(58)【調査した分野】(Int.Cl.,DB名)
前記ガラス繊維基材がTガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含む、請求項2又は請求項3のいずれか一項に記載のプリプレグ。
【発明を実施するための最良の形態】
【0010】
本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は下記一般式(1)で表されるエポキシ樹脂を必須成分として含有する。
【化2】
(式中、(a)(b)の比率は(a)/(b)=1〜3である。Gはグリシジル基を表す。nは繰り返し数であり、0〜5である。)
【0011】
本発明のエポキシ樹脂は特開2011-252037号公報、特開2008-156553号公報、特開2013-043958公報、国際公開WO2012/053522、WO2007/007827に記載されている手法で合成できるが、前記式(1)の構造をもてばどのような手法のものを用いても構わない。
ただし、本発明においては特に前記式(a)と前記式(b)の割合(多官能化率)が(a)/(b)=1〜3の物を使用することが好ましい。(a)の構造が多いと耐熱性があがるがその分吸水特性が悪くなるばかりか、脆く硬くなってしまう。そこで上述の範囲内の多官能化率が好ましい。
【0012】
使用するエポキシ樹脂の軟化点(環球法)は50〜150℃が好ましく、さらに好ましくは52〜100℃、特に好ましくは52〜95℃である。50℃以下ではべた付きが激しく、取り扱いが困難であり生産性に課題が生じる。また150℃以上の場合、成型温度に近い温度であり、成型時の流動性が確保できないことから好ましくない。
【0013】
使用するエポキシ樹脂のエポキシ当量は180〜350g/eq.であることが好ましい。特に190〜300g/eq.である。エポキシ当量が180g/eq.を切る場合、官能基が多すぎるため、硬化後の硬化物において吸水率が高くなる、また脆くなりやすい。エポキシ当量が350g/eq.を超える場合、軟化点が非常に大きくなるか、きれいにエポキシ化が進行していないことが考えられ、原料として使用したエピクロルヒドリンに起因する塩素量が非常に多くなってしまうことから好ましくない。
【0014】
なお、本発明において使用するエポキシ樹脂の塩素量は全塩素(加水分解法)で200〜1500ppmであり、特に好ましくは200〜900ppmとなる。JPCAの規格からエポキシ単体でも900ppmを超えないことが望まれている。さらには塩素量が多いとその分電気信頼性に影響するので好ましくない。200ppmを下回る場合、過度な精製工程が必要となり、生産性に課題が生じるため好ましくない。
【0015】
なお、本発明において使用するエポキシ樹脂の150℃における溶融粘度は0.05〜5Pa・s。特に0.05〜2.0Pa・sである。粘度が高いと流動性に課題が生じ、プレス時のフロー性や埋め込み性に問題が生じる。0.05Pa・sを切る場合、分子量が小さすぎるため、耐熱性が足りない。
【0016】
前記式中(a)と(b)の比率は (a)/(b)=1〜3である。すなわち、半分以上がレゾルシン構造のグリシジルエーテル体であることを特徴とする。本比率は結晶の析出および耐熱性の向上には重要であり、(a)/(b)は1を超えることが好ましい。また、 (a)/(b)が3以下であることでレゾルシン構造のグリシジルエーテル体の量を制限することで、吸水率と強靭性を改善することができる。
前記式中、nは繰り返し単位であり、0〜5である。nが5を超えないことでプリプレグや樹脂シートにした際のフロー性や流動性をコントロールする。これが5を超えた場合、流動性ばかりか、溶剤への溶解性に課題が生じるため好ましくない。
本発明において使用するエポキシ樹脂は溶剤への溶解性が重要となる。同様の骨格を有するビフェニルアラルキルタイプのエポキシ樹脂の場合、メチルエチルケトンやトルエン、プロピレングリコールモノメチルエーテル等の溶剤に対し、溶解性が必要となる。
特にメチルエチルケトンへの溶解性が重要であり、5℃、室温等で2か月以上、結晶が析出しないことを特徴とする。前述の (a)/(b)の比率にも関与するが、(a)の値が大きいと結晶が出やすくなってしまうため、 (a)/(b)が1を超えることが重要となる。
【0017】
本発明のエポキシ樹脂組成物は、分子中にシアナト基を2つ以上有するシアネートエステル化合物を必須成分として含有する。
前記シアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物、フェノール類と芳香族ジメタノール類、フェノール類と芳香族ジクロロメチル類、フェノール類と芳香族ビスアルコキシメチル類などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。
【0018】
上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
【0019】
