(58)【調査した分野】(Int.Cl.,DB名)
請求項1または2に記載の美容剤用磁性粉において、該美容剤用磁性粉をメタノールに分散させて得られる上澄み液の、波長474nmにおける透過率が90%以上であることを特徴とする美容剤用磁性粉。
【発明を実施するための形態】
【0018】
上記美容剤用磁性粉は、例えば、ペースト状や液状等の、流動性を有する美容剤に混合されて用いられる。美容剤は、種々の美容成分を含んでおり、例えば肌に栄養分を補給したり、肌の汚れ成分を浮き上がらせたりする等の美容効果を奏し得るよう構成されている。また、美容剤は、得ようとする美容効果に応じて、美容剤用磁性粉が肌から磁力により吸着除去される際にその少なくとも一部が肌表面に残留するように構成されていてもよく、美容剤用磁性粉に伴って肌表面からほとんど全部が除去されるように構成されていてもよい。
【0019】
上記美容剤用磁性粉において、体積平均粒径は、レーザー回折散乱法により得られた粒径分布において、体積分布モード、ふるい下表示により得られる累積50%粒子径(メジアン径)として算出することができる。
【0020】
また、粒径が37μm未満である粒子(以下、「小径粒子」ということがある。)の含有量は、例えば、呼び寸法37μm(400メッシュ)の標準ふるいを通過できる粒子の量として測定することができる。
【0021】
また、粒径が105μm以上である粒子(以下、「大径粒子」ということがある。)の含有量は、例えば、呼び寸法105μm(145メッシュ)の標準ふるいを通過できない粒子の量として測定することができる。
【0022】
体積平均粒径が50μm未満の場合には、粒径が過度に小さい粒子の含有量が多い粒径分布となりやすい。個々の粒子に作用する磁力は粒径が小さいほど弱くなる。そのため、粒径が過度に小さい粒子を多く含有する場合には、美容剤用磁性粉全体に作用する磁力が弱くなりやすく、美容剤用磁性粉が肌から吸着除去されにくくなるおそれがある。
【0023】
しかしながら、体積平均粒径を50μm以上に制御するだけでは、粒径が過度に小さい粒子の含有量を確実に減少させることが困難である。そのため、体積平均粒径を50μm以上に制御することに加えて、上述のように、小径粒子の含有量を15質量%以下に規制することが重要である。小径粒子の含有量を15質量%以下に規制することにより、粒径の過度に小さい粒子の含有量を確実に減少させることができる。
【0024】
一方、体積平均粒径が75μmを超える場合には、粒径が過度に大きい粒子の含有量が多い粒径分布となる。そのため、この場合には、美容剤用磁性粉を混合した美容剤の肌触りが悪くなる等、使用感が悪化するおそれがある。
【0025】
しかしながら、体積平均粒径を75μm以下に制御するだけでは、粒径が過度に大きい粒子の含有量を確実に減少させることが困難である。そのため、体積平均粒径を75μm以下に制御することに加えて、上述のように、大径粒子の含有量を5質量%以下に規制することが重要である。大径粒子の含有量を5質量%以下に規制することにより、粒径が過度に大きい粒子の含有量を確実に減少させることができる。
【0026】
以上のように、美容剤用磁性粉の体積平均粒径を上記特定の範囲に制御した上で、さらに小径粒子の含有量及び大径粒子の含有量の双方を規制することにより、適切な大きさの粒子の含有量を多くした最適な粒径分布を実現することができる。その結果、美容剤用磁性粉の吸着除去性能及び肌触りの双方の特性を最適化することができる。
【0027】
上記美容剤用磁性粉を構成するフェライトとしては、スピネル型フェライトや、マグネトプランバイト型フェライト、ガーネット型フェライト、ペロブスカイト型フェライト等がある。上記美容剤用磁性粉は、フェライトに分類される化合物の中から選択される1種類の化合物のみからなるものであってもよく、2種類以上の化合物が含まれるものであってもよい。
