(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6366684
(24)【登録日】2018年7月13日
(45)【発行日】2018年8月1日
(54)【発明の名称】低放射率静電チャック、及び静電チャックを備えたイオン注入システム
(51)【国際特許分類】
H01L 21/265 20060101AFI20180723BHJP
H01L 21/683 20060101ALI20180723BHJP
H01L 21/205 20060101ALI20180723BHJP
H01L 21/3065 20060101ALI20180723BHJP
H02N 13/00 20060101ALI20180723BHJP
【FI】
H01L21/265 603D
H01L21/68 R
H01L21/205
H01L21/302 101G
H02N13/00 D
【請求項の数】9
【全頁数】11
(21)【出願番号】特願2016-510704(P2016-510704)
(86)(22)【出願日】2014年4月16日
(65)【公表番号】特表2016-524318(P2016-524318A)
(43)【公表日】2016年8月12日
(86)【国際出願番号】US2014034360
(87)【国際公開番号】WO2014176093
(87)【国際公開日】20141030
【審査請求日】2016年12月9日
(31)【優先権主張番号】13/871,273
(32)【優先日】2013年4月26日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】500239188
【氏名又は名称】ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】100149249
【弁理士】
【氏名又は名称】田中 達也
(74)【代理人】
【識別番号】100154003
【弁理士】
【氏名又は名称】片岡 憲一郎
(72)【発明者】
【氏名】ジュリアン ジー ブレイク
(72)【発明者】
【氏名】デール ケー ストーン
(72)【発明者】
【氏名】リュドミラ ストーン
(72)【発明者】
【氏名】マイケル スクラマイヤー
【審査官】
桑原 清
(56)【参考文献】
【文献】
米国特許出願公開第2010/0103584(US,A1)
【文献】
特開2008−103753(JP,A)
【文献】
特表2008−527694(JP,A)
【文献】
米国特許出願公開第2008/0151467(US,A1)
【文献】
米国特許出願公開第2009/0279101(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/265
H01L 21/205
H01L 21/3065
H01L 21/683
H02N 13/00
(57)【特許請求の範囲】
【請求項1】
静電チャックであって、
ヒータと、
前記ヒータ上に配置した電極と、
前記電極上に配置した絶縁体層と、
前記絶縁体層上に配置し、前記電極が発生する静電場を支持して基板を吸着するよう構成したコーティングと、を備え、
前記コーティングは、前記静電チャックからの放射率を低下させるよう構成した複数の誘電体層を有し、
前記複数の誘電体層は、隣接する誘電体層間で屈折率が変化する2つ又はそれ以上の誘電体層を有し、
前記複数の誘電体層は、合計で0.5μm〜5μmの厚さを有し、
前記コーティングは第1厚さTCを有し、また前記絶縁体層は第2厚さTGを有し、TC/TGが0.005〜0.05である、静電チャック。
【請求項2】
請求項1記載の静電チャックにおいて、前記複数の誘電体層は、2.5μm〜5.0μmの間における電磁放射波長に対して20%より高い平均反射率を生ずるよう構成する、静電チャック。
【請求項3】
請求項1記載の静電チャックにおいて、前記複数の誘電体層は、1.5μm〜5.0μmの間における電磁放射波長に対して20%より高い平均反射率を生ずるよう構成する、静電チャック。
【請求項4】
請求項1記載の静電チャックにおいて、前記絶縁体層はガラス層とする、静電チャック。
【請求項5】
請求項1記載の静電チャックにおいて、前記コーティングの外面と基板との間にガスを供給するよう構成したガス源を備える、静電チャック。
【請求項6】
請求項1記載の静電チャックにおいて、前記静電チャックは500℃に加熱されるものであって、また、前記コーティングを前記静電チャックから除去したときには、前記コーティングが存在するときよりも、前記ヒータからのパワー損失が少なくとも25%より多い、静電チャック。
