【実施例】
【0068】
以下、実施例に基づいて本発明をより具体的に説明する。
【0069】
実施例1.
A.ガラス基板の製造
1.基板準備工程
主表面及び裏面が研磨された6025サイズ(152mm×152mm×6.35mm)のSiO
2−TiO
2ガラス基板である低熱膨張ガラス基板を準備した。材料組成から明らかなように、このガラス基板の表面はケイ素を含む酸化物からなる。尚、SiO
2−TiO
2ガラス基板は、以下の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程、局所加工工程、及びタッチ研磨工程を経て得られたものである。
【0070】
(1)粗研磨加工工程
端面面取加工及び研削加工を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で粗研磨を行った。10枚セットを2回行い合計20枚のガラス基板の粗研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径2〜3μm)を含有する水溶液
研磨パッド:硬質ポリシャ(ウレタンパッド)
粗研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0071】
(2)精密研磨加工工程
粗研磨を終えたガラス基板を両面研磨装置に10枚セットし、以下の研磨条件で精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の精密研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:酸化セリウム(平均粒径1μm)を含有する水溶液
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0072】
(3)超精密研磨加工工程
精密研磨を終えたガラス基板を再び両面研磨装置に10枚セットし、以下の研磨条件で超精密研磨を行った。10枚セットを2回行い合計20枚のガラス基板の超精密研磨を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨スラリー:コロイダルシリカを含有するアルカリ性水溶液(pH10.2)
(コロイダルシリカ含有量50wt%)
研磨パッド:超軟質ポリシャ(スウェードタイプ)
超精密研磨後、ガラス基板を水酸化ナトリウムのアルカリ洗浄液が入った洗浄槽に浸漬し、超音波を印加して洗浄を行った。
【0073】
(4)局所加工工程
粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程後のガラス基板の主表面及び裏面の平坦度を、平坦度測定装置(トロペル社製 UltraFlat200)を用いて測定した。平坦度測定は、ガラス基板の周縁領域を除外した148mm×148mmの領域に対して、1024×1024の地点で行った。ガラス基板の主表面及び裏面の平坦度の測定結果を、測定点ごとに仮想絶対平面に対する高さの情報(凹凸形状情報)としてコンピュータに保存した。仮想絶対平面は、仮想絶対平面から基板表面までの距離を、平坦度測定領域全体に対して二乗平均したときに最小の値となる面である。
その後、取得された凹凸形状情報とガラス基板に要求される主表面及び裏面の平坦度の基準値とを比較し、その差分を、ガラス基板の主表面及び裏面の所定領域ごとにコンピュータで算出した。この差分が、局所的な表面加工における各所定領域の必要除去量(加工取り代)となる。
【0074】
その後、ガラス基板の主表面及び裏面の所定領域ごとに、必要除去量に応じた局所的な表面加工の加工条件を設定した。設定方法は以下の通りである。事前にダミー基板を用いて、実際の加工と同じようにダミー基板を、一定時間基板移動させずにある地点(スポット)で加工し、その形状を平坦度測定装置(トロペル社製 UltraFlat200)にて測定し、単位時間当たりにおけるスポットでの加工体積を算出した。そして、単位時間当たりにおけるスポットでの加工体積と上述したように算出した各所定領域の必要除去量に従い、ガラス基板をラスタ走査する際の走査スピードを決定した。
その後、ガラス基板の主表面及び裏面を、基板仕上げ装置を用いて、磁気粘弾性流体研磨(Magnet Rheological Finishing:MRF)により、所定領域ごとに設定した加工条件に従い、局所的に表面加工した。尚、このとき、酸化セリウムの研磨粒子を含有する磁性研磨スラリーを使用した。
【0075】
その後、ガラス基板を、濃度約10%の塩酸水溶液(温度約25℃)が入った洗浄槽に約10分間浸漬させ、続いて、純水によるリンス、イソプロピルアルコール(IPA)による乾燥を行った。
【0076】
(5)タッチ研磨工程
局所加工工程によって荒れたガラス基板の主表面及び裏面の平滑性を高めるために、研磨スラリーを用いて行う低荷重の機械的研磨により微小量だけガラス基板の主表面及び裏面を研磨した。この研磨は、基板の大きさよりも大きい研磨パッドが張り付けられた上下の研磨定盤の間にキャリアで保持されたガラス基板をセットし、コロイダルシリカ砥粒(平均粒子径50nm)を含有する研磨スラリーを供給しながら、ガラス基板を、上下の研磨定盤内で自転しながら公転することによって行った。
その後、ガラス基板を、水酸化ナトリウムのアルカリ洗浄液に浸漬し、超音波を印加して洗浄を行った。
【0077】
2.基板加工工程
次に、
図1及び
図2に示す基板加工装置を用いて、タッチ研磨工程後のガラス基板の主表面に対して、触媒基準エッチングによる加工を施した。この基板加工装置はクリーンルームに設置されており、クリーンルーム内の室温は23℃とした。したがってこの場合の常温は23℃である。
【0078】
この実施例では、ステンレス鋼(SUS)製の円盤形状の定盤本体32と、定盤本体32を覆うように定盤本体32の表面全面に形成されたフッ素系ゴムパッドと、ガラス基板と対向する側のフッ素系ゴムパッドの表面全面にアルゴン(Ar)ガス中で白金(Pt)ターゲットを用いてスパッタリング法によって形成された白金薄膜からなる加工基準面33とを備えた触媒定盤31を使用した。ここで、触媒定盤の直径は100mmであり、フッ素系ゴムパッド上に形成されたPt薄膜の膜厚は100nmである。
加工、洗浄条件は以下の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:40℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0079】
