記リードフレーム110の上面側の板面と上記絶縁材130の上面側の板面(表面)とは、同一の平面を構成するように形成されており、また、上記リードフレーム110が構成する板面の裏面と上記絶縁材130の裏面も同様に同一平面を構成するように形成されている。なお、上記の電子部品を実装する側は任意に選択することが可能であり、上記電子部品搭載用放熱基板100の両面に上記電子部品を実装する構成とする事も可能である。
【0071】
また、
図5に示した実施形態100(d)のように、上記導体板から形成される上記リードフレーム110の板厚が相互に異なる場合には、上記
図2の実施形態100(s)の場合と同様に、上記リードフレーム110の電子部品を実装する側を上記
図5(A)の紙面に垂直な手前の方向(
図5(B)の場合には上記図の上側方向)を上面側とした場合には、上記リードフレーム110の上面側の板面と上記絶縁材130の上面側の板面(表面)とは、同一の平面を構成するように形成されている。
【0072】
その一方、上記リードフレーム110の電子部品を実装する側とは裏面側の板面については、上記のようにリードフレーム110の厚さが異なることから、上記リードフレーム110により構成される裏面相互間では同一の平面を構成できない。そこで、前記導体板により形成されるリードフレーム110の前記部品配置面の裏面の板面と前記絶縁材130の部品配置面側の裏面側の板面(表面)とについては、前記リードフレームのうち最も厚みを有するリードフレームの前記部品配置面の裏面の板面に合わせて、前記絶縁材の充填を行い、上記板厚の最も厚いリードフレームの裏面側の板面と前記絶縁体により形成される裏面側の板面(表面)とが同一面上に形成されるようになっている。その結果、上記複数の厚みを有するリードフレームを用いた場合の上記基板の裏面は、上記最も厚みの厚いリードフレームの部品配置面の裏面と上記絶縁材とにより同一の平面を構成するように形成されることになる。なお、上記の電子部品を実装する側は任意に選択することが可能であり、例えば、
図3(C)や
図5(C)に例示したように、上記電子部品搭載用放熱基板100(s)若しくは100(d)(以下これらを総称して100(s、d)若しくは100という)の両面に上記電子部品を実装する構成とする事も可能である。
【0073】
また、上記絶縁材130とリードフレーム110との構成は、上記のようにリードフレーム110間に絶縁材130を設ける構成に限られず、
図6及び次に示すような、上記リードフレーム110の部品配置面側の部品実装箇所以外に凹部113を設けて、上記凹部113をも上記絶縁体130により被覆する構成を採用することも可能である。なおここで、上記
図6(A)はリードフレーム110に凹部113を設けた場合の構成例を示す斜視図であり、
図6(B)は上記(A)のX―X線を通る断面を同図中の矢印の方向から見た断面図である。また、上記
図6では、基板全体を示さず、リードフレーム110と絶縁材130との一部の例についてのみ示しており、基板全体に関しては、後述する
図8において、その構成例400を示している。
【0074】
上記
図6に記載する構成例では、リードフレーム110の電子部品ECを実装する部品配置面の板面(上記
図6(A)の斜視図に示す上側の面)のうち、上記電子部品ECを配置しない部分には、上記
図6(B)に示したように、上記部品配置面の板面に表面側凹部113(u)を設けて、上記表面側凹部113(u)に絶縁材130を充填することにより、上記表面側凹部113(u)を上記絶縁材130により被覆する構成を採用している。
【0075】
そして、上記表面側凹部113(u)を被覆する上記絶縁材130の表面は、上記リードフレーム110の部品配置面の板面と上記絶縁材130の上記部品配置面側の表面とで連続した一つの面を形成するように構成されている。
【0076】
また、同様に、上記
図6に記載する構成例では、上記リードフレーム110の電子部品ECを実装する部品配置面の裏面の板面(上記
図6(A)の斜視図に示す下側の面)であって、上記部品配置面のうち上記電子部品ECを配置しない部分の裏面に当たる部分には、上記
図6(B)に示したように、上記部品配置面の裏面の板面に裏面側凹部113(d)を設けて上記絶縁材130により被覆し、併せて、上記裏面側凹部113(d)を被覆する上記絶縁材130の表面は、上記リードフレーム110の部品配置面の裏面の板面と上記絶縁材130の上記部品配置面側の裏面側の表面とで連続した一つの面を形成するように構成されている。なお、ここで、上記のような凹部113の形成方法については特に限定を設けるものではないが、上記リードフレーム110を成形する際に、プレス等の手
段により同時に成形することが可能である。
【0077】
そのため、上記
図6に記載する構成例では、上記絶縁材130は上記リードフレーム110間の側面に充填されてこれと接合されるのみならず、上記リードフレーム110の軸方向(例えば上記
図6(A)に記載のX−X線に沿った方向)に垂直な方向で、上記リードフレーム110の両側面から上記絶縁材130を連通させることが可能なため、上記リードフレーム110の上面乃至下面側においても上記リードフレームと接触して接合されることが可能となっている。そして上記絶縁材130は、上記凹部113に充填されるものを含めて、上記のようにリードフレーム110の部品配置面の板面とその裏面側とで同一の平面を構成するように形成されている。
【0078】
したがって、本発明に係る上記
図6に示したような構成例では、上記のようにリードフレーム110と絶縁材130との接触面が拡大される結果として、上記リードフレーム110と絶縁材130との接合強度の向上を図ることが可能である。
【0079】
また更に、本発明に係る上記
図6に示したような構成例では、上記のようにリードフレーム110の部品配置面の板面と上記絶縁材130の表面とが上記凹部113に充填されるものを含めて同一の平面を構成するように形成されていることから、上記各種の電子部品ECを実装するに当たり、ディップ(Dip)式半田供給ではなく、メタルマスクによる半田供給が可能となり半田付け範囲の制御を容易に行うことが可能となる。
【0080】
なお、上記凹部113の構成例はその一例を示したものであるため、上記基板により形成する電子回路に応じて、適切な配置を行うこと可能である。そのため、上記凹部113の形態や配置は上記電子回路に応じて、上記
図6に示したような構成例に限らず、一部の電子部品近傍に配したり、表面側凹部113(u)又は裏面側凹部113(d)のみを配したり、或いは、上記凹部113の輪郭等の構成も曲線等により形成されるものであっても構わない。また、上記凹部の凹面の深さは上記リードフレーム110との接着性や放熱性等を考慮して定めることが可能である。
【0081】
図2に戻って説明を続けると、上記絶縁材130の構成要素は、放熱性のポリカーボネートやエンジニアリングプラスチック等の複合絶縁樹脂材等で成形されるが、これらに限られるものではなく、絶縁性や放熱性、さらに、リードフレーム110を構成する導体板の素材との適合性等を考慮して選択することが可能である。
【0082】
また、本発明では、上記絶縁材130を上述のように、上記導体板による配線パターン形状のリードフレーム110間の空間及びその周囲に充填する構造となっている。そのため、上記絶縁材130により、上記電子部品搭載用放熱基板100全体の剛性を向上させることが可能であり、上記リードフレーム110と共に、上記のように実装される電子部品からの熱を効果的に放熱することが可能である。
【0083】
そして、本発明の上記電子部品搭載用放熱基板100(s、d)では、上記配線パターン状に形成されたリードフレーム110と上記絶縁材130とを例えばインサート成形等の手法により一体化して形成し、上記電子部品搭載用放熱基板100(s、d)を構成する事が可能である。そしてその際、上記のように厚さの異なるリードフレームを用いる場合には、上記のように相互に厚さの異なるリードフレームを相互に混在して上記基板100(d)を構成することも可能である。したがって、厚さの厚い上記リードフレームと厚さの薄い上記リードフレームとを交互に配置したり、或いは、厚さの厚い上記リードフレームの間に厚さの薄い上記リードフレームを複数配置したりするなど、回路構成等や発熱領域の分散等を考慮した配置が可能である。
【0084】
そのため、本発明の電子部品搭載用放熱基板100(s、d)では、上記電子回路の配線パターン形状のリードフレーム110をプレス成型等により形成することができるためタクト削減によるコスト削減ることが可能である。また、同様の理由によりターミナル等の実装が不要となるため、部品削減によるコストダウン等も図ることが可能である。また、本実施形態では、トランスファ成形は用いられないが、本発明では上記トランスファ成形によるものと比較して、高温対策が必要な電解コンデンサやチョークコイルを同列に配置可能である点や、ワイヤボンディングの工程が不要となる他、急な発熱による基板のソリの発生などを効果的に防止できるため、トランスファモジュールなどに使用されるような、高価なセラミック基板が不要となるという利点がある。
【0085】
次に、
図7(A)は上記のようにして形成された本発明の電子部品搭載用放熱基板100(s、d)の上面側に電子部品EC等を実装した例を図示したものであり、