【請求項7】
請求項1記載の静電チャックにおいて、さらに、前記ヒータ上に配置した1つ又はそれ以上の追加電極を備える、静電チャック。
【請求項8】
イオン注入システムにおいて、
イオンを発生して基板に注入するイオン源と、
イオンに対する曝露中に前記基板を保持するよう構成した静電チャックと、を有する基板ホルダシステムであって、前記静電チャックは、
電極と前記基板との間にガスを供給するガスフローシステムと、
前記電極と前記基板との間におけるガスを加熱するヒータと、
前記ヒータ上に配置した電極システムと、
前記ヒータ上に配置し、前記電極システムが発生する静電場を支持して前記基板を吸着するよう構成したコーティングと、を有し、
前記コーティングは、前記静電チャックからの放射率を低下するよう構成した複数の誘電体層を有し、
前記複数の誘電体層は、隣接する誘電体層間で屈折率が変化する2つ又はそれ以上の誘電体層を有し、
前記複数の誘電体層は、合計で0.5μm〜5μmの厚さを有し、
前記電極システムと前記コーティングとの間に配置したガラス層を備え、前記コーティングは第1厚さTCを有し、また前記ガラス層は第2厚さTGを有し、TC/TGが0.005〜0.05である、イオン注入システム。
【請求項9】
請求項8記載のイオン注入システムにおいて、前記コーティングは、1〜6μmで90%より高い反射率を有する広帯域高反射コーティングとする、イオン注入システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は静電処理に関する。より具体的には、本発明は基板(サブストレート)処理のための改良した静電チャック、
及び静電チャックを備えたイオン注入システムに関する。
【背景技術】
【0002】
半導体デバイス製造、太陽電池製造、電子コンポーネント製造、センサ作製、及び微小電気機械的デバイス製造のような用途のための、最近の基板処理は、とりわけ頻繁に処理中に基板を保持する静電ホルダ又は「静電チャック」を用いる装置(「ツール」)を必要とする。このような装置の例としては、化学蒸着(CVD:chemical vapor deposition)ツール、物理蒸着(PVD:physical vapor deposition)ツール、反応性イオンエッチング(RIE:reactive ion etching)設備のような基板エッチングツール、イオン注入システム及び他の装置がある。これら装置のそれぞれにおいて、基板を高温に加熱するのが望ましい場合があり得る。
【発明の概要】
【発明が解決しようとする課題】
【0003】
基板を高温に加熱するためには、静電チャック(ESC:electrostatic chuck)装置は、ESC本体を形成する断熱材料に隣接配置する又は埋設することができるヒータを設けるよう設計されてきた。基板を高温で処理するとき、ヒータを使用して熱を基板、例えば、ウエハの背面(裏面)に熱を加えるとともに、同時に基板背面に向けてESC前面と基板との間に設けたギャップにガスを導き入れる。ガスは、これにより加熱され、加熱ガスに接触する基板に対する伝導加熱源をなす。このようなESCの使用によって効率的に基板を高温に加熱するためには、大きくなり得る放射熱損失を最小化するのが望ましい。ESCを高温に加熱するときの電力損失を減少するには、熱シールド及び/又は低放射率コーティングをESC端縁及びESCの基板から離れる後面に沿って設けることができる。例えば、一般的に500℃に加熱されるESCは、ESCのクランプ表面から1kWのオーダーの電力を損失し、外側端縁から追加的に150W損失し、また所定位置に放射シールドを有するESCの後面からさらに他の150Wが損失し得る。低放射率コーティングはESCの異なる表面からの放射を減少するのに効果的であるが、このような低放射率コーティングは金属であり、したがって、電荷の導体である。したがって、このようなコーティングはESC前面には展開させることはできないものであり、なぜならクランプする静電場を発生する上で絶縁層が静電クランプの前面に必要となるからである。したがって、ESC前面からの放射による大きな電力損失は依然として課題のままである。上述した観点から、当然のことながら、とくに、静電クランプを高温で動作するよう設計する機器において改善した静電クランプに対する必要性がある。
【課題を解決するための手段】
【0004】
この概要は、以下に詳細に説明する概念について、選択した範囲で簡略的に示すものである。この概要は、特許請求される要旨における重要な特徴又は必須の特徴を特定することを意図するものではなく、特許請求される要旨の範囲を決定する際の補助を意図するものでもない。
