【文献】
A.T. Mozas-Calvache et al.,Method for photogrammetric surveying of archaeological sites with light aerial platforms,Journal of Archaeological Science,2011年10月21日,Vol. 39, No. 2,pp. 521-530
(58)【調査した分野】(Int.Cl.,DB名)
前記飛行体は方位センサを具備し、前記再帰反射体と前記カメラとの既知の関係と、前記方位センサで検出された前記飛行体の向きとに基づき、前記再帰反射体の測定結果をカメラの位置に補正する様構成した請求項1に記載の航空写真システム。
【発明を実施するための形態】
【0019】
以下、図面を参照しつつ本発明の実施例を説明する。
【0020】
先ず、
図1により、本実施例に係る航空写真システム1について説明する。
【0021】
該航空写真システム1は、主に航空写真装置2、トータルステーション(TS)3、地上基地4、遠隔操縦機5から構成される。
【0022】
前記航空写真装置2は、主に飛行体(後述)にジンバル機構を介して鉛直に支持された支持部材としてのシャフト6と、該シャフト6の下端、上端にそれぞれ設けられた下カメラ7、上カメラ8と、前記シャフト6の下端に設けられ、前記下カメラ7と一体化された再帰反射体としてのプリズム9と、前記地上基地4との間で通信を行う飛行体通信部11とを具備している。尚、前記下カメラ7、前記上カメラ8の光軸は、前記シャフト6の軸心と合致し、常に鉛直となる様に設けられている。前記プリズム9の光軸も鉛直となる様に設定され、更に該プリズム9と前記下カメラ7、前記上カメラ8との位置関係も既知となっている。尚、前記下カメラ7、前記上カメラ8及び前記プリズム9の光軸が鉛直になる様支持されればよく、前記シャフト6の軸心は必ずしも鉛直でなくてもよい。
【0023】
前記プリズム9は下方に向けて設けられ、該プリズム9下方全範囲から入射される光を再帰反射する光学特性を有している。又、前記プリズム9の代りに反射シールを前記シャフト6の所定位置に設けてもよい。
【0024】
前記トータルステーション3は既知点に設けられ、前記プリズム9を追尾しつつ、該プリズム9の3次元座標を測定する。前記トータルステーション3は前記地上基地4と有線或は無線により電気的に接続され、測定された3次元座標は座標データとして前記地上基地4に入力される。
【0025】
前記地上基地4は、例えばPCであり、演算機能を有する演算装置、データ、プログラムを格納する記憶部、更に基地通信部12を有し、該基地通信部12と前記飛行体通信部11との間で無線通信が可能となっている。
【0026】
前記遠隔操縦機5は、前記航空写真装置2の飛行を遠隔操作するものであり、又前記下カメラ7、前記上カメラ8のシャッタを遠隔操作可能となっている。
【0027】
前記航空写真システム1の作動の概略を説明する。
【0028】
前記遠隔操縦機5により、前記航空写真装置2を遠隔操作により予定している飛行コースを飛行させる。前記航空写真装置2が飛行中、前記トータルステーション3が前記プリズム9を追尾し、該プリズム9の3次元座標をリアルタイムで測定する。
【0029】
前記航空写真装置2の前記下カメラ7、前記上カメラ8は所定時間間隔で写真測量用の静止画像を撮影する様に設定される。静止画像は静止画像データとして前記地上基地4に送信され、又静止画像を撮影したタイミング(撮影時刻)が前記地上基地4に送信される。
【0030】
該地上基地4は、前記基地通信部12を介して静止画像データ、該静止画像データを取得した撮影時刻を受信する。静止画像データ、撮影時刻は記憶部に格納される。又前記地上基地4は、前記トータルステーション3からの測定結果を受信し、前記撮影時刻の3次元座標を取得し、該3次元座標と前記静止画像とを関連付ける。尚、静止画像は前記航空写真装置2に格納されてもよい。この場合は、静止画像は撮影時刻と関連付けられ、飛行後前記地上基地4に於いて撮影時刻に基づき前記静止画像と前記3次元座標とを関連付けてもよい。
【0031】
前記下カメラ7、前記上カメラ8による静止画像の撮影は、前記遠隔操縦機5によりマニュアルで実行してもよい。この場合も、撮影時刻は前記航空写真装置2から前記地上基地4に送信される。
【0032】
前記下カメラ7、前記上カメラ8の内どちらにより撮影を実行するかは、測定対象物に応じて適宜選択される。例えば、農作物、或は地表の構造物等が測定対象物である場合は、前記下カメラ7により鉛直下方の撮影を行い、橋桁、或はトンネルの天井が測定対象物の場合は、前記上カメラ8により鉛直上方の撮影が行われる。更に、橋桁、或はトンネルの天井等の測定では、前記下カメラ7及び前記上カメラ8により鉛直下方、鉛直上方を同時に撮影してもよい。