まず、ガラス基板を、主表面を上側に向けて支持部21に載置して固定した。
その後、アーム部51の長手方向移動(両矢印C)、アーム部51のスイング移動(両矢印E)、アーム部51の第1方向移動(両矢印F)、アーム部51の第2方向移動(両矢印G)により、触媒定盤31の加工基準面33がガラス基板の主表面に対向して配置された状態で、触媒定盤31を配置した。触媒定盤31の配置位置は、ガラス基板及び触媒定盤31を回転させたときに、触媒定盤31の加工基準面33が、ガラス基板の主表面全体に接触又は接近することが可能な位置である。
【0080】
その後、ガラス基板を10.3回転/分の回転速度及び触媒定盤31を10回転/分の回転速度で回転させる。ここで、ガラス基板の回転方向と触媒定盤31の回転方向とが、互いに逆になるようにガラス基板及び触媒定盤31を回転させる。これにより、両者間に周速差をとり、触媒基準エッチングによる加工の効率を高めることができる。また、両者の回転数は、僅かに異なるように設定される。これにより、触媒定盤31の加工基準面33がガラス基板の主表面上に対して異なる軌跡を描くように相対運動させることができ、触媒基準エッチングによる加工の効率を高めることができる。
【0081】
ガラス基板及び触媒定盤31を回転させながら、噴射ノズル42から基板温度を調整するための温度調整液を基板に吹き付け、また、処理液供給ノズル91から処理液を基板表面に供給した。温度調整液も処理液も40℃の純水である。常温、すなわち、この時の環境温度であるクリーンルームの室温は23℃であって、温度調整液も処理液も常温より高い温度の設定になっている。このようにしてガラス基板Mの主表面M1上に40℃の純水を供給し、ガラス基板の主表面の温度を均一に高めるとともに、加工基準面33との間に40℃の純水を介在させた。その状態で、触媒定盤31の加工基準面33を、アーム部51の上下移動(両矢印D)により、ガラス基板の表面に接触又は接近させた。その際、ガラス基板に加えられる荷重(加工圧力)が100hPaに制御された。
その後、加工取り代が10nmとなった時点で、40℃の処理液の供給を止め、アーム部51の上下移動(両矢印D)により、触媒定盤31を、ガラス基板の主表面から所定の距離だけ離した。温度調整液は23℃の純水である洗浄液に連続的に切り替えて洗浄水を噴射ノズル42から供給し続けた。この間、ガラス基板及び触媒定盤31の回転は続けて、常温の純水によるスピン洗浄を行った。その後、洗浄水の供給を止めて、スピン乾燥を行った。しかる後、支持部21から常温のガラス基板Mを取り外して、ガラス基板を作製した。
【0082】
3.評価
触媒基準エッチングによる加工前後のガラス基板の主表面の表面粗さを、基板の中心の1μm×1μmの領域に対して、原子間力顕微鏡(AFM)を用いて測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.049nmと、要求値の0.08nmを大幅に下回る良好なものであった。
【0083】
触媒基準エッチングによる加工後のガラス基板の主表面の欠陥検査を、基板の周辺領域を除外した132mm×132mmの領域に対して、欠陥検査装置(KLA−Tencor社製 マスク/ブランク欠陥検査装置 Teron610)を用いて行った。欠陥検査は、SEVD(Sphere Equivalent Volume Diameter)換算で21.5nmサイズの欠陥が検出可能な感度で行った。SEVDは、欠陥を半球状のものと仮定したときの直径の長さである。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は72個であった。この検出された凸欠陥をエネルギー分散型X線分光法(EDX)により調べたところ、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は13個であった。ちなみに、後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は24個であった。40℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数をほぼ半減することができた。
また、実施例1の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.051nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も15個以下と少なかった。
実施例1の方法により、低欠陥、且つ高い平滑性の主表面を有するガラス基板が安定して得られた。
【0084】
B.多層反射膜付き基板の製造
次に、このようにして作製されたガラス基板の主表面上に、イオンビームスパッタ法により、シリコン膜(Si)からなる高屈折率層(膜厚4.2nm)とモリブデン膜(Mo)からなる低屈折率層(2.8nm)とを交互に、高屈折率層と低屈折率層とを1ペアとし、40ペア積層して、多層反射膜(膜厚280nm)を形成した。
その後、この多層反射膜上に、イオンビームスパッタ法により、ルテニウム(Ru)からなる保護膜(膜厚2.5nm)を形成した。尚、イオンビームスパッタリングにおけるガラス基板主表面の法線に対するMo、Si、Ruのスパッタ粒子の入射角度は、それぞれ、Moが50度、Siが45度、Ruが40度とした。
このようにして、多層反射膜付き基板を作製した。
【0085】
得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率をEUV反射率測定装置により測定した。
ガラス基板主表面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsで0.17nm)、反射率は64%と高反射率であった。
得られた多層反射膜付き基板の保護膜表面の欠陥検査を、ガラス基板の欠陥検査と同様に行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で17,504個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、50個(疑似欠陥は含まず)と少なかった。位相欠陥検査も合わせて行ったが、高い平滑性を持つため、検査時のバックグラウンドノイズが少なく、高感度な位相欠陥検査を行うことができた。
実施例1の方法により、低欠陥、且つ高い平滑性の保護膜表面を有する多層反射膜付き基板が得られた。
【0086】
C.反射型マスクブランクの製造