図7(B)、(C)はその側面図である。なお、ここで、上記
図7(A)は、上記のようなリードフレーム110の厚さが相互に同じもの100(s)を用いた場合であっても、或いは、相互に異なるもの100(d)を用いた場合であっても同様に構成することが可能である。また、上記
図7(B)については上記のようなリードフレーム110の厚さが相互に同じ基板100(s)の場合を例示し、上記
図7(C)については上記のようなリードフレーム110の厚さが相互に異なる基板100(d)の場合を例示している。
【0086】
ここで上記電子部品搭載用放熱基板100(s、d)の上面側に実装される上記電子部品EC等には、電流制御用の半導体スイッチング素子や、制御電流検出用のシャント抵抗や、リップル吸収用の大容量コンデンサ等の発熱性の部品が含まれており、その他に、必要に応じて、上記リードフレーム間等を接続する、銅やアルミニウム等の金属板などからなるバスバーbbや、ジャンパーピン等も含まれる。また、上記電子部品ECはパッケージされたものに限らず、ベアチップ実装により実装されるものであっても良い。
【0087】
そして、上記
図7に示したように、本発明の電子部品搭載用放熱基板100(s、d)では、上記電子回路の配線パターン形状に形成したリードフレーム110に直接上記電子部品ECを配置して、実装することが可能である。
【0088】
また、上記
図7では図示しないが、搭載電子部品ECのミラー配置等も可能であるため、特に電動パワーステアリング装置の制御装置に用いた場合には、右ハンドルや左ハンドル等の仕様に容易に対応が可能である。さらに、本発明の上記電子部品搭載用放熱基板100(s、d)によれば、上記導体板により形成されるリードフレーム110の上面及び下面の双方に電子部品ECを実装することも可能である。そのため、立体的な基板の配置が可能になるという利点も存する。
【0089】
また、
図8は、上述した
図6に関して説明したように、リードフレーム110に凹部113を設けて、上記リードフレーム110の間のみならず上記凹部113にも上記絶縁材130を充填して基板400の板面を形成した例を示した斜視図であり、上記
図8(A)は上記絶縁材130の充填前のリードフレーム110の状態を示す斜視図であり、上記
図8(B)は上記絶縁材130の充填後の基板400の状態を示す斜視図である。なお、ここで上記凹部113については、表面側凹部113(u)のみが表示されているが、裏面側凹部113(d)を設けることも可能である。また、上記リードフレーム110は、後述する
図12の例と同様に、基板外縁で上方に屈曲させている。
【0090】
本発明では、上記
図8(A)に記載したように、上記基板400を構成するリードフレーム110のうち上記絶縁材130で補強したい部分に予め凹部113を設ける一方、上記リードフレーム110のうち電子部品ECを実装する半田コントロール部分はそのままにすることにより、上記リードフレーム材110の厚みを部分的に変更することが可能である。
【0091】
そして、
図8(B)に示すように、上記リードフレーム110の間及び上記凹部113に上記絶縁材130を充填した後は、上記リードフレーム110と上記絶縁材130とが同一の平面を構成することで、上記電子部品ECを実装する部分のみが基板400上に露出し、Dip式半田供給ではなく、メタルマスクによる半田供給が可能となり且つ、半田付範囲のコントロールを容易に行うことが可能となる。
【0092】
また、
図9は本発明の基板の外縁に、次に示す縁取り部を設けた電子部品搭載用放熱基板200(s、d)の例を示したものであり、
図9(A)はその上面図であり、
図9(B)は上記基板200(s)として同一の厚さを有するリードフレームを用いた場合の側面図であり、(C)は上記基板200(d)として相互に異なる厚さを有するリードフレームを用いた場合の側面図である。なお、上記基板200(d)では、上記リードフレームとして大電流用の厚みを有するもの110Hと、小信号用の厚みを有するもの110Lと、これらの中間程度の電流が通電する中電流用の厚みを有するもの110Mの3種類を含んだものを表示している。
【0093】
上記
図9に記載した電子部品搭載用放熱基板200(s、d)は、上記本発明を構成する絶縁材130の周縁部分に、前記絶縁体130により上記電子部品搭載用放熱基板200の部品配置面側に閉曲線状に構成された縁取り部150を形成したものである。なお、ここでは上記閉曲線状の縁取り部150は、上記絶縁体130の外縁の輪郭に合わせて長方形状に形成しているが、上記輪郭は、選択する基板の形態に合わせて任意に選択して構成することも可能である。
【0094】
本発明の上記構成では、上記のように縁取り部150を構成して設けることにより、上記リードフレーム110と絶縁材130との接合部分の剥離を一層生じないようにすると共に、上記電子部品搭載用放熱基板200(s、d)の剛性を一層向上させることが可能である。
【0095】
また、上記
図9に記載した電子部品搭載用放熱基板200(s、d)に、
図10に記載するように樹脂をモールドすることも可能である。ここで、上記
図10(A)は上記
図9に示した基板に部品を実装した場合の上面図であり、(B)は上記基板に同一の厚さを有するリードフレームを用いた場合の側面図であり、(C)は上記基板に相互に異なる厚さを有するリードフレームを用いた場合の側面図である。
【0096】
上記
図10に記載した例は、上記電子部品搭載用放熱基板200(s、d)に
図7(A)〜(C)に示すように電子部品ECを実装した後に、上記のように形成された縁取り部150の内側(
図10(B)及び
図10(C)の点線で示した部分の下側)に上記TIMによる放熱材等をモールドして上記電子部品に直接接触させる構成としたものである。
【0097】
そのため、本発明では、上記のような構成を採用することにより、更に上記電子部品からの放熱性の向上を図ることも可能である。なお、上記実施形態では、上記縁取り部150を上記電子部品搭載用放熱基板200(s、d)の上面側にのみ設けているが、上面側のみならず下面側に設けることも可能であり、或いは、下面側のみに設けることも可能で
ある。
【0098】
また、本発明の電子部品搭載用放熱基板は、上記の様な電動パワーステアリング装置等の制御装置の筐体に収納するなどして用いることが可能であるが、本発明の基本思想に基づけば、上記制御装置の筐体の一部を良熱伝導体により構成し、上記電子部品搭載用放熱基板の上記電子部品配置側の裏面と上記制御装置の筐体の上記良熱伝導体からなる部分とを、良熱伝導体からなるTIM等の絶縁膜を介して相互に面接触するように配置するような制御装置の放熱構造を採用することも可能である。
【0099】
そのため、そうした構造を採用した場合には、上記制御装置の放熱構造との相乗効果により、本発明の電子部品搭載用放熱基板による放熱性を更に改善することが可能である。
【0100】
そして、
図11(A)は上記の様な本発明の電子部品搭載用放熱基板100(s)を上記の様な制御装置1000の筐体に収納した場合を例示した側断面図であり、
図11(B)は、従来型の基板5000を上記制御装置2000に収納した場合の例を示す側断面図である。
【0101】
上記
図11(B)に示すような従来型の基板5000を収納した制御装置2000の場合には、基本的な積層構造は、上側から、1.電子部品(FET等)の放熱面、2.半田層、3.銅箔パターン層、4.絶縁層、5.アルミ・ベース基板、6.TIM層1100、7.制御装置1000のケースと放熱器を兼ねるアルミダイカスト1300となっている。それに対して、上記
図11(A)に示すような本発明の電子部品搭載用放熱基板100(s)を収納した制御装置1000の場合には、基本的な積層構造は、1.電子部品(FET等)の放熱面、2.半田層、3.配線パターン(板厚0.3mm程度の銅)、4.TIM層1100、5.制御装置1000のケースと放熱器を兼ねるアルミダイカスト1300となっている。
【0102】
そのため、本発明の電子部品搭載用放熱基板100(s)によれば、従来型の基板5000と比べて、積層構造を単純化すると同時に導体板から形成される配線パターン形状のリードフレーム110の板厚を増加させることが可能であり、発熱性のある電子部品ECからの放熱を一層効果的に行うことが可能である。なお、上記の例では電子部品搭載用放熱基板として、リードフレーム110の厚さが相互に同じものを使用した基板100(s)の例を用いたが、リードフレーム110の厚さが相互に異なるものを使用した基板100(d)の場合も同様である。
【0103】
また、本発明では、例えば、
図12(A)に斜視図で示したように、上記の導体板により形成される配線パターン形状のリードフレーム110の一部を、上記絶縁体の内周側や外周側で、前記導体板の板面に対して上方又は下方の任意の方向に屈曲させて形成することも可能である。そのため、このように形成した場合には、上記電子部品搭載用放熱基板100(s、d)の外部に存在する接続端子や他の基板等との接続を容易化することが可能である。
【0104】
