特許第6365069号(P6365069)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社IHIの特許一覧

特許6365069エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム
<>
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000011
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000012
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000013
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000014
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000015
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000016
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000017
  • 特許6365069-エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム 図000018
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6365069
(24)【登録日】2018年7月13日
(45)【発行日】2018年8月1日
(54)【発明の名称】エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラム
(51)【国際特許分類】
   H02J 3/38 20060101AFI20180723BHJP
   H02J 3/00 20060101ALI20180723BHJP
   G06Q 50/06 20120101ALI20180723BHJP
【FI】
   H02J3/38 120
   H02J3/00 170
   G06Q50/06
【請求項の数】9
【全頁数】17
(21)【出願番号】特願2014-153182(P2014-153182)
(22)【出願日】2014年7月28日
(65)【公開番号】特開2016-32337(P2016-32337A)
(43)【公開日】2016年3月7日
【審査請求日】2017年5月25日
(73)【特許権者】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100176245
【弁理士】
【氏名又は名称】安田 亮輔
(72)【発明者】
【氏名】小熊 祐司
(72)【発明者】
【氏名】前田 宗彦
【審査官】 稲葉 崇
(56)【参考文献】
【文献】 特開2006−304402(JP,A)
【文献】 特開2006−178626(JP,A)
【文献】 特許第5496431(JP,B1)
【文献】 特開2007−336621(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 3/00−5/00
H02J 7/00−7/12
H02J 7/34−7/36
G06Q 50/06
(57)【特許請求の範囲】
【請求項1】
再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおける、エネルギーの需給計画を最適化するエネルギーマネジメントシステムであって、
無制約問題とされた目的関数の最適化問題を解くことにより、前記需給計画を計算する需給計画計算部と、
前記目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、前記需給計画を修正する需給計画修正部と、
を備えるエネルギーマネジメントシステム。
【請求項2】
前記需給計画計算部は、前記需給計画を計算する際に前記感度行列を計算し、
前記需給計画修正部は、前記需給計画計算部によって計算された当該感度行列と、前記発電機、前記蓄電装置および前記負荷の少なくとも1つに関する現在値または予測値を含むパラメータの変化量とに基づいて前記需給計画の最適解の修正量を求めることにより、前記需給計画を修正する、請求項1に記載のエネルギーマネジメントシステム。
【請求項3】
前記需給計画修正部が前記需給計画を修正するよりも高い頻度で、前記発電機、前記蓄電装置および前記負荷の少なくとも1つに関する現在値または予測値を含むパラメータを取得するパラメータ更新部を更に備え、
前記需給計画修正部は、前記パラメータ更新部によって取得された最新のパラメータを用いて前記最適解の変化量を計算する、請求項1または2に記載のエネルギーマネジメントシステム。
【請求項4】
前記需給計画は、前記蓄電装置の各時刻における充放電電力の最適解を含む、請求項1〜3のいずれか一項に記載のエネルギーマネジメントシステム。
【請求項5】
前記マイクログリッドは、化石燃料により発電を行う原動機を更に備えており、