【0028】
上記美容剤用磁性粉に用いるフェライトとしては、飽和磁化が高く、残留磁化及び保磁力の両方が低いソフトフェライトを用いることが好ましい。ソフトフェライトの具体例としては、(MO)
x(Fe
2O
3)
y(但し、x+y=100mol%であり、MはFe、Mn、Mg、Sr、Ca、Ba、Cu、Zn、Ni、Li、Co等の金属元素から選ばれる1種または2種以上の元素である。)で表される組成式を有するスピネル型フェライトが挙げられる。また、スピネル型フェライトの中でも、飽和磁化の高いフェライトを用いることがより好ましい。飽和磁化を高くする観点からは、上記一般式におけるMをFeとしたマグネタイト(Fe
3O
4)を主成分として含有することがさらに好ましい。
【0029】
また、上記美容剤用磁性粉は、飽和磁化が80Am
2/kg以上であることが好ましい。この場合には、美容剤用磁性粉の磁化を十分大きくでき、美容剤用磁性粉に作用する磁力をより大きくすることができる。その結果、上記美容剤用磁性粉は、肌からの吸着除去をより効率的に行うことができるものとなる。
【0030】
また、上記美容剤用磁性粉は、これをメタノールに分散させて得られる上澄み液の、波長474nmにおける透過率が90%以上であることが好ましい。上記上澄み液の透過率は、粒径の極めて小さい粒子の含有量の指標となる値であり、透過率が高いほどこのような粒子の含有量が少ないことを示す。上澄み液の透過率が90%以上の場合には、上記美容剤用磁性粉は、このような粒子の含有量がより少ないものとなる。その結果、上記美容剤用磁性粉は、肌からの吸着除去をより効率的に行うことができるものとなる。
【0031】
また、上記美容剤用磁性粉は、見掛密度が1.95〜2.65g/cm
3であ
る。
【0032】
美容剤用磁性粉の見掛密度は、美容剤用磁性粉を構成する粒子の平均的な形状の指標として用いられる値であり、見掛密度が高いほど粒子の平均的な形状が真球に近づくことを示す。すなわち、見掛密度が高い美容剤用磁性粉は、略球状を呈し、凹凸が比較的小さい粒子を多く含有するものとなりやすい。一方、見掛密度が低い美容剤用磁性粉は、略楕円体状や塊状等の非球状を呈し、凹凸が比較的大きい粒子を多く含有するものとなりやすい。
【0033】
また、見掛密度が高い美容剤用磁性粉は、見掛密度が低い美容剤用磁性粉に比べて個々の粒子の質量が大きくなりやすい。そのため、美容剤用磁性粉全体に作用する磁力が大きくなりやすい。この原因としては、例えば、見掛密度が高くなると、粒子内部に存在する空洞の体積が小さくなる等が考えられる。
【0034】
美容剤用磁性粉の見掛密度が2.65g/cm
3を超える場合には、過度に質量の大きな粒子の含有量が多くなるおそれがある。そのため、美容剤に混合した状態で均一に分散させにくくなるおそれがあり、場合によっては美容剤用磁性粉が保管中等に沈降することも考えられる。
【0035】
一方、見掛密度が1.95g/cm
3未満となる場合は、粒子の凹凸形状が過度に大きくなるおそれがある。これにより、美容剤の粘度が高くなるおそれがあり、場合によっては肌に塗布しにくくなることも考えられる。
【0036】
見掛密度が1.95g/cm
3未満の場合には、粒子の結晶成長が不十分な可能性と、粒子の結晶成長が過度に進んだ可能性との2つの可能性が考えられる。粒子の結晶成長が不十分な場合には、上述したように凹凸が過度に大きな形状となるおそれがあるほか、粒子の強度が低くなるおそれがあるため、場合によっては使用中に粒子の割れや欠けが発生することが考えられる。このような、過度に大きな凹凸形状や、粒子の割れあるいは欠けの発生は、肌触りを悪化させたり、粒子に作用する磁力が低くなったりする原因となるため、好ましくない。