【0033】
前記下カメラ7、前記上カメラ8により静止画像が取得されると共に前記トータルステーション3により、静止画像を撮影した時点の前記プリズム9の3次元座標(地上座標)が測定される。測定された3次元座標は座標データとして前記地上基地4に送信される。
【0034】
前記下カメラ7、前記上カメラ8と前記プリズム9とは既知の値だけ離れているが、測定精度が要求されない場合は、前記プリズム9の位置が前記下カメラ7、前記上カメラ8の位置とされる。又、精度が要求される場合は、前記地上基地4に於いて、前記下カメラ7、前記上カメラ8と前記プリズム9との既知の関係から、又方位センサ29(後述)が検出する飛行体15(後述)の方向から該プリズム9の位置に基づき、前記下カメラ7、前記上カメラ8の位置が求められる。
【0035】
2地点での静止画像が撮影され、2つの撮影地点の座標が測定されると、2地点間の距離(基線長)が求められる。而して、写真測量に必要な2つの静止画像の撮影地点の座標と基線長が求められる。更に、静止画像の撮影地点の座標は、前記トータルステーション3で測定されるので高精度であり、高精度の写真測量が可能となる。
【0036】
次に、
図2、
図3に於いて、前記航空写真装置2について説明する。
【0037】
前記飛行体15は、放射状に延出する複数で且つ偶数のプロペラフレーム17を有し、各プロペラフレーム17の先端にプロペラユニットが設けられる。該プロペラユニットは、前記プロペラフレーム17の先端に取付けられたプロペラモータ18と、該プロペラモータ18の出力軸に取付けられたプロペラ19により構成される。前記プロペラモータ18により前記プロペラ19が回転され、前記飛行体15が飛行する様になっている。
【0038】
前記飛行体15は中心に、中空円筒状の主フレーム21を有し、該主フレーム21の上端には外方に向って延出する外フランジ22、下端には中心に向って延出する内フランジ23が設けられている。該内フランジ23の中心部には、円形の孔24が形成される。
【0039】
前記プロペラフレーム17は棒状であり、前記主フレーム21の軸心と直交する平面内に配設され、水平方向に等角度間隔で所定数(少なくとも4本、好ましくは8本、図示では8本(17a〜17h)を示している)設けられている。前記プロペラフレーム17の内端部は、前記主フレーム21を貫通すると共に前記外フランジ22に固着されている。
【0040】
前記主フレーム21を上下に貫通する様に前記シャフト6が設けられ、該シャフト6はジンバル25により鉛直となる様に支持され、該ジンバル25は防振部材26を介して前記内フランジ23に設けられている。
【0041】
前記ジンバル25は直交する2方向の揺動軸27a,27bを有し、前記シャフト6を直交する2方向に揺動自在に支持する。前記防振部材26は、前記プロペラモータ18、前記プロペラ19が回転した際の振動を吸収し、振動が前記シャフト6に伝達されない様にしている。
【0042】
傾斜センサ28は前記シャフト6の下端に設けられ、前記飛行体15の加速度の変化により生じる急なジンバル25の傾きを検出する。又、傾斜センサ28は前記シャフト6が鉛直に対して傾斜した場合、鉛直線と前記シャフト6の軸心との角度を検出するものであり、前記傾斜センサ28の検出結果は後述する制御装置35(
図4参照)に送出される。
【0043】
方位センサ29が前記主フレーム21の所要位置に設けられ、該方位センサ29は前記飛行体15の向きを検出する。該飛行体15の向きとしては、例えば、シャフト6の軸心と前記プリズム9の光軸を含む平面に対して垂直な方向を前後方向とする。
【0044】
前記シャフト6の下端には制御ボックス31が設けられる。該制御ボックス31の内部には、前記制御装置35(
図4参照)が収納されている。前記制御ボックス31の下面に前記下カメラ7が設けられ、該下カメラ7に対し既知の距離L、離反した位置にプリズム支柱32が垂設され、該プリズム支柱32の下端に前記プリズム9が設けられる。
【0045】
前記シャフト6の上端には、前記上カメラ8が設けられている。該上カメラ8の光軸、前記下カメラ7の光軸は前記シャフト6の軸心と一致しており、又前記プリズム9の光軸は前記シャフト6の軸心と平行となっている。前記下カメラ7は鉛直下方を撮影し、前記上カメラ8は鉛直上方を撮影する。
【0046】