前記需給計画は、前記原動機の各時刻における発電電力の最適解を含む、請求項1〜4のいずれか一項に記載のエネルギーマネジメントシステム。
【請求項6】
前記需給計画修正部によって用いられるパラメータは、前記発電機、前記原動機、前記蓄電装置および前記負荷の少なくとも1つに関する現在値または予測値を含む、請求項5に記載のエネルギーマネジメントシステム。
【請求項7】
前記最適化問題は、制約領域からの逸脱量がペナルティとして原目的関数に加算された、拡大目的関数の無制約最適化問題である、請求項1〜6のいずれか一項に記載のエネルギーマネジメントシステム。
【請求項8】
再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおける、エネルギーの需給計画を最適化する電力需給計画最適化方法であって、
エネルギーマネジメントシステムが、無制約問題とされた目的関数の最適化問題を解くことにより、前記需給計画を計算するステップと、
前記エネルギーマネジメントシステムが、前記目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、前記需給計画を修正するステップと、
を含む電力需給計画最適化方法。
【請求項9】
再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおけるエネルギーの需給計画を、エネルギーマネジメントシステムに最適化させる電力需給計画最適化プログラムであって、
前記エネルギーマネジメントシステムを、
無制約問題とされた目的関数の最適化問題を解くことにより、前記需給計画を計算する需給計画計算部と、
前記目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、前記需給計画を修正する需給計画修正部と、
して機能させる電力需給計画最適化プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラムに関する。
【背景技術】
【0002】
特許文献1に記載されるように、太陽光発電機である発電システムと電気負荷とを備え、外部電力系統に接続された電力供給システムが知られている。このシステムは、充放電計画制御部を備えている。充放電計画制御部は、電力負荷の使用履歴に基づいて算出される電気負荷の予測電力量と、天気予測によって予測される発電システムの予測発電量とを算出する。充放電計画制御部は、電気負荷の消費電力量の時間毎の推移を示す予測消費スケジュールと、発電システムの発電量の時間毎の推移を示す予測発電スケジュールとを算出する。充放電計画制御部は、予測電力量と予測発電量とに基づいて、予測蓄電量を決定し、予測消費スケジュールと予測発電スケジュールとに基づいて、充放電計画を決定する。
【0003】
充放電計画制御部は、充放電計画に基づく予測値と、蓄電量の推移に基づく実測値とを比較する。充放電計画制御部は、予測値と実測値との差を算出し、その差が許容値の範囲内であるか否かを判断する。充放電計画制御部は、その差が許容値の範囲外である場合、予測消費スケジュールと予測発電スケジュールとを再び算出し、充放電計画を新たに決定する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2012−222860号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記したように、従来のシステムでは、予測値と実測値との差が許容値の範囲内であるか否かを判断している。この手法をマイクログリッドのエネルギーの需給計画に適用した場合、予測値と実測値との差(ずれ)の許容値を大きくすると、その分、需給計画に対する実測値の乖離を許すことになる。よって、経済性が損なわれるおそれがある。一方で、予測値と実測値との差(ずれ)の許容値を小さくすると、最適化計算を頻繁に行うことになり、計算の負荷が大きくなる。特に、マイクログリッドの規模が大きい場合には、高い計算能力を持つ計算機が必要になる。このように、従来の技術では、需給計画を高速で修正することは難しい。
【0006】
本発明は、計算の負荷を低減することにより、マイクログリッドにおけるエネルギーの需給計画を高速で修正することができるエネルギーマネジメントシステム、電力需給計画最適化方法および電力需給計画最適化プログラムを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおける、エネルギーの需給計画を最適化するエネルギーマネジメントシステムであって、無制約問題とされた目的関数の最適化問題を解くことにより、需給計画を計算する需給計画計算部と、目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、需給計画を修正する需給計画修正部と、を備える。
【0008】