【0037】
また、粒子の結晶成長が過度に進んだ場合には、粒子同士が過度に融着しやすくなり、融着によって上述したように粒子の凹凸が過度に大きくなるおそれがある。また、これに伴い、融着された粒子が解砕される際に、解砕によって生じる粒子の凹凸が過度に大きくなるおそれがある。そのため、この場合には、美容剤を肌に塗布する際の広がり易さが悪化したり、塗布する際の肌触りが悪化したりするなど、使用感を悪化させるおそれがある。
【0038】
上記美容剤用磁性粉は、空気透過法を用いて測定したときの比表面積が200〜450cm
2/gであることが好ましい。美容剤用磁性粉の比表面積は、粒子の表面に形成される細孔等の微細構造の指標であり、比表面積の値が大きいほど細孔等が多く形成されることを示す。
【0039】
美容剤用磁性粉の比表面積が200cm
2/g未満の場合には、細孔等の微細構造が十分に形成されていない可能性がある。そのため、粒子の表面に美容剤が保持されにくくなり、美容剤に分散しにくくなるおそれがある。一方、美容剤用磁性粉の比表面積が450cm
2/gを超える場合には、微細構造が過度に形成されている可能性があり、美容成分が微細構造に入り込むおそれがある。そのため、肌に直接作用し得る美容成分の量が減少し、美容効果が低下するおそれがある。
【0040】
美容剤用磁性粉は、表面に美容成分を結合させたり、コーティングを施したりする等の手法により、美容剤用磁性粉が別の機能を発揮し得るように構成してもよい。美容剤用磁性粉に付与する機能の例としては、界面活性剤等を用いて美容剤用磁性粉の分散性を改善したり、皮脂を吸着する樹脂成分等を用いて美容剤用磁性粉とともに肌の皮脂を吸着除去できるようにする等が考えられる。
【0041】
このように、コーティング剤等の表面改質剤により美容剤用磁性粉の表面を改質する場合には、美容剤用磁性粉が適度に大きな凹凸形状が付与された粒子を多く含むことが好ましい。適度に大きな凹凸形状を有する粒子は、凹凸形状が小さい場合に比べて表面積が大きくなるため、表面改質剤を保持しやすい。そのため、このような粒子を多く含有する美容剤用磁性粉は、表面改質剤による表面改質の効果をより得やすくなる。一方、凹凸形状が小さい略球状等の粒子を多く含有する場合には、個々の粒子に表面改質剤が付着しにくくなり、表面改質の効果を得にくくなるおそれがある。
【0042】
表面改質剤の効果をより得やすくするためには、見掛密度が1.95〜2.65g/cm
3であることが好ましく、空気透過法を用いて測定したときの比表面積が200〜450cm
2/gであることが好ましい。見掛密度及び比表面積の値は、いずれか一方が上記特定の範囲であれば表面改質の効果を得やすくなり、双方ともに上記特定の範囲を満たすことにより、表面改質の効果を一層得やすくなる。
【0043】
なお、上記美容剤用磁性粉は、フェライトの他に、原料や製造プロセス等に由来する不可避不純物が含まれる。不可避不純物としては、例えば鉛やヒ素が挙げられるが、これらの含有量は、通常、鉛:40ppm以下、ヒ素:10ppm以下に規制される。
【0044】
次に、上記美容剤用磁性粉の製造方法について説明する。上記美容剤用磁性粉の製造方法としては、従来公知の方法を採用することができる。美容剤用磁性粉の製造方法の一態様としては、所定の原料及び副原料を粉砕、混合した後造粒し、得られた造粒物を焼成し、さらに造粒物を解砕した後、分級処理を行う方法が挙げられる。
【0045】
美容剤用磁性粉の原料としては、フェライトを含む天然鉱石や、工業的に製造された金属化合物等を用いることができる。
【0046】
例えばフェライトとしてマグネタイト(Fe
3O