上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
【0020】
上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
【0021】
上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
【0022】
上記、芳香族ジメタノール類としてはベンゼンジメタノール、ビフェニルジメタノール等、芳香族ジクロロメチル類としてはα,α’−ジクロロキシレン、ビスクロロメチルビフェニル等、芳香族ビスアルコキシメチル類としてはビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等が挙げられる。
【0023】
本発明のエポキシ樹脂組成物において用いられるシアネートエステル化合物の具体例として、下記の一般式(2)〜(4)で表される化合物を挙げられるが、これに限られない。
【化3】
(式中、R1は下記式(2‘)構造を示し、R2及びR3は、水素原子又は炭素数1〜4のアルキル基を示し、それぞれ同じであっても、異なっても良い。)
【化4】
【0024】
【化5】
(式中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1〜5のアルキル基もしくはフェニル基を表す。nは平均値であり1<n≦20を表す。)
【化6】
【0025】
本発明において特に好ましくは、前記式(2)においてR1がメチレン基、イソプロピリデン基もしくはトリシクロデカン構造、また前記式(4)の構造の樹脂である。
これらシアネート化合物の具体的な合成法としては例えば、特開2005−264154号公報(引用文献5)に合成方法が記載されている。
【0026】
シアネートエステル化合物の配合量は特に限定されないが、シアネートエステルとエポキシを主とする配合の場合、シアネートエステル化合物の官能基当量(シアネートエステル当量)に対し、0.1〜1.4当量、好ましくは0.2〜1.4、さらに好ましくは0.5〜1.4当量のエポキシ樹脂を配合することが好ましい。
この配合量は特に使用する触媒や、配合する材料にも影響され、たとえば、具体的にはイミダゾール等の含窒素触媒の場合、エポキシ同士のアニオン重合も同時に起こるため、0.8〜1.4当量が特に好ましい。
またエポキシ樹脂硬化剤を配合する場合、硬化剤とシアネートエステルの総官能基当量に対して0.5〜1.4当量のエポキシ樹脂を配合することが好ましい。さらにはマレイミド樹脂等の同時に硬化、またエポキシ樹脂やシアネートエステルと架橋しうるような樹脂を配合する場合、それらの官能基当量に見合った量を差し引いて配合を決める必要があるが、エポキシと反応しうる官能基を持ったものが0.5〜1.4当量であることが特に好ましい。
【0027】
本発明のエポキシ樹脂組成物において、他のエポキシ樹脂を併用して用いることができる。 本発明において用いられるエポキシ樹脂と併用されうる他のエポキシ樹脂の具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)またはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’−ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0028】
本発明のエポキシ樹脂組成物を配合する場合、従来公知のエポキシ樹脂硬化剤を併用することができる。併用し得るエポキシ樹脂硬化剤の具体例としては、アミン化合物や、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸などの酸無水物系化合物、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。これらの配合量は、重量比でエポキシ樹脂の2倍以下、好ましくは1倍以下の範囲である。
【0029】
本発明のエポキシ樹脂組成物において硬化剤を使用する場合の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量以下が好ましい。エポキシ基1当量超える場合、エポキシとシアネートの反応が進行した場合、硬化剤が取り残されることとなり、硬化が不完全となり良好な硬化物性が得られない恐れがある。特に好ましくは0.1〜0.98である。また本発明においてエポキシ樹脂と硬化剤の好ましい組み合わせとしては軟化点45〜140度のエポキシ樹脂(より好ましくは50〜100℃)と軟化点50〜140℃(好ましくは55〜120℃)の硬化剤である。流動性、難燃性、耐熱性の面でバランスの取れた特性を有する樹脂組成物となる。
【0030】
本発明のエポキシ樹脂組成物においてマレイミド樹脂の添加をしても構わない。市販のマレイミド樹脂であれば特に限定されないが、炭素数1〜3のアルキル基で1〜4か所芳香環上の水素が置換、もしくは無置換のビスマレイミドフェニルメタンやフェノールノボラック型のマレイミド樹脂が挙げられる。