このエネルギーマネジメントシステムによれば、需給計画計算部によって、マイクログリッドにおけるエネルギーの需給計画が計算される。この需給計画は、無制約問題とされた目的関数の最適化問題を解くことによって計算される。通常、需給計画の最適化問題は制約条件を伴うが、適当な手法を用いて無制約問題に還元し、最適解を求めることができる。需給計画修正部によって、感度行列を用いて、需給計画が修正される。この感度行列は、既得の最適解近傍における目的関数の二次の近似関数から求められる。感度行列を用いることにより、パラメータの変化量に基づく最適解の変化量が計算され得る。よって、需給計画を修正するたびに最適化問題を解く必要はなく、感度行列を用いた需給計画の修正が可能である。これにより、計算の負荷が低減される。したがって、需給計画を高速で修正することができる。
【0009】
いくつかの態様において、需給計画計算部は、需給計画を計算する際に感度行列を計算し、需給計画修正部は、需給計画計算部によって計算された当該感度行列と、発電機、蓄電装置および負荷の少なくとも1つに関する現在値または予測値を含むパラメータの変化量とに基づいて需給計画の最適解の修正量を求めることにより、需給計画を修正する。この場合、需給計画の計算時に、最適解が計算されると同時に感度行列が計算される。需給計画を修正する際、既に求められた感度行列を用いることができる。よって、簡易かつ高速に需給計画を修正することができる。
【0010】
いくつかの態様において、需給計画修正部が需給計画を修正するよりも高い頻度で、発電機、蓄電装置および負荷の少なくとも1つに関する現在値または予測値を含むパラメータを取得するパラメータ更新部を更に備え、需給計画修正部は、パラメータ更新部によって取得された最新のパラメータを用いて最適解の変化量を計算する。この場合、需給計画が修正されるよりも高い頻度で取得されたパラメータの中で、最新のパラメータが用いられる。よって、需給計画の修正精度が高められる。
【0011】
いくつかの態様において、需給計画は、蓄電装置の各時刻における充放電電力の最適解を含む。この場合、最適解として、蓄電装置の充放電計画が計算されるので、蓄電装置の効率的な運転が可能になる。
【0012】
いくつかの態様において、マイクログリッドは、化石燃料により発電を行う原動機を更に備えており、需給計画は、原動機の各時刻における発電電力の最適解を含む。この場合、最適解として、原動機の発電計画が計算されるので、原動機の効率的な運転が可能になる。
【0013】
いくつかの態様において、需給計画修正部によって用いられるパラメータは、発電機、原動機、蓄電装置および負荷の少なくとも1つに関する現在値または予測値を含む。この場合、マイクログリッドを構成する各機器の状態が反映された、妥当な需給計画が計算される。
【0014】
いくつかの態様において、最適化問題は、制約領域からの逸脱量がペナルティとして原目的関数に加算された、拡大目的関数の無制約最適化問題である。この場合、原目的関数の最適化問題が制約条件を伴っていても、無制約問題を容易に作成することができる。
【0015】
本発明は、再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおける、エネルギーの需給計画を最適化する電力需給計画最適化方法であって、エネルギーマネジメントシステムが、無制約問題とされた目的関数の最適化問題を解くことにより、需給計画を計算するステップと、エネルギーマネジメントシステムが、目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、需給計画を修正するステップと、を含む。この電力需給計画最適化方法によれば、上記したエネルギーマネジメントシステムと同様の作用効果が奏される。
【0016】
本発明は、再生可能エネルギーにより発電を行う発電機と蓄電装置と負荷とを備えると共に外部電力系統に接続されたマイクログリッドにおけるエネルギーの需給計画を、エネルギーマネジメントシステムに最適化させる電力需給計画最適化プログラムであって、エネルギーマネジメントシステムを、無制約問題とされた目的関数の最適化問題を解くことにより、需給計画を計算する需給計画計算部と、目的関数の既得の最適解近傍における二次の近似関数から求められる感度行列を用いて、需給計画を修正する需給計画修正部と、して機能させる。この電力需給計画最適化プログラムによれば、上記したエネルギーマネジメントシステムおよび電力需給計画最適化方法と同様の作用効果が奏される。
【発明の効果】
【0017】
本発明によれば、計算の負荷を低減することにより、マイクログリッドにおけるエネルギーの需給計画を高速で修正することができる。
【図面の簡単な説明】
【0018】
図1】本発明の一実施形態のエネルギーマネジメントシステムが適用された電力供給システムの概略構成を示すブロック図である。
図2図1中のエネルギーマネジメントシステムの機能ブロック図である。
図3図2のエネルギーマネジメントシステムにおいて実行される処理を示すフローチャートである。
図4】(a)は図3中のパラメータ更新処理を示すフローチャート、(b)は図3中の需給バランス処理を示すフローチャート、(c)は図3中の需給計画処理を示すフローチャートである。
図5図4(b)中の修正需給計画の計算処理を示すフローチャートである。
図6図3に示される3つの処理の実行周期と参照データを示す概念図である。
図7】外点ペナルティ法の概念図である。