4)を用いる場合には、磁鉄鉱を含む天然鉱石を原料として使用できる。また、工業的に製造されたヘマタイト(Fe
2O
3)を還元して得られるマグネタイトを原料としてもよい。ヘマタイトを還元する方法を用いる場合には、得られるマグネタイトの純度や組成を容易に調整することができる。その結果、美容剤用磁性粉の品質をより容易に安定させることができる。
【0047】
ヘマタイトは、例えば、炭素成分と共存した状態で加熱することによりマグネタイトに還元される。この反応は、理論的には以下の反応式に従うものとなる。
6Fe
2O
3 + C → 4Fe
3O
4 + CO
2
従って、ヘマタイトを完全にマグネタイトに還元するためには、100質量部のヘマタイトに対して少なくとも1.25質量部の炭素が必要となる。実際の製造条件においては、上記の反応式に従った配合ではヘマタイトが完全には還元されない場合があるため、炭素を1.25質量部よりも多く配合することが好ましい。
【0048】
マグネタイト以外のフェライトを用いる場合には、工業的に製造されたヘマタイトと、所望の特性に応じて選択された金属化合物とを混合した後、焼成時等に反応させる方法を用いることができる。具体的には、Mnフェライトを製造する場合には、上記金属化合物として、炭酸マンガンや四酸化三マンガン等のマンガン化合物を用いることができる。また、Mgフェライトを製造する場合には、水酸化マグネシウムや酸化マグネシウム等のマグネシウム化合物を用いることができる。
【0049】
粉砕、混合した原料等から造粒物を調製する方法は、乾式による方法であっても、湿式による方法であってもよい。湿式法を用いる場合には、例えば、原料と水を混合し、ボールミル等で粉砕した後、必要に応じて分散剤、バインダー等を添加して粘度を調整し、スラリー状の混合物を得る。その後、スプレードライヤーを用いて混合物の造粒を行うことができる。この場合、バインダーとしては、ポリビニルアルコールやポリビニルピロリドンを用いることが好ましい。
【0050】
また、造粒物の焼成は、通常、1100〜1400℃の温度で1〜24時間加熱することにより行われる。焼成に用いる炉は、ロータリー式電気炉、バッチ式電気炉、トンネル式電気炉等の公知の炉を用いることができる。また、焼成中の雰囲気は、狙いの酸化度や磁気特性を考慮して適宜選択することができる。
【0051】
焼成により得られた焼成物を解砕した後、分級する方法としては、例えば風力分級やメッシュろ過法、沈降法等の公知の方法を用いることができる。乾式回収を行う場合には、サイクロン等で回収することも可能である。また、これらの分級方法を複数組み合わせることも可能である。これらの方法を用いて分級処理を行うことにより、美容剤用磁性粉の粒径分布を所望の分布に調整することができる。
【0052】
また、分級処理の前または後に、必要に応じて磁力選鉱を行ってもよい。磁力選鉱を行うことにより、磁化率の小さい粒子を除去することができる。
【実施例】
【0053】
上記美容剤用磁性粉の実施例を以下に説明する。本例の美容剤用磁性粉は、強磁性を示すフェライトより形成されている。また、表1に示すように、本例の美容剤用磁性粉は、レーザー回折散乱法により得られる粒径分布から求めた体積平均粒径が50〜75μmであるとともに、粒径が37μm未満である粒子(小径粒子)の含有量が15質量%以下であり、かつ、粒径が105μm以上である粒子(大径粒子)の含有量が5質量%以下である。
【0054】
美容剤用磁性粉は、
図1に示すように、肌に塗布するペースト状の美容剤1に混合して用いられる。本例の美容剤1は、リムーバー2の磁力発生面20から発生する磁力により美容剤用磁性粉が肌から吸着除去された後、肌表面に美容成分が残留するように構成されている。
【0055】