次に、このようにして作製された多層反射膜付き基板の保護膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素窒化物(TaBN)からなる下層吸収体層(膜厚50nm)を形成し、さらに、下層吸収体膜上に、ホウ化タンタル(TaB)ターゲットを使用し、アルゴン(Ar)ガスと酸素(O
2)ガスとの混合ガス雰囲気中で反応性スパッタリングを行い、タンタルホウ素酸化物(TaBO)からなる上層吸収体層(膜厚20nm)を形成することにより、下層吸収体層と上層吸収体層とからなる層吸収体膜(膜厚70nm)を形成した。
その後、多層反射膜付き基板の多層反射膜を形成していない裏面上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)ガスと窒素(N
2)ガスとの混合ガス雰囲気中での反応性スパッタリングにより、クロム窒化物(CrN)からなる裏面導電膜(膜厚20nm)を形成した。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランクを作製した。
【0087】
D.反射型マスクの製造
次に、このようにして作製された反射型マスクブランクの吸収体膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、吸収体膜のドライエッチングを行って、保護膜上に吸収体膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl
2)ガスを用いた。
その後、残存するレジストパターンを剥離し、洗浄を行なった。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクを作製した。
【0088】
実施例2.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から60℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0089】
実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.053nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を60℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.053nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は55個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は8個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。60℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥数を1/3に減らすことができた。
また、実施例2の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.056nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も10個以下と少なかった。
実施例2の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
【0090】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5mnサイズの欠陥(凸欠陥)が検出可能な感度で16,211(個致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度欠陥検査を行ったところ、47個(疑似欠陥は含まず)と少なかった。
実施例2の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例2の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0091】
実施例3.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から75℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:75℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0092】
実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.059nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を75℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.059nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は47個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は0個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。75℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を0個とすることができた。
また、実施例3の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.061nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も1個以下と少なかった。
実施例3の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
【0093】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で16,549個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、39個(疑似欠陥は含まず)と少なかった。
実施例3の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例3の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0094】
実施例4.