【0005】
一実施形態において、静電チャックは、ヒータ及びこのヒータ上に配置した電極を有する。静電チャックは、さらに、絶縁体層及びこの絶縁体
層上に配置した低放射率コーティングを有し、この低放射率コーティングは、電極システムが発生する静電場を支持して基板を吸着するよう構成する。
【0006】
他の実施形態において、イオン注入システムは、イオンを発生して基板にイオンを注入するイオン源と、イオンに対する曝露中に基板を保持するよう構成した静電チャックを有する基板ホルダシステムとを備える。静電チャックは、電極と基板との間にガスを供給するガスフローシステムと、電極と基板との間におけるガスを加熱するヒータと、ヒータ上に配置した電極
システムと、ヒータ上に配置した低放射率コーティングであって、電極システムが発生する静電場を支持して基板を吸着するよう構成した、該低放射率コーティングと、を備える。
【図面の簡単な説明】
【0007】
【
図1】本発明の様々な実施形態による注入システムの説明図である。
【
図2】本発明の実施形態による静電チャックシステムを示す説明図である。
【
図3】例示的静電チャックの一部の縦断面図である。
【
図4】例示的静電チャックの動作を示す説明図である。
【
図5】例示的低放射率コーティングの光学的特性を示すグラフである。
【
図6】本発明の実施形態による他の静電チャックシステムを示す説明図である。
【
図7】本発明の実施形態によるさらに他の静電チャックシステムを示す説明図である。
【
図8】他の例示的静電チャックの一部における縦断面図である。
【発明を実施するための形態】
【0008】
本発明の実施形態を以下に、種々の実施形態を示す添付図面につきより完全に説明する。しかるに、本発明の要旨は、多くの異なる形式で具現化することができ、本明細書において記載される実施形態に限定するものと解釈すべきではない。むしろ、これら実施形態は、本明細書を完全かつ完璧にするよう、また本発明要旨の範囲を当業者に完全に伝えるよう提示したものである。
【0009】
種々の実施形態は、ワークピース又は基板及び高温で処理する装置及びシステムを含む。本明細書で使用する用語「高温(elevated temperature)」は、概して約50℃より高い基板温度を意味する。種々の実施形態は、約200℃を超える温度で基板を処理するのに特に有用である。本発明による実施形態は、概して高温で動作することができるよう加熱される静電チャックに関する。本発明による実施形態の静電チャックは、基板を加熱するとともに、同時に静電力の使用により基板を保持するよう構成する。本明細書において、ESCに関して使用する用語「保持している(holding)」及び「保持する(hold)」は、基板を望ましい位置に維持することを意味する。ESC装置は、ESCが発生する静電力により、ESCと基板との間の物理的接触を最小にして基板を保持し得る。
【0010】
本発明による実施形態の加熱式の静電チャックを使用する装置の例としては、化学蒸着(CVD)ツール、物理蒸着(PVD)ツール、反応性イオンエッチング(RIE)設備のような基板エッチングツール、イオン注入システム及び他の装置がある。
【0011】
以下の説明及び/又は特許請求の範囲で、用語「上に(on)」、「オーバーレイする(overlying)」、「上に配置した(disposed on)」、「上方に(over)」を使用する場合がある。「上に(on)」、「オーバーレイする(overlying)」、「上に配置した(disposed on)」、「上方に(over)」は、2つ又はそれ以上の要素が互いに物理的に接触することを示すのに使用する場合がある。しかし、「上に(on)」、「オーバーレイする(overlying)」、「上に配置した(disposed on)」、「上方に(over)」は、2つ又はそれ以上の要素が互いに物理的に接触しないことを示すのに使用する場合もある。例えば、「上方に(over)」は、1つの要素が他の要素の上方にあって互いに接触しないことを意味し、また2つの要素間に他の1つ又は複数の要素があり得ることを意味する。さらに、用語「及び/又は(and/or)」は、「及び(and)」を意味する場合があり、「又は(or)」を意味する場合があり、「排他的論理和(exclusive-or)」を意味する場合があり、「一方(one)」を意味する場合があり、「幾つかではあるが、全部ではない(some, but not all)」を意味する場合があり、「どちらでもない(neither)」を意味する場合があり、又は「双方(both)」を意味する場合があり、しかし、特許請求の範囲の要旨の範囲はこれに限定されない。