更に、本発明では、上記のようにリードフレームを予め屈曲させずに、上記電子部品搭載用放熱基板を形成した後でも、前記導体板に形成した配線パターン形状のリードフレームの全部又は一部を、前記絶縁体の周縁より外側で、折り曲げ可能に形成することも可能である。そして、
図13は、上記リードフレーム110をそのように形成した、電子部品搭載用放熱基板800の例を示す斜視図であり、
図13(A)は上記基板800の部品配置面の上方にリードフレームを折り曲げた例を示す斜視図であり、
図13(B)は上記基板800の部品配置面の下方にリードフレームを折り曲げた例を示す斜視図である。(なおここでは、上記基板800は上記EPS用の3相制御インバータのパワーモジュールを想定している。)
本発明では、このように、後加工により上記リードフレーム110を折り曲げることを可能とする事により、次のような利点を有する。
【0105】
すなわち、一般的に複数の電子部品を一つのパッケージにまとめて樹脂などでモールドされたモジュール基板は、通常これとは別の樹脂基板などとリードを介して電気的に接続することになる。この時、上記モジュール基板の上記リード部は事前に決められた方向に向いており、後で自由に向きを変えられるようにはなっていない。そのため、設計や取り扱いの自由度が阻害されていた。
【0106】
その一方、本発明の上記実施形態では、上記リード部(リードフレーム110の絶縁体の周縁より外側の部分)は、後加工で任意の方向に折り曲げられることを特徴としている。
【0107】
そのため、本発明の上記実施形態によれば、最初に上記リード部を折り曲げない状態で形成し、上記電子部品搭載用放熱基板を共通部品として提供することが可能であり、上記電子部品搭載用放熱基板を他の基板と組み合わせて使用する場合や、制御装置内に収納する場合等に、後から、これらの仕様に合わせて、上記リード部の折り曲げが可能である。その結果、いろいろな上記ECU等との組み合わせが可能となり、上記電子部品搭載用放熱基板の搭載位置を決定する際の設計自由度を持たせることが可能となる。
【0108】
なお、上記の構成において、上記リードフレーム110を折り曲げ可能に形成する手段乃至構造については特に限定を設けるものではないが、上記リードフレーム110の材質等を考慮し、少なくとも数度の折り曲げによる脆性破壊を生じないものであることが望ましい。
【0109】
また、
図12に戻って説明を続けると、本発明では、
図12(B)、(C)に断面図を示したように、上記配線パターン形状のリードフレーム110の前記絶縁材130側の側面に上記絶縁材130と係合する係止部115を設ける構成とする事も可能である。上記係止部115は、上記リードフレーム110の側面側から上記絶縁材側130にかけて構成され、上記係止部115の上記絶縁材130側では上記係止部115の上記リードフレーム110の側面側よりも上記リードフレーム110の側面側から見た面積が大きくなるように構成されている。そのため、上記係止部115により、上記リードフレーム110と上記絶縁材130の接合部分の接合を強化して、上記リードフレーム110と上記絶縁材130との熱膨張率の違いなどに基づく剥離等が容易に生じない構成とすることが可能である。
【0110】
また、上記
図12(C)に示したように、リードフレーム110の表面側又は裏面側のいずれか一方又はその双方に係止部115を設ける構成とした場合には、リードフレーム110の伝熱面積が更に拡大され、これにより放熱性を更に向上させることも可能である。
【0111】
また、更に
図14に断面図を示したように、上記配線パターン形状のリードフレーム110の前記絶縁材130側の側面に上記絶縁材130と係合する係止部115を設ける構成として、上記配線パターン形状のリードフレーム110をプレス加工で量産することを前提とした形状とする事も可能である。ここで、上記リードフレーム110の係止部115の外形形状は全て直線を組み合わせる事を特徴して、側面縁部の全域にわたりテーパー形状から始まり中心部の突出し部まで直線形状で終わることを特徴としている。これにより上記配線パターン形状のリードフレーム110の表面積を増加させられるので、伝熱および放熱面の拡大が可能であり、上記絶縁材130との係止面積も増加が可能で、結合がより密になる効果がある。これにより結合強度と放熱性をさらに向上させることも可能である。
【0112】
また、上記係止部115については、更に上記
図14(B)から(I)及び次に記載するような形態を採ることも可能である。なお、上記
図14(B)から(D)は上記リードフレームの係止部115を上記リードフレームの板面の両側の側面が見えるように断面図で表したものであり、上記
図14(E)から(H)は同じく、上記リードフレームの板面の片側の側面が見えるように断面図で表したものであり、上記
図14(I)は上記リードフレームの板面の側面側を上面図で表したものである。
【0113】
上記のうち
図14(B)及び
図14(C)に記載した例は、上記リードフレームの側面の表面側と裏面側から前記側面の中央部側にかけて上記絶縁材側に突出して形成される斜面により形成され、上記斜面は断面が三角形状であるものであって、上記斜面の結合部に断面が円形状や楕円形状等の係止形状を前記斜面から滑らかに形成したものである。すなわち、例えば、上記のうち
図14(B)に記載した例は、上記配線パターン形状のリードフレーム110の前記絶縁材130側の側面に上記絶縁材130と係合する係止部115を設ける構成として、上記配線パターン形状のリードフレーム110をプレス加工で量産することを前提とした形状としたものである。そして、上記リードフレーム110の係止部外形形状はヘチマ形状をしており複数の曲線を組み合わせた事を特徴しており、側面縁部の全域にわたりヘチマ形状の曲面形状により、係止部115の周辺に絶縁材130がスムーズに行き渡ることにより絶縁材130と係止部の結合がより強固になる事を特徴としている。また、上記のうち
図14(C)に記載した例では、リードフレーム110の係止部外形形状はダルマ形状をしており複数の曲線を組み合わせた事を特徴しており、上記の場合と同様に、側面縁部の全域にわたりダルマ形状の曲面形状により、係止部115の周辺に絶縁材130がスムーズに行き渡ることにより絶縁材130と係止部の結合がより強固になる事を特徴としている。そのため、上記
図14(B)や
図14(C)に記載した例では、上記のようにヘチマ形状やダルマ形状を採用することにより、配線パターン形状のリードフレーム110の表面積を増加させられるので、伝熱および放熱面の拡大が可能であり、上記絶縁材130との係止面積の増加とヘチマ形状の中心部の窪み部がリードフレーム110と絶縁材130の結合を密になるように働いている。
【0114】
また、上記のうち
図14(D)に記載した例は、前記リードフレームの一方の板面から他の一方の板面にかけて形成された斜面と他の一方の板面と平行に形成された係止片(階段状の段差で形成された突き出し部)とから上記係止部を形成したものである。すなわち、上記の例も上述のもの等と同様に、配線パターン形状のリードフレーム110をプレス加工で量産することを前提とした形状としたものであり、リードフレームの係止部外形形状は全て直線を組み合わせる事を特徴として、側面縁部のほぼ中央からのびた階段状の段差で構成された突き出し部まで直線形状で終わることを特徴としている。
【0115】
また、上記のうち
図14(E)と(F)に記載した例は、前記リードフレームの側面の表面側と裏面側に前記絶縁材との間に段差を設けることにより係止部を形成したものである。上記係止部の段差の深さ(すなわち、前記リードフレームの側面部から前記段差の形状により前記リードフレームの板面の中央方向まで絶縁材が延伸して形成される長さ)は、前記リードフレームの側面の表面側と裏面側とで異なるものとしても良く、例えば、前記係止部の段差の深さは、
図14(F)に示したように、前記リードフレームの側面の裏面側が大きいものであるように構成するものであっても良い。
【0116】
また、上記のうち
図14(G)と(H)に記載した例は、前記係止部を、前記リードフレームの側面の表面側と裏面側から前記側面の中央部側にかけて前記絶縁材側に突出して形成される斜面により形成したものであり、上記
図14(G)では、前記斜面の断面が三角形状であるものを表示し、上記
図14(H)では、前記斜面の表面側と裏面側からの基点部を上記表面側と裏面側とで上記リードフレームの板面の垂直線上の位置からずらして形成したものである。
【0117】
以上のように、上記
図13(A)から(H)までに記載したような係止部は、上記のようにプレス加工などによる成形が容易であり、係止面積の増加による放熱性や機械的な結合強度の増加が図れると共に、上記のようなリードフレームと絶縁材の境界面にダルマ状の形状やヘチマ状の形状又は上記階段状の段差部などを形成することにより、基板に生ずる結露などによる湿気進入の抑制効果なども持たせることが可能である。
【0118】
また、上記のうち
図14(I)に記載した例は、前記係止部を、前記リードフレームの側面に、前記リードフレームの板面に沿って凹部を形成することによって設けたものであり、上記