図8】本発明の一実施形態の電力需給計画最適化プログラムが格納された記憶媒体を示す図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。
【0020】
図1および図2を参照して、本実施形態に係るエネルギーマネジメントシステムが適用された電力供給システム1について説明する。図1に示されるように、電力供給システム1は、複数種類の発電機と電力消費機器とを備えたマイクログリッドGと、マイクログリッドGにおける各機器の制御値を計算するエネルギーマネジメントシステム20とを備える。以下の説明において、「エネルギーマネジメントシステム」を「EMS」と略称する。図1において、実線の矢印は電気の流れを示しており、破線の矢印は情報の流れを示している。
【0021】
電力供給システム1は、たとえばビルまたは工場等を所有する需要家によって利用され得る。電力供給システム1は、たとえば再生可能エネルギー発電機を所有する売電事業者によって利用され得る。EMS20は、このような需要家または売電事業者に対して、最適化されたエネルギーの需給計画を提供する。
【0022】
マイクログリッドGは、太陽光発電機3および風力発電機4を含む再生可能エネルギー発電機5と、化石燃料を用いて発電を行う原動機7とを備える。原動機7としては、たとえばガスタービンを用いることができる。また、原動機7として、コージェネレーション用ガスタービンを用いることもできる。マイクログリッドGは、マイクログリッドG内の電力を消費する負荷6と、マイクログリッドG内の電力を用いて走行する電気自動車8とを更に備える。負荷6は、電力を消費する複数の機器を含み得る。電気自動車8は、たとえば充電スタンドを含み得る。マイクログリッドGは、電力を蓄電および放電可能な蓄電池(蓄電装置)9を更に備える。蓄電池9としては、たとえばリチウムイオン電池を用いることができる。マイクログリッドGは、上記した複数の電力機器が電気的に接続されたグリッド制御装置10を備える。グリッド制御装置10は、外部電力系統2に接続されている。言い換えれば、上記した複数の電力機器のそれぞれは、グリッド制御装置10を介して外部電力系統2に接続されている。
【0023】
マイクログリッドGにおける使用電力は、再生可能エネルギー発電機5または原動機7または電気自動車8または蓄電池9によって賄われる。その他、マイクログリッドGでは、外部電力系統2から電力を購入(すなわち買電)したり、外部電力系統2に対する逆潮流により電力を売却(すなわち売電)したりすることが可能である。一般的に、買電価格は電力会社との契約に依存するが、本実施形態では、買電価格は時間帯に依存して変化することを想定する。売電価格は、たとえば「電気事業者による再生可能エネルギー電気の調達に関する特別措置法」により規定される。なお、買電価格または売電価格は、上記の制度とは別に定められてもよい。
【0024】
グリッド制御装置10は、たとえばCPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアと、を備えている。グリッド制御装置10は、グリッド制御装置10に接続された電力機器を統括的に制御する。グリッド制御装置10は、電気の流れを制御するための制御回路および蓄電池等を備える。グリッド制御装置10と各電力機器とは、互いに情報通信を行うことができる。グリッド制御装置10は、各電力機器の現在状態に関する情報等を取得する。グリッド制御装置10は、各電力機器に制御値を出力する。グリッド制御装置10は、取得した各電力機器に関する情報を記憶する。グリッド制御装置10は、各電力機器に関する情報をEMS20に送信する。
【0025】
EMS20は、たとえばCPU、ROM、およびRAM等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアと、から構成されたコンピュータである。EMS20は、後述する電力需給計画最適化プログラム120を含んでいる。EMS20とグリッド制御装置10とは、互いに情報通信を行うことができる。EMS20とグリッド制御装置10とは、インターネットを介して通信可能であってもよいし、有線または無線のLAN等を介して通信可能であってもよい。EMS20は、マイクログリッドG内の各電力機器に対する制御値を計算する機能を有する。言い換えれば、EMS20は、グリッド制御装置10に制御値を送信することにより、グリッド制御装置10を通じて、マイクログリッドG内の各電力機器を制御する。
【0026】
より詳細には、EMS20は、ある一定の指標を目的関数として、マイクログリッドGにおける将来一定期間のエネルギーの需給計画を最適化する。最適化の指標すなわち目的関数としては、たとえば、計画期間(一例として、一日)を通しての電気料金の最小化、計画期間を通しての受電電力変動量の最小化、排出COの最小化等が挙げられる。EMS20は、目的関数の最適化問題を解くことにより、需給計画を計算する。目的関数は、上記した3つの指標以外の指標であってもよい。後述するように、最適化問題が制約条件を有していた場合でも、適当な手法を用いて無制約最適化問題に還元されていればよい。目的関数とされる指標は、特に限定されない。
【0027】
目的関数の独立変数としては、たとえば、以下の表1に示される変数が挙げられる。独立変数は、マイクログリッドG内において制御可能なものであれば、何であってもよい。