【0012】
図1は、本発明の実施形態により設計した加熱式静電チャックを採用するイオン注入システム100のブロック図を示す。図示のように、イオン注入システム100はイオン源102を有する。電源101は、必要とされるエネルギーをイオン源102に供給し、このイオン源102は特別な種のイオンを発生するよう構成する。発生したイオンは、イオン源から一連の電極104を経て抽出されてビーム95として形成され、このビーム95は種々のビームコンポーネント
106,108,110,112によって導かれ、また操作されて基板に至る。とくに、抽出後、ビーム95は質量分析器の磁石106を通過する。質量分析器は特定磁場により構成し、所望質量対電荷比を有するイオンのみが質量分析器を通過できるようにする。所望種のイオンは減速段108を経てコレクタ磁石110を通過する。コレクタ磁石110は付勢されて、印加磁場の強度及び方向に従ってイオンのビームレットを転向し、基板ホルダシステム(例えば、プラテン)114上に配置したワークピース又は基板に向けて標的付けされるリボンビームを生ずる。幾つかの事例において、第2減速段112をコレクタ磁石110と基板ホルダシステム114との間に配置することができる。イオンは、基板における電子及び原子核に衝突するときエネルギーを失い、加速エネルギーに基づいて基板内の所望深さで休止する。
【0013】
種々の実施形態において、基板ホルダシステム114は、以下の図面につき説明する加熱式の静電チャックを有する。
図2は、静電チャック202及び静電チャックを支持する載置台220を有する例示的な静電チャックシステム200を示す。静電チャック202は、絶縁本体204、ヒータ206、及び電極又は電極システム208を有し、これらすべては普通のコンポーネントから構成し、また普通の加熱式の静電チャックに基づいて配列することができる。説明を分かり易くするため、慣例として載置台220に取り付ける静電チャック202の側面を後面(B)と見なし、また基板224に対面する静電チャック202の側面を前面(F)と見なすことができる。概して、ヒータ206は絶縁本体204内に配置する、及び/又は後面B寄りに配置することができる。電極システム208も一般的に静電チャック202の内部に配置し、
図3に示すように、絶縁材料が電極システム208と外部
との間に存在するようにする。
【0014】
種々の実施形態において、ヒータ206は、静電チャック202を加熱する様々な既知のヒータ設計とすることができる。さらに、電極システム208は、単一コンポーネントとして図示するが、種々の実施形態において、1つ又は複数のコンポーネントを含むことができる。とくに、電極システム208は、フォイル、プレート、複数の個別プレート、有孔フォイル又は有孔プレート、メッシュ、スクリーン印刷層とする、又は静電チャックに組み入れるのに適当な幾つかの他の形態とすることができる。
【0015】
図2にも示すように、静電チャック202は、絶縁体層210及びコーティング212を有する。絶縁体層210は、例えば、普通のガラス材料とすることができる。静電チャックシステム200は、さらに、電極システム208に電圧を印加して基板224を保持するクランプ力を発生できるよう構成した電圧源222を有する。ヒータ206は、静電チャック202を、またひいては基板224を加熱するよう構成する。ガス供給源226は、He又は他のガス(個別には示さない)のようなガス230を静電チャック202と基板224との間における後面ガス領域232に供給するよう動作し、静電チャック202が発生する熱を基板224に伝達する熱伝導媒体を生ずる。したがって、ヒータ206の動作中に、静電チャック202は、主に熱伝導によって基板224を加熱する。
【0016】
基板224の加熱中の電力損失を最小化するため、コーティング212を絶縁体層210上で電極システム208と静電チャック202の外部との間に配置する(