この実施例では、実施例1におけるCARE加工において、純水からなる処理液及び基板温度調整液の温度のみ40℃から80℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:80℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0095】
実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.06nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を80℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.06nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は46個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は0個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は24個であった。80℃でCARE加工を行った本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を0個とすることができた。
また、実施例4の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.063nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も1個以下と少なかった。
実施例4の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
【0096】
CARE加工における、ガラス基板表面の欠陥数と表面粗さの、処理液及び基板温度調整液の温度依存性を
図3に示す。ここで、処理液と基板温度調整液は同じ温度の純水としている。同図中のAは凸欠陥数(致命欠陥、疑似欠陥含む)、Bはケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)、そしてCは表面粗さ(Rms)を表す。常温の23℃に比べ、処理液及び基板温度調整液の温度を上げると凸欠陥数(致命欠陥、疑似欠陥含む)が減少し、その減少量はほぼケイ酸起因欠陥(致命欠陥、疑似欠陥含む)の減少量に一致している。ケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は、常温処理(23℃)の従来法の場合に比べ、処理液及び基板温度調整液の温度を40℃とするとほぼ半減、60℃とすると1/3になり、75℃以上で0個となる。一方で、表面粗さは温度の上昇とともに単調に増加するが、80℃の場合でも0.06nmであり、要求値の0.08nmを大幅に下回る良好なものである。尚、より一層小さな表面粗さが要求される場合は、使用する触媒定盤の触媒材料、パッド硬度、及び加工圧力などを最適化することによって改善可能である。
【0097】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で20,310個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、32個(疑似欠陥は含まず)と少なかった。
実施例4の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例4の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0098】
実施例5.
この実施例では、実施例2におけるCARE加工において、純水からなる洗浄水の温度のみ23℃固定から、80℃から40℃を経て23℃に3段階に変化するように変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例2と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:第1段階80℃、第2段階40℃、第3段階23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0099】
実施例2と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.052nmであり、実施例2の0.053nmとほぼ同じで、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、本CARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.052nmに向上した。
また、実施例2と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は48個であり、このうちケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数は3個であった。後述の比較例のところで述べるように、処理液の温度を常温(23℃)とし、基板加熱のための温度調整液も用いない従来法では、加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個で、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)は24個であった。本実施例により、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)数を従来法に比べ1/8に減らすことができた。また、洗浄液の温度を23℃と一定にした実施例2の場合のケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は8個である。洗浄液の温度を当初80℃とし、段階的に常温の23℃に下げることにより、23℃に固定した場合に対して、ケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)をほぼ1/3に減らすことができた。高温の洗浄液により、オルトケイ酸等の洗浄液への溶解度が高まり、洗浄液に溶出したオルトケイ酸等のケイ酸が十分に希釈排除された段階で、常温洗浄へ移行したため、上記効果が得られたものと考えられる。
また、実施例5の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.053nm以下と良好であり、ケイ酸起因の欠陥(致命欠陥、疑似欠陥含む)個数も13個以下と少なかった。
実施例5の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
【0100】
実施例2と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsが0.17nm)、反射率は64%と高反射率であった。
また、実施例2と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で18,436個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、42個(疑似欠陥は含まず)と少なかった。
実施例5の方法により、高平滑性で低欠陥の多層反射膜付き基板が得られた。
また、実施例5の方法により、低欠陥、且つ高い平滑性の表面状態を維持したEUV露光用の反射型マスクブランク及び反射型マスクが得られた。
【0101】
実施例6.