図14(I)に示した例では、前記凹部は、前記凹部の解放端側よりも奥側(すなわち前記リードフレームの板面の中心方向)で広く形成されている。そのため、このように係止部をいわば鍵穴状に形成した場合、上記係止部が上記リードフレームの板面を上面から見た場合に板面の側面に沿って形成されているため、プレス加工などによる成形が容易であり、上記のように係止面積の増加による放熱性や機械的な結合強度の増加を図ることが可能である。
【0119】
なお、上記記載のものは係止部の一例を示したものであり、上記記載の係止部のパラメータ(例えば、上記段差の深さ等)を適宜変更することにより、上記リードフレームにより構成しようとする回路の特性などに合わせて調整することが可能である。
【0120】
また、本発明では、
図14(J)や
図14(K)に記載したように、上記リードフレームの板面の側面から内側寄りに形成された、前記リードフレームの表面と裏面とを貫通する樹脂封止形状Rsを設けることも可能である。ここで、上記14(J)の上側の図は上記リードフレームの板面の上面図であり、上記14(J)の下側の図は、上記上面図のX−X線部分での断面図を示し、上記14(K)の上側の図は上記リードフレームの板面の上面図であり、上記14(K)の下側の図は、上記上面図のY−Y線部分での断面図を示している。上記樹脂封止形状Rsは、上述のようにリードフレームの表面と裏面とを貫通するように形成された穴であり、上記
図14(J)、(K)のように長方形状のものであっても或いは円形状のもの等であって良く、特に大きさや形状に限定を設けるものではない。本発明では、上記のような樹脂封止形状Rsを設けることにより、上記リードフレームと上記絶縁材を構成する樹脂等との接合強度を向上させることが可能であるが、特に本発明により上記リードフレームに構成される凹部や上記係止部と組み合わせる事により更に効果的に用いることが可能である。すなわち、例えば、
図14(K)の例は、上述の
図14(E)や(F)の例で示した段差状の係止部の内側に上記樹脂封止形状Rsを形成した例であるが、上記のような構成を併用することにより、更に効果的に上記リードフレームと上記絶縁材との機械的結合強度を向上させることが可能である。
【0121】
また、本発明では、上記リードフレーム110を介して、
図15に記載したように上記電子部品搭載用放熱基板からの放熱を促進する構造を採用することも可能である。ここで上記
図15は、本発明による電子部品搭載用放熱基板810のリードフレーム110に、絶縁材130の周縁より外側で、熱伝導体8000を当接した例を示す斜視図である。なお上記
図15では、上記熱伝導体8000としてはリードフレーム110の形成する2つの列に沿って、8000Aと8000Bとが設けられており、8000Bについては(上記基板810との関係が明瞭になるように)点線により示している。そして、上記リードフレーム110は末端で、他の基板などと接続されるため、上記熱伝導体8000は、上記リードフレーム110に当接しつつ、上記リードフレーム110の末端では接触しない構成となっている。
【0122】
また、上記熱伝導体8000は、任意の熱伝導材料により構成することが可能であるが、基本的には、上記リードフレーム110との絶縁性を確保するために、少なくとも上記リードフレームとの当接部分で電気的絶縁性が確保されるように形成されることが必要である。そのため、上記熱伝導体全体を絶縁体により構成するか、或いは、上記熱伝導体全体を導体で構成する場合であっても、上記熱伝導体の表面に絶縁性のある熱伝導材料(TIM)を用いることが必要である。但し、上記構成はこれに限らず、上記熱伝導体8000と当接される上記リードフレーム110との絶縁性が確保されれば良いため、上記熱伝導体8000が導体により形成されている場合であっても、上記熱伝導体8000に当接する部分の上記リードフレーム110に絶縁性のコーティングを施す等の手段により、熱伝導性と絶縁性とを確保するものであっても構わない。
【0123】
上記
図15に示した構成例では、電子部品ECから発生した熱は次のように伝達される。すなわち、本発明に係る電子部品搭載用放熱基板810には部品配置面上の上記リードフレーム110に電子部品ECが実装されている。そのため、上記
図15に記載したように、上記導体板に形成した配線パターン形状のリードフレーム110の全部又は一部を、前記絶縁体130の周縁より外側で、熱伝導体8000に当接させる構造を採用することにより、上記電子部品ECから発生した熱を上記熱伝導体8000を介して外部へ伝導することが可能である。
【0124】
なお、ここで、上記リードフレーム110を熱伝導体8000に当接させる構造については、特に限定を設けるものではないが、上記
図15に記載したように、上記リードフレーム110の列が構成する板面に沿って上記熱伝導体8000を当接した場合には伝熱面積が大きくなるために熱伝導を効率的に行うことが可能である。
【0125】
また、上記
図15の例では、上記基板800の周縁の2つの側面に立設するように2つの熱伝導体(8000A、8000B)が設けられているが、上記基板810の周縁の4つの側面にリードフレーム110を延伸させて、上記4つの側面に上記熱伝導体8000を設ける構成とする事も可能である。
【0126】
また、同じく、上記
図15に示した例では、上記リードフレーム110を上方に折り曲げているが、必ずしも、上記リードフレーム110を折り曲げているか否か、或いは、上方乃至下方のいずれかに折り曲げているかに拘らず、上記リードフレーム110に上記熱伝導体8000を当接させて熱伝導を行うことが可能である。また、上記基板を収納する筐体や他の基板との組合わせを考慮する必要がある場合などには、上記リードフレーム110の一部に上記熱伝導体8000を当接する構造とする事も可能である。
【0127】
また、更に、本発明では、機能的なまとまりを有する複数の発熱性電子部品群を、上記電子部品搭載用放熱基板の板上で相互に採り得る最大の距離を採り、かつ、上記発熱性電子部品群への入口から上記発熱性電子部品群の出口までの電流経路の長さが相互に略同一となるように配置することで、上記発熱性電子部品群を分散配置することによる放熱性の向上を図りつつ、電流経路におけるモータ等を含めた配線経路を略同一とする事で、インピーダンス特性を容易に一致させることが可能であり、リップルの発生が抑制され、電動パワーステアリング装置などに用いた場合には、滑らかな操舵感を実現することが可能である。
【0128】
すなわち、これを
図16を参照して説明すると、上記
図16は、例えば、概ね四角形状に構成した本発明の電子部品搭載用放熱基板830上に、3相交流電動モータの各相の発熱性電子部品群を正三角形状の各頂点部分に分散配置し、上記各3相の出力端を前記正三角形の重心から各頂点の延長方向へ向けて配置した例を上面図で示したものである。
【0129】
上記
図16において、太字の矢印で示すL0a、L0b、L0cの各線は電源から上記各相の手前の電解コンデンサ911までの電流経路(V相についてはL0a、U相についてはL0b、W相についてはL0c)を示し、太字の矢印で示すL1bからL2bを経由してL3bまで延びるように接続した線は、上記U相の電流経路を示し、同様に、太字の矢印で示すL1aからL2aを経由してL3aまで延びるように接続した線は、上記V相の電流経路を示し、太字の矢印で示すL1cからL2cを経由してL3cまで延びるように接続した線は、上記W相の電流経路を示している。
【0130】
また、更に、上記
図16で、太字の矢印で示すL4bからL5bを経由してL6bまで延びるように接続した線は、上記3相交流電動モータのU相からグランド側への電流経路を示し、同様に、太字の矢印で示すL4aからL5aを経由してL6aまで延びるように接続した線は、上記3相交流電動モータのV相からグランド側への電流経路を示し、太字の矢印で示すL4cからL5cを経由してL6cまで延びるように接続した線は、上記3相交流電動モータのW相からグランド側への電流経路を示している。
【0131】
そして、上記
図16に記載した、鎖線で示した四角枠で示す領域のうち、UPは、U相、V相、W相からなる上記3相交流電動モータ(3相ブラシレスモータ等)のインバータ回路のうち、U相の駆動を行う領域であり、同様に、VPはV相、WPはW相の駆動を行う領域を示しており、上記
図16中で鎖線で示した三角形は上記電子部品搭載用放熱基板830上の略中心部を重心として上記基板内に仮想的に形成することが可能な正三角形Tの輪郭を示している。
【0132】
ここで、例えば、上記U相、V相、W相からなる3相交流電動モータの各相のインバータ回路を構成する部品群のように、機能的に単一のまとまりを有しFET等の発熱性電子部品を含む複数の電子部品から構成される電子部品の集合体(発熱性電子部品群)を上記発熱性電子部品群(ここでは、上記のようにU、V、Wの3つ(複数)の部品群)ごとに、上記
図16で示した正三角形状の頂点付近の領域のように、上記基板上に相互に最大の距離を採るように分散して配置する構成を採用することにより、上記基板に生じる発熱箇所を分散して、上記基板への熱伝導を効率よく行うことが可能となる。
【0133】
また、上記配置と併せて、上記発熱性電子部品群への電流の入口から上記発熱性電子部品群からの電流の出口までの電流経路の長さが相互に略同一となるように配置することで、上記インバータ回路から上記3相交流電動モータまでの電流経路のインピーダンス特性を容易に一致させることが可能であり、これを通じて、上記3相交流電動モータのトルクや速度等のリップル精度を向上させることが可能である。