図3参照)。コーティング212は低放射率コーティングとして作用し、静電チャック202から発散する黒体放射に起因するエネルギー損失を減少する。これによるエネルギー損失の低減は、基板224を所定温度に加熱するのに必要な電力を減少し、これはすなわち、ヒータ206が発生する電力のより多くの部分が基板224を熱伝導加熱で消費されるからである。とくに、約200℃を超える温度では、黒体放射は静電チャック202が発生する大きなエネルギー源を構成する。さらに、200℃〜1000℃の範囲又はそれより高い温度では、理想黒体放射源が放射するエネルギーの大部分は、赤外線波長レンジで生じ、ピーク強度は約5μm〜約2μmの波長レンジにわたる。シリコン基板のような種々の基板は、このレンジにおける放射に対して透過性が高く、したがって、黒体放射の形式における静電チャックが発生するエネルギー吸収はあったとしても僅かとなり得る。したがって、このように放射されるエネルギーは無駄に浪費され、静電チャック202による基板加熱効率は低下し、これはすなわち、静電チャック202から発生する熱伝導加熱のみが基板224の加熱に有効であるからである。以下に説明するように、コーティング212は、静電チャックの部分によって発生した放射を低放射率コーティングより下方に反射することによって放射損失を減少する。
【0017】
図3は、静電チャック202の一部の縦断面図を示す。
図3に示すように、コーティング212は、誘電体干渉スタックを形成する複数の層を有する。
図3の実施形態は3層干渉スタックを示すが、コーティング212は任意の所望レイヤ数にすることができる。例えば、コーティング212は層214及び218を有し、これら層214、218間に層216を配置することができる。異なる層214,216,218の屈折率は、所望波長レンジの電磁放射(本明細書では単に「放射」とも称する)のためのコーティング212に対して反射率を向上するよう構成することができる。種々の実施形態において、層214,218は同一材料で構成し、また関心対象電磁放射波長レンジにおける同一の誘電率又は屈折率を有するとともに、層216は層214,218とは異なる材料で構成し、また異なる屈折率を有するものとする。
【0018】
特別な一実施例で、層214,218は五酸化物タンタル(Ta
2O
5)で構成するとともに、層216はSiO
2で構成する。よく知られているように、これら材料は、約1μm〜10μmの赤外線放射波長レンジ内を含めて屈折率が大きく異なる。このような層214〜218のスタックは、干渉スタックとして機能するのにうまく適合し、1つ又は複数の界面215,217,219における電磁放射の反射が、隣接層間における屈折率の急激な変化に起因して高まる。幾つかの実施形態において、層214,218を形成する第1材料の厚さは、
図3に厚さTM
1で示すように、各層で同一とすることができる。層216を形成する第2材料の厚さTM
2は厚さTM
1と異なる、又は異ならないようにすることができる。低放射率コーティング及び屈折率の異なる層における厚さは、隣接する界面から反射される電磁波のための建設的最大干渉を生ずるよう設計する。このことは、コーティング212所定層に対して層厚さ及び屈折率を、隣接界面から反射される所定波長λ
0の電磁放射にλ
0/4に等しい位相シフトを生ずるよう設計することによって達成することができる。このようにして、コーティング212は、静電チャック202が発生する放射のコーティング212によって反射される量を増加することによって、高温での静電チャック202からの電磁放射放出を減少するよう設計することができる。
【0019】
図2及び3に示す静電チャック設計によって得られる利点は、コーティング212の層214〜218のスタックが、例えば、Ta
2O
5及びSiO
2のような誘電材料で構成される理由から、電圧源222が電極システム208に電圧を印加するとき、電極システム208によって発生する静電場を遮蔽しない点である。したがって、金属コーティングにおける状況とは異なり、コーティング212によって電極システム208が、
図2に示すように絶縁体層210近傍に配置した基板224に対してクランプ力を加えることができるとともに、静電チャックを加熱するときの電磁放射放出を減少することができる。
【0020】
図3の実施例の説明を続けると、静電チャック202が基板224を吸着するに十分なクランプ力を確実に発生できるようにするため、コーティング212の厚さT
Cは、絶縁体層の厚さT
Gの僅かな割合となるように設計することができる。幾つかの実施形態において、例えば、T
C/T
Gの比が約0.005〜0.05又は0.5〜5%となるようにする。例えば、絶縁体層210の厚さT
Gの値は約100μmとし、またコーティング212の厚さT
Cは約0.5μm〜約5μmの範囲内とすることができる。このようにして、電極システム208が発生する場の静電場強度は、絶縁体層210と基板224との間にコーティング212を付加したことによって大きく影響を受けず、これはすなわち、コーティング212の厚さT
Cが、電極システム208上方に配置される絶縁材料の総厚さ(T
C+T
G)に対して比較的僅かな増加しか付加しないからである。