マレイミド樹脂はシアネート樹脂と当量での反応ではなく、個別もしくはランダムに取り込まれた形で重合するため、配合比率においては特に限定はされないが、本発明のエポキシ樹脂組成物の特性を出すためにはエポキシ樹脂、シアネートエステル、マレイミド樹脂の総量において10〜45重量%が好ましく、特に好ましくは10〜40重量%である。
【0031】
本発明のエポキシ樹脂組成物においては、硬化促進剤を含有させても差し支えない。使用できる硬化促進剤の具体例としては2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾ−ル類、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は、エポキシ樹脂100重量部に対して0.1〜5.0重量部が必要に応じ用いられる。
【0032】
本発明のエポキシ樹脂組成物には、必要に応じて難燃剤、充填剤等の添加剤を、硬化物の誘特性や耐熱性等の特性を悪化させない範囲で配合することができる。
【0033】
必要に応じて配合される難燃剤は、特に限定されないが、シアナト基と反応性を有しない難燃剤が好ましい。ここで、シアナト基と反応性を有しないとは、印刷配線板樹脂組成物中に難燃剤を添加した場合に、300℃以下の範囲で混合しても、難燃剤がシアネートエステル化合物のシアナト基と反応せずに、分散あるいは溶解といった形態でそのまま印刷配線板樹脂組成物中に含まれていることをいう。この反応には、樹脂組成物を加熱燃焼した場合における難燃剤の反応は含まない。一般に、印刷配線板用樹脂組成物、並びにこれを用いたワニス、プリプレグ、金属張積層板、印刷配線板等の製造、使用は、300℃以下の範囲内で行われるものである。
【0034】
必要に応じて配合される充填剤は、特に限定されないが、無機充填剤としては溶融シリカ、結晶性シリカ、アルミナ、炭酸カルシウム、ケイ酸カルシウム、硫酸バリウム、タルク、クレー、酸化マグネシウム、酸化アルミニウム、酸化ベリリウム、酸化鉄、酸化チタン、窒化アルミニウム、窒化ケイ素、窒化ホウ素、マイカ、ガラス、石英、雲母などが挙げられる。さらに難燃効果を付与するため、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物を使用することも好ましい。ただし、これらに限定されない。また2種以上を混合して使用しても良い。これら無機充填剤のうち、溶融シリカや結晶性シリカなどのシリカ類はコストが安く、電気信頼性も良好なため好ましい。本発明のエポキシ樹脂組成物において、無機充填剤の使用量は内割りで通常5重量%〜70重量%、好ましくは10重量%〜60重量%、より好ましくは15重量%〜60重量%の範囲である。少なすぎると難燃性の効果が得られない、また弾性率が下がってしまう、また、多すぎると封止する溶液に溶かしたワニスとした際にフィラーが沈降してしまい、均質な成型体が得られない可能性がある。
【0035】
なお、無機充填剤の形状、粒径等も特に限定されないが、通常、粒径0.01〜50μm、好ましくは0.1〜15μmのものである。
【0036】
本発明のエポキシ樹脂組成物にはガラスクロスや無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混練しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混練しても良い。
【0037】
本発明のエポキシ樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。用いられる溶剤としては、例えばγ−ブチロラクトン類、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10〜80重量%、好ましくは20〜70重量%となる範囲で使用する。
【0038】
更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにカーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤などが挙げられる。
【0039】
本発明の樹脂シートについて説明する。
本発明のエポキシ樹脂組成物を用いたシートは上記ワニスをそれ自体公知のグラビアコート法、スクリーン印刷、メタルマスク法、スピンコート法などの各種塗工方法により平面状支持体に乾燥後の厚さが所定の厚さ、たとえば5〜100μmになるように塗布後、乾燥して得られるが、どの塗工方法を用いるかは支持体の種類、形状、大きさ、塗工の膜厚、支持体の耐熱性等により適宜選択される。平面支持体としては、たとえばポリアミド、ポリアミドイミド、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルケトン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリケトン、ポリエチレン、ポリプロピレン、テフロン(登録商標)等の各種高分子、および/またはその共重合体から作られるフィルム、あるいは銅箔等の金属箔等が挙げられる。