【0134】
これをさらに詳細に説明すれば、
図17に示したように、例えば、上記3相交流電動モータなどに使用される上記インバータ回路910は、モータリレー部930を介してモータ950に接続されている。
【0135】
なお、ここで、上記
図17は、上記3相交流電動モータ(3相ブラシレスモータ等)のインバータ回路と各相電流経路を示す図であり、図中の鎖線で示すL1からL2を経由してL3まで延びる連続した線は、上記
図16の場合と同様に電動モータ950への入力側の電流経路(ここではU相)Uiを表したものであり、一点鎖線で示すWiも同様にW相の入力側の電流経路を示したものである。
【0136】
また、上記
図17では、上記電動モータ950の各相からグランド側への電流経路(ここではU相)UoをL4からL5を経由してL6まで延びる連続した線として現しており、W相によるグランド側への電流経路も同様にWoとして現している。
【0137】
そして、上記インバータ回路910は、ここでは図示しないゲート駆動部において電流指令値等に基づいて形成されたゲート駆動信号が入力されて、モータ駆動を行うモータ駆動部を構成する回路である。
【0138】
上記インバータ回路910は、U相の上段FET1及び下段FET4で成る上下アームと、V相の上段FET2及び下段FET5で成る上下アームと、W相の上段FET3及び下段FET6で成る上下アームとで成る3相ブリッジで構成されており、電源側からは各相とも電解コンデンサ911を介して接続されており、グランド側に対しては、各相ともシャント抵抗913を介して接続されている。また、上記上下アームによる各相の出力は、上記モータリレー部930を構成する各相のFET(U相について935、V相について937、U相について939)を介して、上記電動モータ950の各相の入力端子(U,V,W)に接続されている。
【0139】
このように接続される上記インバータ回路910とモータリレー部930とモータ950とでは、本発明においては、上記U相、V相、W相の各電流経路の経路長がほぼ等しくなるように構成されている。
【0140】
すなわち、上記
図16及び
図17に示すように、例えば、U相の電流経路は、上記電解コンデンサ911からFET1までの経路(L1b)と、上記FET1から上記モータリレーのFET935までの経路(L2b)と、上記モータリレーのFET935から上記モータ950のU相入力端子Uまで(L1b+L2b+L3b)となっており、上記同様に、V相の電流経路は(L1a+L2a+L3a)、W相の電流経路は(L1c+L2c+L3c)となっている。そして、上記各相の電流経路の経路長は、相互に略等しくなるように構成されている。
【0141】
また、上記グランド側への電流経路も
図16及び
図17に示したように、上記モータ950から上記モータリレー部930のデバイスまでの距離(L4:各相ごとにはL4a,L4b,L4c)と、上記モータリレー部930のデバイスから上記インバータ回路910の下側FETまでの距離(L5:各相ごとにはL5a,L5b,L5c)と、上記インバータ回路910の下側FETからシャント抵抗913までの距離(L6:各相ごとにはL6a,L6b,L6c)とを合わせた電流の経路長が上記電流側と同様に、相互に略等しくなるように構成されている。
【0142】
なお、ここで、このような電流経路の経路長の調整は、上記本発明によるリードフレームの形態や部品配置等を工夫することで適宜調整が可能である。
【0143】
そして、上記のように本発明では、上記各相の上記電流経路の経路長が各相間でほぼ等しくなるように構成することにより、上記インバータ回路910から上記モータ950までのインピーダンス特性を容易に一致させることが可能であり、これを通じて、上記モータ950のトルクや速度等のリップル精度を向上させることが可能である。
【0144】
また、上記分散配置と電流経路長を各相間で略同一と調整することに合わせて、上記各相からの出力線を上記仮想的な正三角形状の重心から上記正三角形状の各頂点の外側へ向かう延長線上平行な方向や上記基板の縁に平行な方向へ配置することにより、上記各相の出力の干渉等を防止して、更に精度や安定度の向上した上記モータの制御を行うことが可能である。
【0145】
そのため、本発明の上記構成によれば、上記FET等のパワーデバイスを含む発熱性電子部品群を電子部品搭載用放熱基板の基板上に分散配置することで、上記分散配置と電子部品搭載用放熱基板との相乗作用による放熱性の向上を図りつつ、上記モータの駆動性能をさらに向上させることが可能である。
【0146】
なお、上記構成では、発熱性電子部品群として、U相、V相、W相からなる3相交流電動モータの各相のインバータ回路を構成する電子部品群を記載したが、本発明はこれに限らず、機能的に単一のまとまりを有しFET等の発熱性電子部品を含む複数の電子部品から構成される電子部品の集合体であれば、上記のように本発明の電子部品搭載用放熱基板の基板上に分散配置することで、上記同様の効果を発揮することが可能である。
【0147】
また、上記分散配置の形態は、上記分散配置により上記発熱性電子部品群が上記基板上で相互に採り得る最大の距離だけ離間して配置することが可能なものであれば、上記電子部品搭載用放熱基板の形態(長方形状や多角形状等)や上記発熱性電子部品群の数に応じて、種々の形態を採用することが可能である。
【0148】
また、更に本発明では、上記のような機能的なまとまりを有する複数の発熱性電子部品群を、本発明の上記電子部品搭載用放熱基板の上面側(表面側)のみならず下面側(裏面側)にも分散配置することも可能である。
【0149】
そして、その場合には、例えば、次に
図18及び
図19を参照して説明するように、上記本発明の電子部品搭載用放熱基板の表面側に分散配置される発熱性電子部品群に対して、裏面側に分散配置される発熱性電子部品群が、上記基板の表面側と裏面側とで、上記電子部品搭載用放熱基板の板面に対して対称の位置にならないように、言い換えれば、上記基板の板面を通して相互に重ならないように分散配置する構成とし、発熱領域の分散と熱伝導性の向上とを図ることが可能である。(なお、ここで、上記
図18は、
図16と同様に本発明の基板850上に3相交流電動モータの各相の発熱性電子部品群を正三角形状の各頂点部分に分散配置したものであるが、上記各3相の出力端を上記部品群から、上記基板の側面と平行方向に向けて配置した例を上面図で示したものである。)
すなわち、本発明では、上記
図18又は
図19(A)において示すように、本発明の電子部品搭載用放熱基板の表面側の板面上に複数の発熱性電子部品群を分散して配置する構成を選択することが可能である。そして、上記本発明の電子部品搭載用放熱基板では、上記表面側のみならず裏面側にも上記発熱性電子部品群を含む電子部品を実装することが可能である。
【0150】
そこで、本発明では、例えば、上記
図19(A)に示すように、上記電子部品搭載用放熱基板の表面側に、上記発熱性電子部品を分散配置した上で、上記
図19(B)に示すように、上記電子部品搭載用放熱基板の裏面側に、上記発熱性電子部品を分散配置する構成としても良い。
【0151】
これを更に詳細に説明すると、上記
図19は、上記本発明の電子部品搭載用放熱基板870を例にして上記基板870の表面側と裏面側の発熱性電子部品群の配置の差異を示す概念図であり、
図19(A)は上記基板870の表面側の板面上に、上記
図18で示したような複数の発熱性電子部品群(UP、VP、WP)を分散配置した場合を示しており、
図19(B)は、同様に、上記基板870の裏面側の板面に複数の発熱性電子部品群(UP`、VP`、WP`)を分散配置した場合を示したものである。
【0152】
ここで、上記
図19(A)は、上述のように、
図18で例示したような3相駆動される電気モータのインバータ回路部分を、その構成要素であるU相、V相、W相を構成する3つの発熱性電子部品群(UP、VP、WP)に分けて、上記基板870の表面上に、上記基板の概ね中心部に三角形の重心が位置するようにした仮想的な正三角形状Tの各頂点部分付近に分散配置した例を示している。なお、上記
図19では、上記電子部品搭載用放熱基板870に形成される回路パターンや搭載される電子部品及び上記基板から外部へ向けて形成される端子等は省略して表現しており、上記複数の発熱性電子部品群の構成についても、簡略化して表現している。
【0153】
そして、上記
図19(B)は、上記基板870の裏面上に、上記表面側と同様に発熱性電子部品群を仮想的な正三角形状T’の頂点部分に分散配置したものであり、その配置方法は、上記表面側に仮想的に形成した正三角形状Tに相当する位置を上記基板の上面から透視して見た場合に、上記仮想的な正三角形Tの重心位置を中心にして60度回転した位置に上記正三角形状T’の位置をシフトさせたものとなっている。(なおここで、上記仮想的な正三角形状Tと正三角形状T’の板面上の重心位置は上記表面と裏面とで上記板面に対して対称としている。)
すなわち、上記基板870の上面から透視して見た場合に、上記基板870の上面側の上記仮想的な正三角形状Tの重心から上記仮想的な正三角形状Tを構成する各辺の中点方向の延長線上に上記裏面側に仮想的に形成した正三角形状T`の各頂点が位置するように配置したものとなっている。