A.ガラス基板の製造
この実施例では、上面及び下面が研磨された6025サイズ(152mm×152mm×6.35mm)の合成石英ガラス基板を準備した。材料組成から明らかなように、合成石英ガラス基板の表面はケイ素酸化物である。尚、合成石英ガラス基板は、上述の粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたものである。
それ以外は、実施例2と同様の方法により、ガラス基板を作製した。すなわち、処理液及び基板温度調整液である純水の温度を60℃としたCARE加工により、表面がケイ素酸化物からなるガラス基板の製造を行った。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
基板温度調整兼洗浄液:純水
クリーンルームの室温:23℃
処理液及び基板温度調整液の温度:60℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0102】
実施例2と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.127nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.052nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を60℃とした触媒基準エッチングにより、二乗平均平方根粗さ(Rms)で0.127nmから0.052nmに向上した。
また、実施例2と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は42個であり、このうちケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は7個であった。
また、実施例6の方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.054nm以下と良好であり、ケイ酸起因の欠陥個数も11個以下と少なかった。
実施例6の方法により、高平滑性で且つ低欠陥のケイ素酸化物からなる主表面を有するガラス基板が安定して得られた。
【0103】
B.ハーフトーン型位相シフトマスクブランクの製造
次に、このようにして作製されたガラス基板の上面上に、モリブデンシリサイド(MoSi)ターゲットを使用し、アルゴン(Ar)と窒素(N
2)と酸素(O
2)との混合ガス雰囲気中で反応性スパッタリングを行い、モリブデンシリサイド酸化窒化物(MoSiON)からなる光半透過膜(膜厚88nm)を形成した。ラザフォード後方散乱分析法で分析した光半透過膜の膜組成は、Mo:5原子%、Si:30原子%、O:39原子%、N:26原子%であった。光半透過膜の露光光に対する透過率は6%であり、露光光が光半透過膜を透過することにより生じる位相差は180度であった。
【0104】
その後、光半透過膜上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と二酸化炭素(CO
2)と窒素(N
2)とヘリウム(He)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム酸化炭化窒化物(CrOCN)層(膜厚30nm)を形成し、さらに、その上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と窒素(N
2)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム窒化物(CrN)層(膜厚4nm)を形成し、クロム酸化炭化窒化物(CrOCN)層とクロム窒化物(CrN)層との積層からなる遮光層を形成した。さらに、この遮光層上に、クロム(Cr)ターゲットを使用し、アルゴン(Ar)と二酸化炭素(CO
2)と窒素(N
2)とヘリウム(He)との混合ガス雰囲気中で反応性スパッタリングを行い、クロム酸化炭化窒化物(CrOCN)からなる表面反射防止層(膜厚14nm)を形成した。このようにして、遮光層と表面反射防止層とからなる遮光膜を形成した。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したArFエキシマレーザー露光用のハーフトーン型位相シフトマスクブランクを作製した。
【0105】
C.ハーフトーン型位相シフトマスクの製造
次に、このようにして作製されたハーフトーン型位相シフトマスクブランクの遮光膜上に、電子線描画(露光)用化学増幅型レジストをスピンコート法により塗布し、加熱及び冷却工程を経て、膜厚が150nmのレジスト膜を形成した。
その後、形成されたレジスト膜に対し、電子線描画装置を用いて所望のパターン描画を行った後、所定の現像液で現像してレジストパターンを形成した。
その後、このレジストパターンをマスクにして、遮光膜のドライエッチングを行って、光半透過膜上に遮光膜パターンを形成した。ドライエッチングガスとしては、塩素(Cl
2)と酸素(O
2)との混合ガスを用いた。
【0106】
その後、レジストパターン及び遮光膜パターンをマスクにして、光半透過膜のドライエッチングを行って、光半透過膜パターンを形成した。ドライエッチングガスとしては、六フッ化硫黄(SF
6)とヘリウム(He)との混合ガスを用いた。
その後、残存するレジストパターンを剥離し、再度レジスト膜を塗布し、転写領域内の不要な遮光膜パターンを除去するためのパターン露光を行った後、このレジスト膜を現像してレジストパターンを形成した。
その後、ウェットエッチングを行って、不要な遮光膜パターンを除去した。
その後、残存するレジストパターンを剥離し、洗浄を行った。
このようにして、低欠陥、且つ高い平滑性の表面状態を維持したArFエキシマレーザー露光用のハーフトーン型位相シフトマスクを作製した。
【0107】
尚、この実施例では、モリブデンシリサイド酸化窒化物(MoSiON)からなるからなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについて本発明を適用したが、モリブデンシリサイド窒化物(MoSiN)からなる光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、単層の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、多層構造の光半透過膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、多層構造の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクに限らず、単層の遮光膜を有するハーフトーン型位相シフトマスクや位相シフトマスクブランクについても、本発明を適用できる。また、ハーフトーン型位相シフトマスクブランクや位相シフトマスクブランクに限らず、レベンソン型位相シフトマスクブランクや位相シフトマスクブランク、クロムレス型位相シフトマスクブランクや位相シフトマスクブランクについても、本発明を適用できる。
【0108】
また、この実施例では、粗研磨加工工程、精密研磨加工工程、超精密研磨加工工程を経て得られたガラス基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、実施例1で行った局所加工工程およびタッチ研磨工程を経て得られたガラス基板の主表面に対して触媒基準エッチングによる加工を施す場合についても、本発明を適用することができる。
【0109】
比較例.