本例においては、以下の製造方法により、表1に示す種々の美容剤用磁性粉(試料No.1〜No.14)を作製した。
【0056】
<マグネタイトを主成分とする美容剤用磁性粉の製造方法>
ヘマタイト(Fe
2O
3)を粉砕した粉末に対し、固形分が55質量%となるように水を加えてスラリーを調製した。次いで、得られたスラリーの固形分に対して1質量%のポリビニルアルコールと、0.9質量%のカーボンブラックと、0.5質量%のポリカルボン酸塩とをスラリーに加えた後、アトライターを用いて得られたスラリーを1時間攪拌した。その後、スプレードライヤーを用いてスラリーを球状に造粒し、ジャイロシフターを用いて得られた造粒物の粒度調整を行った。
【0057】
次いで、粒度調整を行った球状の造粒物を1320℃で3時間加熱することにより原料のヘマタイトを還元し、マグネタイトを主成分とする焼成物を得た。なお、造粒物の加熱はトンネル式電気炉を用いて窒素雰囲気下にて行った。
【0058】
得られた焼成物を解砕した後、ジャイロシフターと気流分級機とを組み合わせて用いることにより分級処理を行い、粒度分布を調整した。その後、磁力選鉱を行って磁化率の大きい粒子を選別し、マグネタイトを主成分とする美容剤用磁性粉(試料No.1)を得た。
【0059】
また、試料No.1の製造方法において、添加するカーボンブラックの量、加熱条件及び分級条件を適宜変更することにより試料No.3〜No.12を得た。
【0060】
<Mnフェライトを主成分とする美容剤用磁性粉の製造方法>
ヘマタイト及び四酸化三マンガンをMnO:20mol%、Fe
2O
3:80mol%となるように秤量し、湿式のメディアミルで1時間粉砕してスラリーを得た。得られたスラリーをスプレードライヤーにて乾燥し、球状の造粒物を得た。次いで、ジャイロシフターを用いて得られた造粒物の粒度調整を行った後、950℃で2時間加熱することにより仮焼成を行った。
【0061】
その後、仮焼成後の造粒物に対して固形分が55質量%となるように水を加えた後、アトライターを用いて1時間粉砕及び混合を行い、スラリーを調製した。さらに、得られたスラリーの固形分に対して2質量%のポリビニルアルコールと、適量の分散剤とを添加した。その後、スプレードライヤーによりスラリーを球状に造粒し、ジャイロシフターを用いて粒度調整を行った。
【0062】
次いで、粒度調整を行った球状の造粒物を1310℃で3時間加熱することによりヘマタイトと四酸化三マンガンとを反応させ、Mnフェライトを主成分とする焼成物を得た。なお、造粒物の加熱はトンネル式電気炉を用いて窒素雰囲気下にて行った。
【0063】
得られた焼成物を解砕した後、ジャイロシフターと気流分級機とを組み合わせて用いることにより分級処理を行い、粒度分布を調整した。その後、磁力選鉱を行って磁化率の大きい粒子を選別し、Mnフェライトを主成分とする美容剤用磁性粉(試料No.2及びNo.14)を得た。
【0064】
試料No.13としては、市販されている体積平均粒径約80μmの球状鉄粉を用いた。
【0065】
上述の方法により得られた各試料を用いて、以下の方法により各種特性の評価を行った。
【0066】
<体積平均粒径>
試料に0.2%ヘキサメタリン酸ナトリウム水溶液を加えた後、ウルトラソニックホモジナイザー(超音波工業社製、UH−3C)を用いて1分間の超音波処理を行って美容剤用磁性粉の分散液を調製した。この分散液をマイクロトラック粒度分析計(日機装株式会社製、Model9320−X100)に導入し、屈折率1.81、温度25±5℃、湿度55±15%の条件下で測定を行い、レーザー回折散乱法による粒径分布を得た。得られた粒径分布から、体積分布モード、ふるい下表示での累積50%粒子径を算出し、これを体積平均粒径(メジアン径)とした。