【0154】
そのため、本発明では、上記のように上記基板870の表面側と裏面側に発熱性部品群を分散配置する際に、上記のように表面側に配置した発熱性電子部品群(UP、VP、WP)の板面上の真裏の部分に上記裏面側に配置した発熱性電子部品群(UP`、VP`、WP`)が配置されないようにして、上記電子部品搭載用放熱基板870の板面の表面と裏面とを通して上記発熱性電子部品群が分散配置されるように形成されている。
【0155】
したがって、上記のような分散配置を行うことにより、本発明の電子部品搭載用放熱基板において、基板の表面と裏面とを通じて、熱源の偏在を防止し、発生した熱の速やかな伝導と放熱を行うことが可能である。
【0156】
また、上記のように、本発明の上記電子部品搭載用放熱基板の上面側(表面側)のみならず下面側(裏面側)にも電子部品を実装する場合には、
図20に示すように、2枚の上記電子部品搭載用放熱基板(900Uと900D)の間に介挿シート(1800又は1900)を設けて1枚の基板900として構成し、上記基板1100の上記介挿シート(1800又は1900)を挟んだ一方の基板(900U)の上面を上記基板900の上面側(表面側)として用い、他の一方の基板(900D)の下面を上記基板900の下面側(裏面側)として用いることも可能である。
【0157】
ここで
図20は上記のように構成される介挿シート(1800及び1900)を用いて2枚の電子部品搭載用放熱基板(900Uと900D)を1枚の電子部品搭載用放熱基板900として構成し、その両面に電子部品ECを実装した例を図示したものであり、
図20(A)は上記介挿シート1800を上記基板900の板面が有する平面上の形態と同様に形成したものの例を示し、
図20(B)は、上記介挿シート1900を上記基板900の板面が有する平面上の形態よりも周縁部分を拡大して形成したものの例を示したものである。
【0158】
上記介挿シートは、
図20で示したように本発明の2枚の電子部品搭載用放熱基板を接合すると同時に、上記2枚の基板間で電気的な絶縁を行う機能を有するものである。そのため、上記介挿シートの素材は、上記2枚の基板を保持できるだけの粘着性があり、絶縁性を備えた素材であることが望ましい。但し、上記介挿シートは必ずしも単一の層から構成されたものに限らないため、上記介挿シートを、粘着性のある絶縁層等を含む多層構造により形成して、上記機能を実現するものであっても構わない。
【0159】
また、上記介挿シートは、必要に応じて熱伝導性の高い素材又は熱伝導性の低い素材(断熱性素材)のいずれか一方又は双方を選択して構成する事が可能である。
【0160】
そのため、上記表面側を構成する電子部品搭載用放熱基板と裏面側を構成する電子部品搭載用放熱基板との間で、上記基板に実装されている電子部品の発熱量や熱環境等を考慮して、積極的に熱交換を行いたい場合には、例えば、熱フィラーを絶縁性樹脂に混練して形成した熱伝導性の高い材料を用いて構成する事が可能である。
【0161】
また、その一方、後述する予備用回路を実装する場合のように、上記電子部品搭載用放熱基板の表裏面間で、一方の面の基板で発生した熱が他方の面の基板に伝導されることが望ましくない場合には、上記介挿シートに熱伝導性の低い素材(断熱性素材)を用いることが可能であり、こうした構成を用いることにより、例えば後述の例では、表面側に実装された通常用回路等の駆動による発熱の影響により、裏面側に実装された上記予備用回路に劣化等が生じないようにすることも可能である。
【0162】
また、上記介挿シート1900を熱伝導性の高い素材を用いて形成し、上記
図20(B)に示したように、上記表面側と裏面側の基板900の板面が有する平面上の形態よりも周縁部分を拡大して形成した場合には、上記介挿シート1900の周縁部分1900Eを利用して、上記基板900から伝導した熱の放熱が可能である。そのため、上記周縁部分1900Eを利用して、上記基板900の固定に活用したり、ヒートシンクに接続したりすることで放熱に利用することも可能である。
【0163】
また、ここで、上記裏面側に分散配置される上記発熱性電子部品群(UP`、VP`、WP`)は、1又は複数の回路を構成する複数の電子部品ECに含まれるものであっても良く、上記3相交流電動モータ(3相ブラシレスモータ等)の冗長系や予備の回路などを構成する回路の一部として形成されているものを用いる事も可能であり、上記のような冗長系の回路等を採用することで、上記3相交流電動モータを用いた制御を行う場合の信頼性の向上などを図ることが可能である。
【0164】
そのため、例えば、上記電動モータの制御系統を通常用と予備用の2系統としている場合には、上記表面側と裏面側とに形成された回路をそれぞれ通常用と予備用などに振り分け、通常用に故障が検出された場合には、予備用を駆動するような制御回路に用いたりすることが可能であり、この場合には、通常用回路の駆動による発熱で予備用回路に劣化等が生じないように分散配置しておくことも可能である。
【0165】
また、例えば、上記電動モータを、2重系統の巻線によって構成し、それぞれの系統で上記モータ駆動のための電流を2分の1ずつ担当するようなパラレル駆動とした場合には、上記2重系統のそれぞれの系統の回路を上記基板の表面側と裏面側とに形成した構成とし、放熱量と放熱領域とを分散することも可能である。
【0166】
そして、上記のように基板の表面側と裏面側とに回路を形成した場合には、上記発熱性電子部品群のそれぞれの駆動タイミングを考慮して、上記基板の表面側と裏面側との空間的な発熱領域の分散配置の他に、或いはこれと併せて、時間的な発熱の分散を考慮した構成とする事も可能である。
【0167】
すなわち、上記発熱性電子部品群を実装乃至分散配置して実装する際に、これらの発熱性電子部品群を比較的近接した領域に配置せざるを得ない場合であっても、上記発熱性電子部品群の作動タイミングを考慮して、上記近接した発熱性電子部品群相互間で、作動タイミングが同時にならないように配置乃至駆動させることで、発熱が同時に生じないようにして、時間的な発熱の分散を図り、これによって、基板の熱分布の均一化乃至放熱性等を向上させることが可能である。
【0168】
また、上記のように上記基板870の裏面に発熱性電子部品群(UP`、VP`、WP`)を分散配置する場合にも、上記分散配置と併せて、上記発熱性電子部品群(UP`、VP`、WP`)への電流の入口から、上記発熱性電子部品群(UP`、VP`、WP`)からの電流の出口までの電流経路の長さが相互に略同一となるように配置する事が可能である。そのため、そうした配置をすることで、上記に例示したような冗長系のインバータ回路等から上記3相交流電動モータまでの電流経路のインピーダンス特性を容易に一致させることが可能であり、これを通じて、上記3相交流電動モータのトルクや速度等のリップル精度の信頼性などを向上させることが可能である。
【0169】
また、上記のように上記基板870の裏面に上記発熱性電子部品群(UP`、VP`、WP`)を分散配置する場合にも、上記仮想的な正三角形状T’の重心から上記正三角形状T’の各頂点を結ぶ線を延長した線の方向、或いは上記基板の縁(側面)に平行な方向に、上記発熱性電子部品群(UP`、VP`、WP`)からの出力線(リード線)(UI`、VI`、WI`)を延伸させて配置することも可能である。したがってその場合には、上記出力線(UI`、VI`、WI`)相互間、及び、上記基板1000の表面側に配置した上記発熱性電子部品群(UP、VP、WP)からの出力線(UI、VI、WI)相互間に対しても適当な距離を確保する事が可能であり、上記各相の出力線の相互の干渉等を防止して、更に精度や安定度の向上した上記モータの制御を行うことが可能である。
【0170】
なお、上記裏面側に分散配置する例として、上記説明では、U相、V相、W相からなる3相交流電動モータの例を示し、上記発熱性電子部品群として、同様に3相交流電動モータの各相のインバータ回路を構成する電子部品群を記載したが、本発明はこれに限らず、機能的に単一のまとまりを有しFET等の発熱性電子部品を含む複数の電子部品から構成される電子部品の集合体であれば、上記のように本発明の電子部品搭載用放熱基板の基板上に分散配置することで、上記同様の効果を発揮することが可能であり、また、上記分散配置の形態も、上述した表面側に分散配置する場合と同様に、上記分散配置により上記発熱性電子部品群が上記基板上で相互に採り得る最大の距離だけ離間して配置することが可能なものであれば、上記電子部品搭載用放熱基板の形態(長方形状や多角形状等)や上記発熱性電子部品群の数に応じて、種々の形態を採用することが可能である。
【0171】
したがって、本発明では、こうした構成により、上記本発明の電子部品搭載用放熱基板の表面側に配置される発熱性電子部品群からの発熱を分散できるのみならず、上記電子部品搭載用放熱基板の裏面側に配置される発熱性電子部品群からの発熱も同様に分散することが可能であり、しかも、上記のように上記基板の板面の表面側と裏面側とで、発熱領域を異なる配置としたため、上記基板の表面側と裏面側を含めた基板全体で3次元的に発熱領域の分散を図ることが可能である。