塗布後、乾燥し、シート状の組成物を得ることができる(本発明のシート)が、本シートをさらに加熱することでシート状の硬化物とすることもできる。また一度の加熱で溶剤乾燥と硬化工程を兼ねてもよい。
本発明のエポキシ樹脂組成物は上記支持体の両面もしくは片面に上記方法で塗工、加熱することにより、該支持体の両面または片面に本発明の硬化物の層を形成することができる。また硬化前に被着体を貼り合わせ、硬化させることで積層体を作成することも可能である。
また本発明のシートは支持体から剥がすことで接着シートとして使用することもでき、被着体に接触させ、必要に応じて圧力と熱をかけ、硬化とともに接着させるということもできる。
【0040】
本発明のプリプレグについて説明する。
本発明のプリプレグは上記樹脂組成物を繊維基材に含浸してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリプレグを得ることができる。前記繊維基材としては、例えばガラス織布、ガラス不繊布、ガラスペーパー等のガラス繊維基材、紙、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等の合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げられる。これらの基材は単独又は混合して使用してもよい。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグの剛性、寸法安定性を向上することができる。
ガラス繊維基材としては、Tガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含むものが好ましい。
【0041】
前記樹脂組成物を前記繊維基材に含浸させる方法は、例えば基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。
例えば、本発明のエポキシ樹脂組成物をそのままで、又は溶媒に溶解若しくは分散させたワニスの形態で、ガラス布等の基材に含浸させた後、乾燥炉中等で通常、80〜200℃(ただし、溶媒を使用した場合は溶媒の揮発可能な温度以上とする)の温度で、2〜30分間、好ましくは2〜15分間乾燥させることによってプリプレグが得られる。
【0042】
本発明の金属張積層板について説明する。
本発明で用いられる積層板は、上記のプリプレグを加熱加圧成形してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリント配線板を得ることができる。プリプレグ1枚のときは、その上下両面もしくは片面に金属箔を重ねる。また、プリプレグを2枚以上積層することもできる。プリプレグ2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。次に、プリプレグと金属箔とを重ねたものを加熱加圧成形することでプリント配線板を得ることができる。前記加熱する温度は、特に限定されないが、120〜220℃が好ましく、特に150〜200℃が好ましい。前記加圧する圧力は、特に限定されないが、1.5〜5MPaが好ましく、特に2〜4MPaが好ましい。また、必要に応じて高温漕等で150〜300℃の温度で後硬化を行ってもかまわない。
【0043】
本発明のプリント配線基板について説明する。
プリント配線板は、前記積層板を内層回路板として用いる。積層板の片面又は両面に回路形成する。場合によっては、ドリル加工、レーザー加工によりスルーホールを形成し、めっき等で両面の電気的接続をとることもできる。
【0044】
前記内装回路基板に市販又は本発明の樹脂シート、または前記本発明のプリプレグを重ね合わせて加熱加圧成形し、多層プリント配線基板を得ることができる。
具体的には、上記樹脂シートの絶縁層側と内層回路板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させ、その後、熱風乾燥装置等で絶縁層を加熱硬化させることにより得ることができる。
ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度60〜160℃、圧力0.2〜3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、一例を挙げると、温度140〜240℃、時間30〜120分間で実施することができる。
あるいは、前記本発明のプリプレグを内層回路板に重ね合わせ、これを平板プレス装置などを用いて加熱加圧成形することにより得ることができる。ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度140〜240℃、圧力1〜4MPaで実施することができる。このような平板プレス装置等による加熱加圧成形では、加熱加圧成形と同時に絶縁層の加熱硬化が行われる。
【0045】