【表1】
【0028】
一方で、電力供給システム1は、マイクログリッドGにおける需要電力量および発電量の予測値を記憶する需要・発電量予測データベース12を備える。EMS20と需要・発電量予測データベース12とは、互いに情報通信を行うことができる。EMS20は、特定の日時における需要電力量および発電量の予測値を需要・発電量予測データベース12から取得する。需要・発電量予測データベース12に記憶される需要電力量および発電量の予測値は、定期的に更新される。
【0029】
EMS20は、グリッド制御装置10から取得するマイクログリッドGの各電力機器に関する最新の情報(たとえば機器状態等)と、需要・発電量予測データベース12から取得する発電量および需要電力量に関する最新の情報(たとえば予測値等)とに基づいて、需給計画を修正する(すなわち需給計画を更新する)。マイクログリッドGの各電力機器に関する情報(たとえば機器状態等)および/または発電量および需要電力量に関する情報(たとえば予測値等)は、需給計画の計算において、パラメータとして用いられる。すなわち、パラメータは、再生可能エネルギー発電機5、原動機7、蓄電池9および負荷6の少なくとも1つに関する現在値または予測値を含んでいる。具体的なパラメータとしては、たとえば、以下の表2に示される各種のパラメータが挙げられる。
【0030】
【表2】

上表において、SOCは充放電状態(State of Charge)を意味し、満充電の状態を100%としたときの充電率を表す。PCSはパワーコンディショナ(Power Conditioning Subsystem)を意味する。
【0031】
なお、マイクログリッドGにおいては、独立変数やパラメータは最適化問題の構築の仕方に依存するため、同じグリッドに対して唯一には定まらない。たとえば、蓄電池9の充放電電力を独立変数にとると、SOCは従属変数となる。一方、SOCを独立変数とすると、蓄電池9の充放電電力を従属変数とする定式化も可能である。
【0032】
EMS20は、所与の目的関数を最小化するような独立変数の値を求める。たとえば、EMS20は、目的関数の最適化問題を解くことにより、原動機7における各時刻の発電電力を計算する。EMS20は、電気自動車8における各時刻の充放電電力を計算する。EMS20は、蓄電池9における各時刻の充放電電力を計算する。
【0033】
図2を参照して、EMS20の機能構成について説明する。EMS20は、統括制御部20aと、通信部21と、計算部22と、記憶部23と、表示部24とを備える。統括制御部20aは、EMS20における処理を統括制御する。通信部21は、グリッド制御装置10および需要・発電量予測データベース12に対して情報通信を行う入出力部である。計算部22は、需給計画を計算し、さらに、需給計画を逐次修正する。計算部22は、パラメータを一定時間ごとに更新するパラメータ更新部22aと、需給計画を計算する需給計画計算部22cと、需給計画を一定時間ごとに修正する需給計画修正部22bとを含む。
【0034】
パラメータ更新部22aは、グリッド制御装置10および需要・発電量予測データベース12から、パラメータを取得する。需給計画計算部22cは、目的関数の最適化問題を解くことにより、マイクログリッドGにおけるエネルギーの需給計画を計算する。需給計画修正部22bは、既得の最適解近傍における目的関数の二次の近似関数から求められる感度行列を用いて、需給計画計算部22cによって計算された需給計画を修正する。計算部22における処理の詳細については、後述する。
【0035】
記憶部23は、ハードディスク装置またはフラッシュメモリなどを有している。記憶部23は、パラメータ更新部22aによって取得されたパラメータを記憶するパラメータ記憶部23aと、需給計画計算部22cによって計算された需給計画を記憶する需給計画記憶部23cと、需給計画修正部22bによって修正された需給計画すなわち修正需給計画を記憶する修正需給計画記憶部23bとを含む。記憶部23は、需給計画計算部22cによって計算される感度行列を記憶する感度行列記憶部23dを含む。
【0036】
表示部24は、たとえばディスプレイであり、パラメータ、需給計画または修正需給計画等を表示する。表示部24は、パラメータ、需給計画または修正需給計画等に含まれる詳細な情報を表示してもよい。たとえば、表示部24は、タッチパネル等を備えており、マイクログリッドG内の電力機器が選択されることにより、当該電力機器の運転スケジュール(充放電スケジュールまたは発電スケジュール等)を表示してもよい。表示部24は、計算部22によって制御されて、EMS20のユーザに対して所定のメッセージ(たとえば案内メッセージまたは警告メッセージ等)を表示してもよい。
【0037】
続いて、需給計画計算部22cによって解かれる最適化問題と、需給計画修正部22bによって用いられる感度行列とについて説明する。本実施形態では、最適化問題は、無制約問題とされている。需給計画の最適化問題は、通常、制約条件を伴う。そこで、制約領域からの逸脱量をペナルティとして原目的関数に加算する外点ペナルティ法を用いて、制約条件付き最適化問題が無制約最適化問題に変換されている(図7参照)。外点ペナルティ法は、最適化問題を無制約問題にするための一手法であるが、他の手法によって最適化問題を無制約問題に変換してもよい。無制約問題とされた最適化問題は、予め定式化されて、需給計画記憶部23cに記憶されている。