【0021】
図4は、本発明の実施形態による静電チャック202における動作の1つのシナリオを示す。分かり易くするため、静電チャック202の一部のみを示す。
図4に示すシナリオにおいて、静電チャック202を高温に加熱する。一実施例において、静電チャック202の温度は500℃まで加熱し、この温度はピーク波長レンジが約3〜4μmである波長レンジにわたり電磁放射を発生することができる。種々の波長における電磁放射を一連の放射線402,404,406,408,410として示し、これら放射線は静電チャック202内から発生し、また概して静電チャック202の内部の部分から外部領域412に向かって外方に指向する。静電チャックによって他の方向に進む放射が発生し得ることに留意されたい。図示のように、放射線404,408はコーティング212を透過して外部領域に抜け出る。他方、放射線402,406及び410は静電チャック202の内部に向かって後向きに反射する。とくに、放射線402は界面215で反射し、放射線406は界面219で反射し、放射線410は界面217で反射する。したがって、静電チャック202によって発生する電磁放射の大きな割合は界面219で示される表面から放出されない。
【0022】
それにひきかえ、高温で動作する従来の静電チャックにおいては、コーティング212がないことで、静電チャック内で発生する電磁放射は外面から反射することなく放出され、したがって、高放射率であり、静電チャックからの望ましくないエネルギー損失を生ずる結果となる。
【0023】
図5は、上述の多層誘電干渉スタックから構成する例示的な低放射率コーティング(例えば、212)の光学的特性を示す。この図示した実施例において、低放射率コーティングは、ガラス表面上に配置し、反射率を放射波長の関数として測定する。
図5に示すように、反射率は、約2μm(2000nm)より大きい波長で急激に増加し、約4.5μmまでの波長に対して約20%以上に維持される。この波長レンジは、約300℃〜700℃の範囲における温度に対して黒体放射のピークレンジを構成する。したがって、
図5の例示的低放射率コーティングは、とくに、このような温度範囲で動作する高温静電チャックからの放射損失を減少するのに有用である。静電チャックをコーティングするのに使用されるとき、
図5の誘電性の低放射率コーティングは、このようなコーティングがないときの約0.7から約0.3〜0.4に放射率を低下することができ、この結果、静電チャックの前面、すなわち、基板に対面する表面から放射されるパワーを約2倍も減少することができる。このようにして、低放射率コーティングが静電チャック上に存在するとき、静電チャックのヒータが発生するパワーの相当大きい割合が基板を熱伝導で加熱するのに使用される。
【0024】
図6は、静電チャックシステム600の他の実施形態を示し、この場合、静電チャック602は、複数の個別の電極604A,604B,604C,604Dを含む電極システム604を備える。幾つかの事例において、電極は、クランプ電圧を
電極対における2つの電極間に印加する普通の静電チャックのように電極対として配列する。複数の電極対を設ける実施例において、クランプ電圧は、電極対における2つの電極間に周期的に印加し、これにより、任意な所定時点で少なくとも1つの電極対が電極間にクランプ電圧を発生する。さらに
図6に示すように、電圧源606は波形608のように電圧を供給し、この波形608は、異なる実施形態において、電極システム604のような電極システムにおける電極対の数に基づいて設計することができる。3電極対システムに対しては、例えば、矩形波の3位相波形を発生し、少なくとも4個の電極が所定時点で作動するのを確実にする。
【0025】
図7は、静電チャックシステム700の他の実施形態を示し、この場合、静電チャック702は、静電チャックの側面及び後面に配置した追加の低放射率コーティング704を備える。この実施形態において、低放射率コーティング704は金属材料を有し、約250℃〜1000℃の範囲における動作温度に対して、静電チャック702の側面及び後面の放射率を0.3のような低い値又はそれより低い値に低下することができる。これは、さらに、電磁放射として静電チャックから放射される全体パワーを減少する。静電チャック702の側面及び後面はクランプ場を支持する必要はないので、低放射率コーティング704に使用する材料は任意な普通の金属材料とすることができる。
【0026】