また、本発明に係る多層プリント配線基板の製造方法は、前記樹脂シート、または本発明のプリプレグを、内層回路基板の内層回路パターンが形成された面に重ね合わせて連続積層する工程、及び導体回路層をセミアディティブ法で形成する工程を含む。
【0046】
前記樹脂シート、または本発明のプリプレグより形成された絶縁層の硬化は、次のレーザー照射および樹脂残渣の除去を容易にし、デスミア性を向上させるため、半硬化状態にしておく場合もある。また、一層目の絶縁層を通常の加熱温度より低い温度で加熱することにより一部硬化(半硬化)させ、絶縁層上に、一層ないし複数の絶縁層をさらに形成し半硬化の絶縁層を実用上問題ない程度に再度加熱硬化させることにより絶縁層間および絶縁層と回路との密着力を向上させることができる。この場合の半硬化の温度は、80℃〜200℃が好ましく、100℃〜180℃がより好ましい。尚、次工程においてレーザーを照射し、絶縁層に開口部を形成するが、その前に基材を剥離する必要がある。基材の剥離は、絶縁層を形成後、加熱硬化の前、または加熱硬化後のいずれに行っても特に問題はない。
なお、前記多層プリント配線基板を得る際に用いられる内層回路板は、例えば、銅張積層板の両面に、エッチング等により所定の導体回路を形成し、導体回路部分を黒化処理したものを好適に用いることができる。
【0047】
レーザー照射後の樹脂残渣等は過マンガン酸塩、重クロム酸塩等の酸化剤などにより除去することが好ましい。また、平滑な絶縁層の表面を同時に粗化することができ、続く金属メッキにより形成する導電配線回路の密着性を上げることができる。
【0048】
次に、外層回路を形成する。外層回路の形成方法は、金属メッキにより絶縁樹脂層間の接続を図り、エッチングにより外層回路パターン形成を行う。樹脂シート、またはプリプレグを用いたときと同様にして、多層プリント配線基板を得ることができる。
尚、金属箔を有する樹脂シート、またはプリプレグを用いた場合は、金属箔を剥離することなく、導体回路として用いるためにエッチングにより回路形成を行ってもよい。その場合、厚い銅箔を使用した基材付き絶縁樹脂シートを使うと、その後の回路パターン形成においてファインピッチ化が困難になるため、1〜5μmの極薄銅箔を使うか、または12〜18μmの銅箔をエッチングにより1〜5μmに薄くするハーフエッチングする場合もある。
【0049】
さらに絶縁層を積層し、前記同様回路形成を行っても良いが、多層プリント配線板の設計上、最外層には、回路形成後、ソルダーレジストを形成する。ソルダーレジストの形成方法は、特に限定されないが、例えば、ドライフィルムタイプのソルダーレジストを積層(ラミネート)し、露光、および現像により形成する方法、または液状レジストを印刷したものを露光、および現像により形成する方法によりなされる。なお、得られた多層プリント配線板を半導体装置に用いる場合、半導体素子を実装するため接続用電極部を設ける。接続用電極部は、金めっき、ニッケルメッキおよび半田めっき等の金属皮膜で適宜被覆することができる。このような方法により多層プリント配線板を製造することができる。
【0050】
次に、本発明の半導体装置について説明する。
前記で得られた多層プリント配線板に半田バンプを有する半導体素子を実装し、半田バンプを介して、前記多層プリント配線板との接続を図る。そして、多層プリント配線板と半導体素子との間には液状封止樹脂を充填し、半導体装置を形成する。半田バンプは、錫、鉛、銀、銅、ビスマスなどからなる合金で構成されることが好ましい。
半導体素子と多層プリント配線板との接続方法は、フリップチップボンダーなどを用いて基板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、多層プリント配線板と半田バンプとを溶融接合することにより接続する。尚、接続信頼性を良くするため、予め多層プリント配線板上の接続用電極部に半田ペースト等、比較的融点の低い金属の層を形成しておいても良い。この接合工程に先んじて、半田バンプおよび、または多層プリント配線板上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。
【0051】
基板としてはマザーボード、ネットワーク基板、パッケージ基板等に使用され、基板として使用される。特にパッケージ基板としては片面封止材料用の薄層基板として有用である。また半導体封止材として使用した場合、その配合から得られる半導体装置としてはとしては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。
【実施例】
【0052】
以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
ここで、各物性値の測定条件は下記の通りである。
・エポキシ当量
JIS K−7236に記載された方法で測定し、単位はg/eq.である。
・軟化点
JIS K−7234に準拠した方法で測定し、単位は℃である。
・弾性率(DMA)