【0038】
需給計画の最適化問題は、現在の機器状態、発電量・需要量の予測値等をパラメータとして目的関数を構成し、各機器の出力を最適化する問題である。本実施形態では、需給計画の計算によって得られた最適解が存在するとして、最適解を基準に、パラメータも一種の変数とみなして目的関数を二次近似する。そして、パラメータが変化したときの最適な需給計画を解析的に求める。この際、感度行列が計算される。
【0039】
この手法の基礎となる理論は、以下のように説明され得る。
【数1】

ここで、xは独立変数、uはパラメータである。
【0040】
目的関数f(x;u)の無制約最適化問題は、下記式(1)で表される。
【数2】

ここで、パラメータuに対する最適解xが与えられているとする。パラメータuが微小量Δuだけ変動したときの最適解の修正量Δxを近似的に求める。目的関数f(x;u)のx,uをともに独立変数とみなし、最適解(x*T;u*Tの周りで二次の項までTaylor展開すると、下記式(2)が得られる。
【0041】
【数3】
【0042】
ここで、式(2)における各行列は、以下のとおりである。
【数4】
【0043】
上記の2次の近似関数(式(2))に基づく最適性条件は、下記式(3)で表される。
【数5】

この条件を満たすΔxは、元の最適解における最適性条件である下記式(4)に注意すれば、下記式(5)と計算できる。
【数6】

【数7】
【0044】
上記式(5)中の−(Hxx-1xuが、需給計画修正部22bによって用いられる感度行列である。すなわち、最適解の修正量Δxは、感度行列−(Hxx-1xuにパラメータuの変化量Δuを乗じることにより求められる。このように、最適解の修正量Δxは、解析的に算出される。
【0045】
図3図5を参照して、EMS20において実行される処理、すなわち本実施形態の電力需給計画最適化方法について説明する。以下の処理は、EMS20が起動している間、定期的に実行される。図3に示されるように、EMS20のパラメータ更新部22aは、グリッド制御装置10および需要・発電量予測データベース12からパラメータを取得する(ステップS01)。ここでは、パラメータ更新部22aは、グリッド制御装置10から各機器の現在情報と、発電量の予測値および需要電力量の予測値とを取得する。パラメータ更新部22aは、必要に応じて、需要・発電量予測データベース12から気象データを取得する。パラメータ更新部22aは、取得時刻を示す情報とともに、取得したパラメータをパラメータ記憶部23aに記憶させる(ステップS02)。
【0046】
次に、需給計画計算部22cは、初回の需給計画を計算し、計算によって得られた需給計画を需給計画記憶部23cに保存する(ステップS03)。需給計画計算部22cは、無制約問題とされた目的関数の最適化問題を解くことにより、需給計画を計算する。このステップS03を行う際、需給計画計算部22cは、上記式(5)に基づいて感度行列を計算し、計算によって得られた感度行列を感度行列記憶部23dに記憶させる(ステップS04)。
【0047】
続いて、統括制御部20aは、第1の処理であるパラメータ更新処理と、第2の処理である需給バランス処理(すなわち需給計画修正処理)と、第3の処理である需給計画処理(すなわち需給計画計算処理)とを非同期的かつ、それぞれ定期的に実行する(ステップS06,S07,S08)。より具体的には、パラメータ更新部22aは、第1時間ごとに(たとえば数秒間隔で)、パラメータ更新処理を実行する(ステップS06)。需給計画修正部22bは、第2時間ごとに(たとえば数秒〜数十秒間隔で)、需給バランス処理を実行する(ステップS07)。需給計画計算部22cは、第3時間ごとに(たとえば数十秒〜数十分間隔で)、需給計画処理を実行する(ステップS08)。
【0048】
図6に示されるように、計算部22が実行する3種類の処理のうち、パラメータ更新処理の頻度がもっとも高く、需給計画処理の頻度がもっとも低い。すなわち、パラメータ更新部22aは、需給計画修正部22bが需給計画を修正するよりも高い頻度で、パラメータを取得する。需給計画修正部22bは、需給計画計算部22cが需給計画を計算するよりも高い頻度で、需給計画を修正する。言い換えれば、需給計画修正部22bは、需給計画計算部22cが需給計画を計算する間隔である第3時間内に、需給計画の微修正を複数回実行する。
【0049】
ステップS06,S07,S08の実行後、統括制御部20aは、すべての処理が継続されるか否かを判断する(ステップS09)。すなわち、いずれかの処理で継続判定がNoとなった場合、統括制御部20aは、図3に示される処理を終了する。このように、継続判定に用いられるフラグは、3つの処理で共有される。
【0050】