【0067】
<小径粒子の含有量及び大径粒子の含有量>
JIS Z 8801に規定される標準ふるいを用いて、JIS H 2601に準じた方法により試料の分級を行った。これにより、呼び寸法37μm(400メッシュ)の標準ふるいを通過した粒子(小径粒子)の含有量及び呼び寸法105μm(145メッシュ)の標準ふるいを通過しなかった粒子(大径粒子)の含有量を測定した。
【0068】
<見掛密度>
JIS Z 2504に規定される金属粉の見掛密度試験方法に準じて、以下の方法により測定を行った。見掛密度の測定装置は、孔径2.5
+0.2/0mmのオリフィスを有する漏斗、コップ、漏斗支持器、支持棒及び支持台からなるものを用いた。まず、少なくとも150gの試料を漏斗に注ぎ、漏斗から流れ出す試料を漏斗の下方に設置したコップに直接流し入れた。コップが試料で満たされた後、試料がコップからあふれ出した時点で直ちに試料の流入を止めた。
【0069】
次いで、非磁性材料から形成された水平なヘラをコップの開口面に沿って水平に移動させ、コップの上に盛り上がった試料をかき取った。その後、コップの側面を軽く叩いて試料を安定させ、コップの側面に付着した試料を拭き取った後、秤量200g、感量50mgの天秤を用いてコップ内の試料の重量を秤量した。得られた重量の値に0.04を乗じ、この値をJIS Z 8401に規定される数値の丸め方を用いて小数点以下第2位に丸めた値を見掛密度(g/cm
3)とした。
【0070】
<飽和磁化、残留磁化及び保磁力>
積分型B−Hトレーサー((株)理研電子製、BHU−60型)を使用して以下の手順で測定した。まず、電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを入れ、試料を4πIコイル内に入れる。次いで、電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、X軸にH出力をとり、Y軸に4πIコイルの出力をとったヒステリシスループを記録紙に描く。このヒステリシスループから飽和磁化、残留磁化及び保磁力を読み取った。飽和磁化、残留磁化及び保磁力の測定は、内径7mmφ±0.02mm、高さ10mm±0.1mmのセルに約1gの試料を充填し、4πIコイル:巻数30回、印加磁場:3000エルステッドの条件で行った。
【0071】
<上澄み透過率>
15gの試料を秤量し、これを50mlのサンプル瓶に入れた。このサンプル瓶に20mlのメタノールを加えて蓋をした後、回転式撹拌機を用いて150rpmで20分間撹拌を行った。撹拌が完了した後、サンプル瓶の底に磁石を当接させて試料を吸着させ、この状態でサンプル瓶を手で3回振り混ぜた。その後、サンプル瓶の上澄み液を3ml採取し、可視分光光度計(オガワ精機社製、Model6100)を用いて波長474nmにおける上澄み液の透過率を測定した。なお、透過率の測定におけるブランクサンプルとしては、メタノールを用いた。
【0072】
<比表面積>
試料をプラスチック製試料筒に充填した後、粉体比表面積測定装置(島津製作所製、SS−100型)を用いて空気透過法による比表面積を測定した。より具体的な試料の充填方法及び測定手順は、以下の通りである。
【0073】
(1)試料の充填
プラスチック製試料筒にふるい板を入れ、更にその上にろ紙を1枚敷いた状態で試料筒をパウダーテスター(ホソカワミクロン社製)のタップ架台に設置した。次いで、試料を試料筒の1/3程度まで注ぎ入れ、パウダーテスターを作動させて試料筒を60秒間タップした。タップ後、試料筒の2/3程度まで試料を注ぎ足し、再度パウダーテスターを作動させて試料筒を60秒間タップした。その後、試料筒を満たすまで試料を注ぎ足し、パウダーテスターを作動させて試料筒を60秒間タップした。3回目のタップが完了した後、試料筒に付着した余分な試料を刷毛やワイパー等を用いて除去し、試料の充填を完了した。