【0172】
そのため、本発明の電子部品搭載用放熱基板において、上記部品配置を行うことにより、なお一層、上記電子部品搭載基板における熱の偏在を防止し、発生した熱の速やかな伝導と放熱が可能である。
【0173】
次に、上記電子部品搭載用放熱基板を用いる放熱構造として、例えば、
図21に記載したような、構造を採用することも可能である。ここで、上記
図21は、本発明による電子部品搭載用放熱基板2枚を部品配置面の裏面に熱伝導体(放熱プレート)を介して取り付けて、上記2枚の基板を一体化して、放熱性の向上とコンパクト化とを図った放熱構造を示した図であり、(A)はその側面図、(B)は同様の例を示す斜視図である。
【0174】
上記
図21に記載した放熱構造は、少なくとも2枚以上の本発明による電子部品搭載用放熱基板の部品配置面の裏面を熱伝導体を介して取り付けて、上記電子部品搭載用放熱基板からの放熱を行うこととしたものである。
【0175】
そのため、上記放熱構造では、上記電子部品放熱基板(例えば、上記
図13で示した電子部品搭載用放熱基板800など)を例えば2枚(例えば、800Aと800Bの2枚)使用する場合に、上記2枚の基板(800Aと800B)の部品配置面の裏面にTIM310などをそれぞれ配置し(但し、必ずしも配置しなくても良い)、これを介して熱伝導体(放熱プレート)1500の上下の面に上記基板800を取付けて構成することが可能である。なお、この場合、2以上の複数の基板を配置する場合には、上記熱伝導体1500の一面に複数の基板を配設して行うことも可能である。
【0176】
そして、上記
図21に記載した例の場合には、上記基板800Aのリードフレーム110Aを上記基板の絶縁材の外縁より外側で上方に折り曲げると共に、上記基板800Bのリードフレーム110Bについても同様に上方に折り曲げて、上記2つの基板の上方にある(図示しない)コネクタ等に接続できるように構成されている。そして、上記熱伝導体1500は、上記リードフレーム110と干渉しない部分において制御装置の放熱器(ヒートシンク)等に接続されている。
【0177】
そのため、上記のような構造を採用することにより上記基板(800Aと800B)の板面から上記熱伝導体1500を介した放熱を効率的に行うことが可能であり、また、更に上記のような構成を採用することにより、回路のコンパクト化を図ることも可能である。
【0178】
すなわち、冗長設計などを考慮して、複数の基板を上記ECUの制御装置などに搭載する場合、これらを単純に横方向に並べると、上記ECUのサイズが大きくなるという課題が生じる。
【0179】
しかし、上記のように、熱伝導体1500を介して複数の基板をその表面と裏面とに搭載し、更に上述したように、上記リードフレーム110を上記基板の絶縁体の周縁より外側で屈曲して用いることにより、上記基板を縦方向に積層して配置することが可能となり、横方向に単純に配置する場合に比較して、
図21で示したように、コンパクトなECUを実現することが可能である。また、このように複数の基板を合わせた場合には、上記基板にそれぞれ実装される電子部品ECからの放熱量が大きくなるが、こうした発熱は、上記熱伝導体1500を介して外部へ放熱することも可能である。また、上記のように縦方向に積層して配置した場合には、縦方向のサイズが拡大するが、例えば、上述のECUなどの場合には、車種によって搭載可能なスーペースは変わるため、上記のような縦方向の積層構造などを適宜選択して、それに合わせた設計が可能である。
【0180】
また、上記
図21(B)に記載した例は、上記熱伝導体1500について、上記
図21(B)に記載したものとは異なる例を示したものである。
【0181】
上記
図21(B)に記載した熱伝導体1500は、更に上記基板800Aと800Bとの間に介挿される水平部分1500Hと、上記水平部分の端などの上記リードフレーム110が設けられていない上記基板(800A、800B)の側面に立設するように設けられる垂直部分1500Vとから構成されている。
【0182】
そして、上記熱伝導体1500の水平部分1500Hは、上述の熱伝導体1000の場合と同様に、上記リードフレーム110と干渉しない部分において制御装置の放熱器(ヒートシンク)等に接続され、上記熱伝導体1500の水平部分1500Hも同様に制御装置のケース等に固定されて放熱を行うことが可能である。
【0183】
次に、本発明に係る電子部品搭載用放熱基板を用いれば、次のようなシャント抵抗の接続構造を採用することが可能である。
【0184】
ここで、シャント抵抗とは、一般的には、負荷にかかる電流を検出するための抵抗器(分流器)のことを言う。上記シャント抵抗は、例えば、上述したような電動パワーステアリング装置の場合には、操舵補助トルクを正確に発生させることを目的としたモータ電流のフィードバック制御のための電動モータ電流値(電動モータ電流検出値)の検出等に用いられており、上記フィードバック制御は、操舵補助指令値(電流指示値)と上記電動モータ電流検出値との差が小さくなるように電動モータ印加電圧を調整して行われる。
【0185】
そして、上記のような電動パワーステアリング装置の制御装置30に用いられるような従来の回路基板では、上記シャント抵抗は基板に搭載される際には、上記のように電動モータへ接続する伝送線路に実装されており、上記シャント抵抗を介した電流検出を行う電流検出回路への伝送線路(信号線)に対しては、ワイヤボンディング等により、ワイヤなどの細線により接続されていた。
【0186】
そのため、上記のような従来の基板では、上記シャント抵抗を上記電流検出回路への信号線に電気的に接続するためのボンディング作業が別途必要となるという課題があり、更に、上記接続に用いられるボンディングワイヤなどの細線の抵抗による測定誤差も生じるという課題もあった。
【0187】
そこで、本発明に係る電子部品搭載用放熱基板を用いれば、
図22及び次に構成例を示すようなシャント抵抗の接続構造を採用することにより、これらの課題を解決することが可能である。なお、ここで、上記
図22は、本発明によるシャント抵抗SRの接続構造を図示した斜視図であり、(A)は、例えば、本発明に係る電子部品搭載用放熱基板100(d)へ、シャント抵抗SRを接続する前の構成を示した斜視図であり、(B)は上記基板100(d)へシャント抵抗SRを接続した後の構成を示した斜視図である。また、上記
図22においては、上記電子部品搭載用放熱基板100(d)については、その一部のみを表示している。
【0188】
本発明の上記構成例では、上記
図22(A)に示したように、上述した、上記電子部品搭載用放熱基板100(d)は、相互に異なる厚みを有するリードフレーム110を備えており、更に言えば、これらのリードフレーム110は、比較的大電流を通電することを想定する厚みの厚いリードフレーム110Hと、比較的小電流を通電することを想定する厚みの薄いリードフレーム110Lとから構成されている。
【0189】
そして、上記厚みの厚いリードフレーム110H上には、上記
図22(A)内に点線で示した枠のように、上記シャント抵抗SRの2つの端子をそれぞれ接続する2つの接続部CPを有している。なお、ここで、上記接続部CPは上記シャント抵抗SRを接続する部分として設定した領域であり、回路配置に応じて適切な位置が決定される。
【0190】
また、上記リードフレーム110H上に設定した接続部CPの一部であって、相互に対向する位置には、それぞれ切り欠き部LPが設けられており、上記切り欠き部LPには上記厚みの薄いリードフレーム110Lの一端が配置されている。そして、上記厚みの薄いリードフレーム110Lは信号線として、上記シャント抵抗SRを用いた電流検出回路に接続されている。
【0191】
そして、上記のように構成される基板100(d)の上記接続部CPに、
図22(B)に示すように、シャント抵抗SRを配置する場合には、上記接続部CPにおける切り欠き部LPの上に上記シャント抵抗の2つの端子が上から覆いかぶさるように載置して接続することにより、上記シャント抵抗SRを上記基板100(d)の上記2種類のリードフレーム110Lと110Hとに実装することが可能である。また、上記接続は、上記厚みの厚いリードフレーム110Hと厚みの薄いリードフレーム110Lとの部品実装面側の上面が同一の平面上にあることから、上記接続部CP及び切り欠き部LPに半田を印刷することも可能であり、SMT(表面実装:(Surface Mount Technology))後にリフローすることで半田接続することが可能である。
【0192】
このため、以上のように構成される本発明に係る電子部品搭載用放熱基板を用いるシャント抵抗の接続構造によれば、上記シャント抵抗SRからダイレクトに電流検出信号を引き出せるため、SMT後のリフローのみでワイヤボンディング工程を必要とせず安価に供給することが可能である。また上記のように電流検出にワイヤ等の細線を用いないために、電流検出精度を一層向上させることも可能である。また、更に、本発明では、上記のように半田により基板面に直接実装することで強固な構造を形成することができる為、上記のようなワイヤボンディングや、ワイヤボンディングを行った後に、樹脂で埋めて固定するという方法が不要となり、上記ワイヤボンディング等による接続に比べて格段に耐久性が向上するため、例えば、電動パワーステアリング装置のECUが備えられる車両などから伝わる、車体や路面からの不規則な振動や温度変化の大きい過酷な環境においても、長期にわたって安定的な構造を維持することが可能である。