図4(a)に示されるように、パラメータ更新処理では、パラメータ更新部22aは、パラメータの更新時刻であるか否かを判断する(ステップS11)。パラメータ更新部22aは、前回の処理から第1時間(たとえば数秒)が経過したか否かを判断する。前回の処理から第1時間が経過している場合、パラメータ更新部22aは、パラメータ更新時刻であると判断して、グリッド制御装置10から各機器の現在値(すなわち実測値)等の現在情報と、発電量の予測値および需要電力量の予測値のデータを取得する(ステップS12)。これと同時に、パラメータ更新部22aは、必要に応じて、需要・発電量予測データベース12から気象データ等を取得する。次に、パラメータ更新部22aは、取得したパラメータをパラメータ記憶部23aに記憶させる(ステップS13)。以上の処理によって、パラメータが更新および保存され、パラメータ更新処理が終了する。ステップS11において、前回の処理から第1時間が経過していない場合、パラメータ更新部22aは、パラメータ更新時刻ではないと判断して、パラメータ更新処理を終了する。
【0051】
図4(b)に示されるように、需給バランス処理では、需給計画修正部22bは、需給バランス時刻であるか否かを判断する(ステップS21)。需給計画修正部22bは、前回の処理から第2時間(たとえば数秒〜数十秒)が経過したか否かを判断する。前回の処理から第2時間が経過している場合、需給計画修正部22bは、需給計画時刻であると判断して、感度行列を用いた需給計画の修正処理を実行する(ステップS22)。
【0052】
図5に示されるように、修正需給計画処理では、需給計画修正部22bは、感度行列記憶部23dから最新の感度行列を取得する(ステップS41)。需給計画修正部22bは、パラメータ記憶部23aから最新のパラメータを取得する(ステップS42)。需給計画修正部22bは、パラメータのずれ、すなわちパラメータの予測値と実測値との差Δuを計算する(ステップS43)。そして、需給計画修正部22bは、感度行列とパラメータ(機器状態、発電量予測、需要電力量予測)のずれΔuから、最適解修正量Δxを計算する(ステップS44)。需給計画修正部22bは、需給計画記憶部23cから最新の需給計画を取得し、その需給計画に示される最適解xに最適解修正量Δxを加算して、制御値を生成する(ステップS45)。需給計画修正部22bは、修正後の需給計画を修正需給計画記憶部23bに記憶させる。統括制御部20aは、修正後の制御値をグリッド制御装置10に送信することにより、需給バランスを実行する(ステップS23)。以上の処理によって、需給計画が修正され、需給バランス処理が終了する。ステップS21において、前回の処理から第2時間が経過していない場合、需給計画修正部22bは、需給計画時刻ではないと判断して、需給バランス処理を終了する。
【0053】
ステップS07(ステップS21〜S23およびステップS41〜S45)の需給バランス処理では、実際の発電量や需要電力量が予測と異なっている場合でも、計画と実際の状態との乖離が修正された制御値が、マイクログリッドGに送信され、各電力機器の制御に用いられる。需給バランス処理では、上記式(5)に示される簡易な計算によって最適解修正量Δxが計算されるので、計算済みの需給計画に沿う修正解を高速に提示することができる。
【0054】
図4(c)に示されるように、需給計画処理では、需給計画計算部22cは、需給計画時刻であるか否かを判断する(ステップS31)。需給計画計算部22cは、前回の処理から第3時間(たとえば数十秒〜数十分)が経過したか否かを判断する。前回の処理から第3時間が経過している場合、需給計画計算部22cは、需給計画時刻であると判断して、無制約問題とされた目的関数の最適化問題を解くことにより、需給計画を計算し、計算によって得られた需給計画を需給計画記憶部23cに記憶させる(ステップS32)。また、需給計画計算部22cは、上記式(5)に基づいて感度行列を計算し、計算によって得られた感度行列を感度行列記憶部23dに記憶させる(ステップS33)。以上の処理によって、需給計画が計算され、需給計画処理が終了する。ステップS31において、前回の処理から第3時間が経過していない場合、需給計画計算部22cは、需給計画時刻ではないと判断して、需給バランス処理を終了する。
【0055】
EMS20によれば、需給計画計算部22cによって、マイクログリッドGにおけるエネルギーの需給計画が計算される。この需給計画は、無制約問題とされた目的関数の最適化問題を解くことによって計算される。通常、需給計画の最適化問題は制約条件を伴うが、適当な手法を用いて無制約問題に還元し、最適解を求めることができる。需給計画修正部22bによって、感度行列を用いて、需給計画が修正される(上記式(5)およびステップS43,S44参照)。この感度行列は、既得の最適解近傍における目的関数の二次の近似関数から求められる(上記式(1)〜(5)参照)。感度行列を用いることにより、パラメータの変化量Δuに基づく最適解の変化量Δxが計算される。よって、需給計画を修正するたびに最適化問題を解く必要はなく、感度行列を用いた需給計画の修正が可能である。これにより、計算の負荷が低減されており、需給計画を高速で修正することができる。しかも、計算の負荷が低減され、需給計画が高速で修正されると、予測値と実測値との差が大きくなるよりも前に需給計画を修正することができる。言い換えれば、実測値を直ちに需給計画に反映できる。このことは、需給計画に対する実測値の乖離を防止するという結果につながるため、経済性が損なわれることが防止される。