動的粘弾性測定器:TA−instRuments、DMA−2980
測定温度範囲:−30〜280℃
温速度:2℃/分
試験片サイズ:5mm×50mmに切り出した物を使用した
Tg:DMA測定に於けるTan−δのピーク点をTgとした
【0053】
合成例1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらWO2007/007827に準拠して製造した下記式で表されるフェノール樹脂((a)/(b)=1.3 n=0.5 (GPCにおける分子量分布と水酸基当量から算出)水酸基当量134g/eq. 軟化点93℃)134部、エピクロロヒドリン450部、メタノール54部を加え、撹拌下で溶解し、70℃にまで昇温した。次いでフレーク状の水酸化ナトリウム42.5部を90分かけて分割添加した後、更に70℃で1時間反応を行った。反応終了後,水洗し、塩を除いた後、得られた有機層をロータリーエバポレーターを用いて減圧下、過剰のエピクロルヒドリン等の溶剤類を留去した。残留物にメチルイソブチルケトン500部を加え溶解し、撹拌下で30重量%の水酸化ナトリウム水溶液17部を加え、1時間反応を行った後、油層の洗浄水が中性になるまで水洗を行い、得られた溶液から、ロータリーエバポレーターを用いて減圧下にメチルイソブチルケトン等を留去することで本発明のエポキシ樹脂(EP1)195部を得た。得られたエポキシ樹脂のエポキシ当量は211g/eq.軟化点71℃、150℃における溶融粘度(ICI溶融粘度 コーン#1)は0.34Pa・sであった。
【化7】
【0054】
実施例1
合成例1で得られたエポキシ樹脂(EP1)211部に、2,2-ビス(4-シアネートフェニル)プロパン(東京化成工業株式会社製、以下、BisA−OCNと称す)139部を混合し、更にメチルエチルケトン356部を加えて40℃で10分間攪拌して適当な粘度の調整液を得た。この調整液にさらにイミダゾール触媒(2E4MZ 四国化成製)を6部添加し、さらに40℃で5分撹拌し、樹脂シートおよび/またはプリプレグ用の組成物を調整液(A)として得た。この調整液にA4サイズにカットしたガラスクロス1037(旭化成製)を含浸させ、余分な樹脂液を落としたのち、180℃で5分間乾燥させてプリプレグを得た。得られたプリプレグの表面の平滑性を含めた外観に問題はなかった。色味は淡赤茶色のシートとなった。DSCによる発熱開始ピークは129℃であり、硬化可能なシートであることを確認した。
【0055】
実施例2
実施例1で得られたプリプレグを5枚重ね、熱板プレスで15分、10kg/cm
2の圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化した積層板を得た。得られた積層板で硬化物性を測定した。得られた硬化シートはDSCによる発熱開始ピークは200℃以下では確認されず、十分に硬化したものと判断できた。
【0056】
実施例3
調整液(A)を35ミクロンの銅箔(粗面)に塗布し、175℃5分で乾燥し、銅張の樹脂シートを得た。
【0057】
実施例4
得られた銅付の樹脂シートを熱板プレスで15分、10kg/cm
2の圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、銅箔付の板を得た。
【0058】
実施例5
実施例3で得られた銅張の樹脂シートと、実施例1で得られたプリプレグを2枚重ね、熱板プレスで15分、10kg/cm
2の圧力で形成し、銅張積層版を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化した積層板を得た。
【0059】
実施例6
実施例1で得られたプリプレグをそのまま熱板プレスで15分、10kg/cm
2の圧力で形成し、基板様板を得た。得られた基板様板をさらに175℃で1時間、220℃1時間、後硬化させることで、しっかりと硬化したプリント配線基板用板を得た。得られた基板で硬化物性を測定した。この結果を表1に示す。
なお、得られた硬化シートはDSCによる発熱開始ピークは200℃以下では確認されず、十分に硬化したものと判断できた。
【0060】
比較例1
実施例1において、BisA−OCNの代わりに比較用のフェノール樹脂(KAYAHARD、GPH−103、以下「PN1」と称す。)を231部に変更し、プリプレグ作成時の溶剤乾燥工程において120℃5分とした以外は同様の操作によりプリプレグを作成し、その後、実施例6と同様にして硬化することでプリント配線基板用板を作製した。この結果を表1に示す。
【0061】
【表1】
・PN1:水酸基当量236、軟化点102℃のビフェニルアラルキル型フェノール(日本化薬(株)製、 KAYAHARD GPH−103)
・BisA−OCN:2,2-ビス(4-シアネートフェニル)プロパン(東京化成(株)製)
【0062】
表1により、本発明のエポキシ樹脂組成物からなるプリント配線基板は、比較例1に比べて、高い耐熱性を有しており、高温において非常に高い弾性率を有していることが確認できた。