【0193】
なお、上述の電子部品搭載用放熱基板を用いるシャント抵抗の接続構造は、その構成例の一例を示したものであって、本発明の趣旨の範囲で他の構成例を用いることも可能である。そのため、上記のように接続部CPに切り欠き部LPを設けずに、
図23に示したように、上記接続部CPの近傍に、上記厚みの薄いリードフレーム110Lの一端を配設する構成としても構わない。なお、ここで上記
図23は、上記他の構成例を上記
図22の場合と同様に示したものである。
【0194】
そして、この場合でも、上記シャント抵抗SRの2つの端子との接続は、上記リードフレーム110Hの上面側に設定した2つの接続部の上に上記シャント抵抗の2つの端子をそれぞれ載置することにより行うが、その際には、上記厚みの薄いリードフレーム110Lの一端も上記シャント抵抗SRの2つの端子のそれぞれの下部に直接接続するように行うことが望ましい。(これは、上記厚みの薄いリードフレーム110Lの一端を上記厚みの厚いリードフレーム110Hに接続することで上記シャント抵抗SRを間接的に上記電流検出回路に接続することも可能ではあるが、その場合には配線抵抗が増加して測定誤差を生ずるおそれがあるためである。)
そのため、上記近傍とは、上記シャント抵抗の2つの端子を上記リードフレーム110Hとの接続部に接続部に配置した場合に、上記シャント抵抗の2つの端子の下方に上記リードフレーム110Lの一端が配設されるように構成可能な領域であって、上記シャント抵抗と上記リードフレーム110Lとの直接接続が可能な領域のことを意味している。
【0195】
したがって、以上のように、本発明に係る電子部品搭載用放熱基板を用いるシャント抵抗の接続構造の他の構成例によっても、上記のようにコストの削減と電流検出精度の向上とを達成することが可能である。
【0196】
そのため本発明では、以上のような構成を備える事により、大電流が流れるようなパワー半導体等を用いた回路であっても、大電力動作による配線抵抗の低減と放熱性の向上とを図ることが可能であり、本発明の電子部品搭載用放熱基板を上記電動パワーステアリング装置等に用いることにより、これらの装置の更に効果的な運用が可能である。
【0197】
なお、本発明によるリードフレーム110と絶縁材130により構成される基板は、
図25から
図28の記載を参照して説明すると、例えば、次のようにして形成することが可能である。
【0198】
ここで、上記
図25から
図28は上記基板のうちリードフレーム110の厚さが異なる場合の基板の作成例を説明する図であり、
図25(A)は厚みの厚いリードフレーム110Hを形成した後にキャリア(Car)を上記フレームの両末端側に残した場合を示す上面図であり、(B)は、同様に厚みの薄いリードフレーム110Lを形成した後にキャリア(Car)を上記フレームの両末端側に残した場合を示す上面図であり、(C)は上記(B)と(C)に記載した2種類のリードフレームを上記キャリアを介して組み合わせた場合の上面図である。また、上記
図26(A)は
図25(C)のように組み合わせた2種類のリードフレームを金型に組み込んで、樹脂材などの絶縁材130と相互に組み合わせる例を図示した側断面図であり、(B)は上記金型による成形後の側断面図であり、(C)は上記組合せ後に上記キャリアを外した後の上面図である。但し上記
図26(C)では、絶縁材130は省略して表示している。また、
図27は厚みの厚いリードフレーム110Hと厚みの薄いリードフレーム110Lを基板両面に配置する場合に、絶縁材130を充填する場合の手段を示すためのものであり、
図27は、一つの基板の両面に、厚みの厚いリードフレーム110Hと厚みの薄いリードフレーム110Lが配置され、そこにFETなどの電子部品が実装される場合の上面図について下面側を透視した状態で示した図である。なお、上記
図27では、上記一つの基板の裏面側のリードフレームとFETについては点線で表示しており、上記一つの基板の両面に実装されるFETからの端子はゲート端子のみを表示している。また、上記FETは厚みの厚いリードフレーム110Hに実装されると同時に、上記FETのゲート(Gate)端子は上記基板上で厚みの薄いリードフレーム110Lに接続されるようになっている。また、
図28は、厚みの薄いリードフレームと厚みの薄いリードフレームとを組み合わせた基板(多重リードフレーム基板)を形成する場合のフローチャートを示したものである。
【0199】
本発明では、上記のように、厚みの厚いリードフレーム110Hと厚みの薄いリードフレーム110Lとを組み合わせた基板を作成する場合には、
図28に記載したフローチャートに示すように、最初に導体板などにより、リードフレームの形状に加工する(ステップS1)。そして、その際には
図25(A)及び
図25(B)に示すように、厚みの厚いリードフレーム110Hと厚みの薄いリードフレーム110Lとを別個に作成しておき、それぞれのリードフレームの両側端側には、後の加工のためにキャリアCarを形成しておく。上記キャリアCarは、上記に図示するようにリードフレームの両側端側に形成される帯状の部分であり、上記各リードフレーム110を絶縁材130に結合させる前の形態の維持や後述するリードフレーム相互間の位置合せなどのために形成されている。
【0200】
そして、上記のようにそれぞれのリードフレームが形成された後には、
図25(A)及び
図25(B)に示すような、異なる厚さの上記リードフレームの位置合せが行われる(ステップS2)。上記位置合せは、
図25(C)に示すように、上記異なる厚さのリードフレームを重ね合わせて位置を固定するものであり、例えば、上記
図25(A)及び
図25(B)に示すような2つのリードフレームのキャリアCarに、予め位置決めのための加工をしておき、その加工箇所を利用してキャリアCar部分をカシメて位置ずれを生じないように固定することで、位置ずれを防止する(ステップS3)。
【0201】
そして、次に、上記のように位置の固定を行ったリードフレームを
図26(A)に示すように、樹脂成型用金型にセットする(ステップS4)。上記樹脂成型金型は上側と下側の金型(上型、下型)から構成されており、絶縁材130を構成する樹脂などを充填する際に上記リードフレームの形状の保持を図るものである。そのため、上記リードフレームのうち厚みの薄いリードフレーム110Lの下側には、上向きのピン(高さ方向位置出しピン(P23))が併せて配設され、上記厚みの薄いリードフレーム110Lを下側から上側に向かって、押さえることができるように構成されている。
【0202】
そして、次には、上記のようにリードフレームをセットした金型に絶縁材130を構成する樹脂を流し込んで成形が行われ(ステップS5)、上記成形が行われた後に上記金型を外して(ステップS6)、
図26(B)や
図26(C)に示したように、完成した本発明の基板を得ることが可能である。なお、この際、上記ピンP23を配設した部分には絶縁材130が形成されないが、本発明による基板を用いる用途や他の構成要素との組み合わせに応じて、上記部分に新たに絶縁材130を充填してもよく、あるいは充填しない選択も可能である。また、基板表面(部品実装面)にバリが生じている場合には、必要に応じて、上記バリの除去を行って完成した基板を得る事も可能である(ステップS7)。
【0203】
また、本発明では、上述のようにして、本発明による基板を形成させることが可能であるが、更に、
図3(C)や
図5(C)に示したように、本発明の基板両面に厚さの薄いリードフレームを構成する場合には、例えば、次のように形成することが可能である。
【0204】
すなわち、上記のステップS6に記載するように、金型に上記厚みの薄いリードフレーム110Lをセットする際に、
図27に記載するように、上側の基板と下側の基板の、FETなどの部品実装面となる板面を、上記基板の板面を通る垂直線上の位置が完全には重ならないように、言い換えれば、上面から裏面を透視して見た場合に相互に完全には重ならないように、予め上記リードフレーム110Lを多少シフトして形成しておく。
【0205】
そして、そのシフトした部分、すなわち、前記のようにシフトしたことにより前記電子部品搭載用放熱基板の表面から裏面を透視して見た場合に相互に完全に重ならない部分を利用して、
図27に示すように、下側(裏面側)のリードフレーム110Lを上記上側の金型から新たに設けた下向きのピンP23´により保持し、同様に、
図27(B2)に示すように、上記シフトした部分を利用して、上側(表面側)のリードフレーム110Lを上記下側の金型に設けた上向きのピンP23により保持するような構造として、上記樹脂などからなる絶縁材130を充填することが可能である。
【0206】
そのため、このような形成方法により、上記下向きのピンP23´と上記上向きのピンP23を用いて、上記基板の表面側と裏面側にそれぞれ厚みの薄いリードフレーム110Lを保持する事が可能となり、上記絶縁材130を充填することで、本発明の基板両面に厚みの薄いリードフレーム110Lが配置された構成を実現する事が可能である。