他の実施形態において、静電チャックシステムは、交換可能な静電チャックを支持するよう構成することができ、この場合、異なる静電チャックは異なる温度範囲で動作するよう設計する。したがって、第1静電チャック、例えば、静電チャック202は、層214〜218が500℃で最適な放射率低下を行うよう設計したコーティング212で被覆することができる。上述したように、この設計は、層214,216,218に対して屈折率及び層厚を選択し、500℃での黒体放射のピークに対応する波長レンジにおいてピーク反射率を生ずるように仕立てることによって達成する。静電チャック202は、450℃〜550℃のような所定温度範囲で基板処理を行うときに設置することができる。第2静電チャックは、異なる温度範囲で動作する異なる低放射率コーティングにより設計することができる。一実施例において、層214,216,218の屈折率及び層厚を調整して、450℃〜550℃のような所定温度範囲で基板処理を行うときに放射率を低下するのに適当な約2.5μm〜5.0μmの間における電磁放射波長に対して、20%より高い反射率を生ずるようにする。
【0027】
図8につき説明すると、低放射率を有する静電チャック800の一部を示す。静電チャック800は、層804,806,808が700℃で最適な放射率低下を生ずるよう設計したコーティング802を有する。この設計は、ピーク反射率が、700℃での黒体放射のピークに対応する波長レンジにおいて生ずるよう、層804,806,808に対する屈折率及び層厚を選択することによって達成する。静電チャック800は、650℃〜750℃のような所定温度範囲で基板処理を行うときに設置することができる。一実施例において、層804,806,808の屈折率及び層厚を調整して、650℃〜750℃のような所定温度範囲で基板処理を行うときに放射率を低下するのに適当な約1.5μm〜5.0μmの間における電磁放射波長に対して、20%より高い反射率を生ずるようにする。
【0028】
再び
図2に戻って説明すると、他の実施形態において、コーティング212は所望周波数レンジにわたり高い反射率を有する広帯域高反射コーティングを構成することができる。このような広帯域誘電コーティングは、2つ又はそれ以上の既知のコンポーネントを含み、これらコンポーネントを使用して、各層がすべて同一の光学的厚さでない変更した1/4波長スタックを構成する。その代わりに、意図する広帯域パフォーマンス領域の両側の端部における2つの波長に対する1/4波長厚さ間で等級分けする。個々の層における光学的厚さを通常どおりに選択し、これに続いて簡単な算術的又は幾何学的な処理を行う。このタイプの設計を用いることによって、多層広帯域スタックから構成したコーティング212は、数100ナノメートルにわたり99%を超える反射率を呈することができる。例えば、コーティング212は、1〜6μmの間の波長で90%より高い反射率を有するよう設計した多層広帯域スタックから構成することができる。このことは、大きな波長レンジにわたり加熱されるESCからの放射を低下させ、したがって、大きな温度範囲にわたり単独ESCの動作を容易にする上でコーティング212を有用にする。
【0029】
本発明は、本明細書に記載した特別な実施形態により範囲が限定されない。実際、本明細書で記載した以外の他の様々な実施形態及び変更例は、当業者には上述の説明及び添付図面から明らかであろう。したがって、このような他の実施形態及び変更例は、本発明の範囲内にあることを意図する。さらに、本明細書は、特定目的のための特定環境における特定実施の文脈で説明したが、当業者であれば、その有用性はそれらに限定されることはなく、また本発明は任意な多くの目的対して任意な多くの環境下で有益に実施されることを理解できるであろう。
【符号の説明】
【0030】
95 ビーム
100 イオン注入システム
101 電源
102 イオン源
104 電極
106 磁石
108 減速段
110 コレクタ磁石
112 第2減速段
114 基板ホルダシステム
200 静電チャックシステム
202 静電チャック
204 絶縁本体
206 ヒータ
208 電極システム
210 絶縁体層
212 コーティング
214 層
215 界面
216 層
217 界面
218 層
219 界面
220 載置台
222 電圧源
224 基板
230 ガス
232 後面ガス領域
402 放射線
404 放射線
406 放射線
408 放射線
410 放射線
600 静電チャックシステム
604 電極システム
604A〜D 電極
606 電圧源
608 波形
700 静電チャックシステム
702 静電チャック
704 低放射率コーティング
800 静電チャック
802 コーティング
804,806,808 層