【0056】
EMS20では、需給計画を修正する際、反復的計算により最適解を求めるのではなく、目的関数を(制約条件も含めて)既得の最適解まわりで二次近似しておき、解の形を予め解析的に求めている。また、上記特許文献1に示される技術とは異なり、EMS20では、予測値と実測値との差が許容値の範囲内であるか否かを判断していない。このような内的要因により、需給計画の高速修正が可能になっている。また、感度解析の成立条件としては、「ずれ」の大きさが小さいことが挙げられるが、需給計画の最適化問題において、たとえば「ずれ」の一因となる再生可能エネルギー発電機5の発電量予測値は、通常、緩やかに変化する。このような外的要因によっても、感度解析による近似が効果を発揮する。
【0057】
需給計画計算部22cによれば、需給計画の計算時に、最適解が計算されると同時に感度行列が計算される。よって、需給計画修正部22bが需給計画を修正する際、既に求められた感度行列を用いることができる。よって、簡易かつ高速に需給計画を修正することができる。さらには、感度行列にパラメータの変化量Δuを乗じるだけの簡易な演算により、最適解の修正量Δxが求められる。しかも、初回の需給計画計算時に感度行列を併せて求めておくことにより、その感度行列をその後の需給計画の修正に用いることができる(ステップS03,S04、ステップS32,S33およびステップS43,S44参照)。感度行列は初回の需給計画計算時の副産物であるので、計算の負荷が増大することなく、需給計画の高速修正が可能になっている。
【0058】
需給計画修正部22bによれば、需給計画が修正されるよりも高い頻度で取得されたパラメータの中で、最新のパラメータが用いられる。よって、需給計画の修正精度が高められている。
【0059】
需給計画計算部22cによって実行される需給計画処理において、需給計画は、蓄電池9の各時刻における充放電電力の最適解を含む。よって、最適解として、蓄電池9の充放電計画が計算されるので、蓄電池9の効率的な運転が可能になる。
【0060】
需給計画計算部22cによって実行される需給計画処理において、需給計画は、原動機7の各時刻における発電電力の最適解を含む。よって、最適解として、原動機7の発電計画が計算されるので、原動機7の効率的な運転が可能になる。
【0061】
パラメータ更新部22aによって取得されるパラメータは、再生可能エネルギー発電機5、原動機7、蓄電池9および負荷6の少なくとも1つに関する現在値または予測値を含む。よって、マイクログリッドGを構成する各機器の状態が反映された、妥当な需給計画が計算される。
【0062】
需給計画計算部22cによって用いられる最適化問題は、原目的関数の制約領域からの逸脱量に応じたペナルティが原目的関数に加算された、拡大目的関数の最適化問題である。よって、原目的関数の最適化問題が制約条件を伴っていても、無制約問題を容易に作成することができる。
【0063】
引き続いて、上述した一連の処理をEMS20に実行させるための電力需給計画最適化プログラムを説明する。図8に示されるように、電力需給計画最適化プログラム120は、コンピュータに挿入されてアクセスされる。あるいは、電力需給計画最適化プログラム120は、コンピュータが備える記憶媒体100に形成されたプログラム格納領域110に格納される。
【0064】
電力需給計画最適化プログラム120は、パラメータ更新モジュール121と、需給計画修正モジュール122と、需給計画計算モジュール123とを含んで構成される。パラメータ更新モジュール121と、需給計画修正モジュール122と、需給計画計算モジュール123とを実行させることにより実現される機能は、上述したEMS20のパラメータ更新部22aと、需給計画修正部22bと、需給計画計算部22cとの機能とそれぞれ同様である。
【0065】
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限られない。たとえば、感度行列は、解析的に算出される場合に限られず、数値微分等によって近似的に求められてもよい。上記実施形態では、一定時間である第2時間ごとに(たとえば数秒〜数十秒間隔で)需給バランス処理を実行する場合について説明したが、需給バランス処理は、一定時間ごとに実行される場合に限られず、予測値と実測値との差を監視し、その差の大きさに基づくタイミングで実行されてもよい。
【0066】
上記実施形態では、EMS20がマイクログリッドGとは別に設けられる場合について説明したが、マイクログリッドGのグリッド制御装置10が、EMS20と同様の機能を備えていてもよい。マイクログリッドGは、たとえば燃料電池システムを備えていてもよい。
【符号の説明】
【0067】
1 電力供給システム
2 外部電力系統
3 太陽光発電機
4 風力発電機
5 再生可能エネルギー発電機
6 負荷
7 原動機
8 電気自動車
9 蓄電池
20 エネルギーマネジメントシステム
22 計算部
22a パラメータ更新部
22b 需給計画修正部
22c 需給計画計算部
G マイクログリッド
図1
図2
図3
図4
図5
図6
図7
図8