【0074】
(2)比表面積の測定
試料筒の下部にワセリンを塗布し、この部分を測定管に接続した後、測定管に純水を注入した。次いで、測定装置の下部流出口のコックを開いて純水を測定管から流出させ、測定管内の水位が20cc分だけ低下するまでの時間tを測定した。これにより得られた、20ccの空気が試料充填層を透過するまでに要する時間t(sec)と、試料管内に充填した試料の重量W(g)とをKozeny−Carmanの式(下記式(1)参照)に代入し、試料の比表面積Swを求めた。
【0075】
【数1】
【0076】
ここで、式(1)におけるεは、下記式(2)により求められる試料充填層の空隙率である。
【0077】
【数2】
【0078】
なお、上記式(1)及び式(2)におけるその他の記号の意味は以下の通りである。
試料の比表面積:Sw(cm
2/g)
試料の密度:ρ(g/cm
3)
空気の粘性係数:η(g/cm・sec)
試料充填層の厚さ:L(cm)
試料充填層を透過した空気の体積:Q(cc)
試料充填層の両端間の圧力差:ΔP(g/cm
2)
試料充填層の断面積:A(cm
2)
【0079】
以上の方法により評価した美容剤用磁性粉の各種特性を表1に示した。
【0080】
【表1】
【0081】
次に、美容剤用磁性粉を混合した美容剤の特性評価を以下の方法により行った。
【0082】
なお、上記特性評価には、以下の組成を有する美容剤を用いた。
・美容剤用磁性粉 60.0質量%
・グリセリン 20.0質量%
・メチルパラベン 0.38質量%
・デカメチルシクロペンタシロキサン 1.3質量%
・トリオクチルグリセリル 3.8質量%
・2−エチルヘキサン酸セチル 3.8質量%
・ベントナイト 0.19質量%
・ポリオキシエチレン・メチルポリシロキサン共重合体 2.25質量%
・モノラウリン酸ポリグリセリル 0.25質量%
・ポリアクリル酸ナトリウム 0.01質量%
・水酸化ナトリウム 0.03質量%
・アスコルビン酸リン酸ナトリウム 0.13質量%
・香料 0.13質量%
・水 残部
【0083】
<吸着除去性>
水平面に載置した平板状に美容剤用磁性粉を混合した美容剤を塗布した。ネオジム磁石を内蔵した試験ヘッドを塗布した美容剤の上方から近づけ、美容剤用磁性粉が試験ヘッドに吸着された時点における平板から試験ヘッドまでの高さを測定し、その値を表2中の「吸着距離」の欄に示した。表2に記載した値は、大きいほど美容剤用磁性粉が吸着除去されやすいことを示す。なお、試験ヘッドに内蔵したネオジム磁石は、直径25mm、高さ約8mmの円筒状であり、磁石単体での表面磁束密度は266mTであった。また、ネオジム磁石の上方を向いた端面に円板状を呈する厚さ2mmのヨーク材を配して用いた。
【0084】
<肌触り>
美容剤を手の甲に塗布したときの肌触りを評価し、表2に示した。なお、表2に示す各記号の意味は、以下の通りである。
A:ざらつき感は全く感じられない
B:ざらつき感はほとんど感じられない
C:ざらつき感を感じるが、塗り広げることはできる
D:ざらつき感を感じ、塗り広げることができない
【0085】
<色調>
測色色差計(日本電色工業株式会社製、型式「ZE 2000」)を用いて美容剤用磁性粉のL値(明度)、a値(緑〜赤の色度)、b値(青〜黄の色度)を測定し、各々の値を表2に示した。なお、測定には、5gの美容剤用磁性粉を用いた。
【0086】
【表2】
【0087】
表2より知られるように、体積平均粒径、大径粒子の含有量及び小径粒子の含有量を上記特定の範囲に制御した試料は、吸着除去性、肌触り、色調のいずれの特性にも優れ、美容剤用として好適なものとなった。