この比較例では、実施例1におけるCARE加工において、純水からなる処理液の温度を40℃から常温の23℃へ変更し、それ以外は、基板材料及びその前処理から反射型マスクの製造に至るまで実施例1と同様の方法で、ガラス基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを作製した。尚、基板温度調整液は用いていない。したがって、加工、洗浄条件は下記の通りである。
処理液:純水
洗浄液:純水
クリーンルームの室温:23℃
処理液の温度:23℃
洗浄液の温度:23℃
軸部71の回転数(ガラス基板の回転数):10.3回転/分
触媒定盤取付部72の回転数(触媒定盤31の回転数):10回転/分
加工圧力:100hPa
加工取り代:10nm
【0110】
実施例1と同様に、CARE加工による加工前後のガラス基板の主表面として用いる上面の表面粗さを測定した。
加工前の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.157nmであった。
加工後の主表面の表面粗さは、二乗平均平方根粗さ(Rms)で0.04nmと、要求値の0.08nmを大幅に下回る良好なものであった。上面の表面粗さは、処理液である純水の温度を23℃としたCARE加工により、二乗平均平方根粗さ(Rms)で0.157nmから0.04nmに向上した。
また、実施例1と同様に、CARE加工による加工後のガラス基板の上面の欠陥検査を行った。
加工後の主表面の凸欠陥の検出個数(致命欠陥、疑似欠陥含む)は80個であり、このうちケイ酸起因の欠陥数(致命欠陥、疑似欠陥含む)は24個であった。
また、この方法により、ガラス基板を20枚作製したところ、全数、表面粗さは、二乗平均平方根粗さ(Rms)で0.046nm以下と良好であったが、ケイ酸起因の欠陥個数は24〜45個と多かった。
比較例の方法では、高い平滑性は得られたものの、主表面に欠陥が多いガラス基板が製造された。
【0111】
実施例1と同様に、得られた多層反射膜付き基板についてEUV光(波長13.5nm)の反射率を測定した。
ガラス基板上面の高い平滑性により、保護膜表面も平滑性を保っており(Rmsで0.17nm)、反射率は64%と高反射率であった。
また、実施例1と同様に、得られた多層反射膜付き基板の保護膜表面の欠陥検査を行った。
保護膜表面の欠陥検出個数は、SEVD換算で21.5nmサイズの欠陥(凸欠陥)が検出可能な感度で17,872個(致命欠陥、疑似欠陥含む)となったが、21.5nmサイズの欠陥検査では疑似欠陥が大半を占める。SEVD換算で25nmサイズの欠陥(凸欠陥)が検出可能な感度で欠陥検査を行ったところ、103個(疑似欠陥は含まず)と多かった。
比較例の方法では、高い平滑性は得られたものの、欠陥の多い多層反射膜付き基板が製造された。
また、比較例の方法では、高い平滑性は得られたものの、欠陥の多い表面状態のEUV露光用の反射型マスクブランク及び反射型マスクが製造された。
【0112】
尚、上述した実施例では、反射型マスクブランク用基板や位相シフトマスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、バイナリーマスクブランクやナノインプリント用マスクブランクの主表面に対して、触媒基準エッチングによる加工を施す場合についても、本発明を適用できる。
また、上述した実施例では、マスクブランク用基板の主表面に対して、触媒基準エッチングによる加工を施す場合について本発明を適用したが、磁気記録媒体用基板の主表面に対して、触媒基準エッチングによる加工を施す場合にも、本発明を適用できる。