前記制御ボックス31、前記下カメラ7、前記プリズム9等は、バランスウェイトとして機能し、前記シャフト6に外力が作用しない状態、即ち、フリーの状態では前記シャフト6は鉛直な状態となる様に前記制御ボックス31、前記下カメラ7、前記プリズム9の重量バランスが設定されている。
【0047】
前記制御ボックス31、前記下カメラ7、前記プリズム9等の、バランスウェイト機能で、前記シャフト6を鉛直に充分保持できる場合は特に設けなくてもよいが、前記シャフト6を鉛直姿勢に安定に保持する為、前記シャフト6が急激に傾斜した場合(前記飛行体15の姿勢が急激に変化した場合)に、迅速に鉛直状態に復帰できる様、バランス補助部材を設けてもよい。
【0048】
以下の例では、バランス補助部材としてダンパバネ16を設けた場合を説明する。
【0049】
前記プロペラフレーム17と前記シャフト6との間には、前記ダンパバネ16が掛渡される。該ダンパバネ16は少なくとも3本、好ましくは4本設けられ、前記ダンパバネ16は前記揺動軸27a,27bと平行に延出する前記プロペラフレーム17と前記シャフト6との間に設けられることが好ましい。
【0050】
又、4本の前記ダンパバネ16は、それぞれ前記シャフト6と前記プロペラフレーム17間に張力を作用させており、前記飛行体15が水平姿勢(前記プロペラフレーム17が水平な状態)で、張力のバランスにより前記シャフト6が鉛直状態を保つ様に設定されている。又、前記ダンパバネ16の張力、バネ定数は小さく設定されており、前記飛行体15が傾いた場合に、重力の作用で前記シャフト6が鉛直方向に向く様になっている。
【0051】
前記ダンパバネ16は、前記シャフト6を鉛直な状態に付勢する付勢手段であり、前記シャフト6が揺動、振動した場合に、迅速に鉛直状態に復帰させるものであり、振動を減衰させるものである。又、付勢手段としては、上記したダンパバネ16の他に前記ジンバル25の揺動軸27a,27bが回転した場合に、復帰方向に回転させる捩りコイルバネとしてもよい。
【0052】
前記航空写真装置2の制御系を、
図4を参照して説明する。
【0053】
前記制御ボックス31の内部に前記制御装置35が収納される。
【0054】
該制御装置35は、主に制御演算部36、クロック信号発生部37、記憶部38、撮像制御部39、飛行制御部41、ジャイロユニット42、モータドライバ部43、飛行体通信部11を具備している。
【0055】
前記下カメラ7、前記上カメラ8の撮影は、前記撮像制御部39によって制御され、又前記下カメラ7、前記上カメラ8によって撮影された画像は、画像データとして前記撮像制御部39に入力される。
【0056】
前記下カメラ7、前記上カメラ8としては、デジタルカメラが用いられ、静止画像が撮影できると共に動画像も撮影できる様になっている。又、撮像素子として、画素の集合体であるCCD、CMOSセンサ等が用いられ、各画素は撮像素子内での位置が特定できる様になっている。上記した様に、前記下カメラ7と前記上カメラ8の光軸は、前記シャフト6の軸心と合致しており、前記プリズム9の光軸は前記シャフト6の軸心と平行となっている。又、前記プリズム9の光軸と前記下カメラ7の光軸とは既知の位置関係となっている。
【0057】
前記記憶部38には、プログラム格納部とデータ格納部とが形成される。該プログラム格納部には前記下カメラ7、前記上カメラ8の撮影を制御する為の撮影プログラム、前記プロペラモータ18を駆動制御する為の飛行制御プログラム、取得したデータを前記地上基地4に送信し、又前記遠隔操縦機5からの飛行指令等を受信する為の通信プログラム、前記下カメラ7、前記上カメラ8で取得したデータを処理して格納する為のデータ処理プログラム、動画像を用いてトラッキングする為の画像トラッキングプログラム等のプログラムが格納されている。
【0058】
前記データ格納部には、前記下カメラ7、前記上カメラ8で取得した静止画像データ、動画像データ等が格納される。
【0059】
前記撮像制御部39は、前記制御演算部36から発せられる制御信号に基づき前記下カメラ7、前記上カメラ8の撮像に関する制御を行う。制御の態様としては、測定対象物に応じて使用するカメラの選定、前記下カメラ7、前記上カメラ8の同期制御、動画像を取得中、所定時間間隔で静止画像を取得する制御等であり、又前記下カメラ7、前記上カメラ8については前記クロック信号発生部37から発せられるクロック信号に基づき撮影時期が制御され、或は同期制御される。
【0060】
前記方位センサ29は前記飛行体15の向きを検出し、検出結果を前記制御演算部36に入力し、前記ジャイロユニット42は前記飛行体15の飛行状態での姿勢を検出し、検出結果を前記制御演算部36に入力する。
【0061】
前記飛行体通信部11は、前記遠隔操縦機5で前記飛行体15の飛行が遠隔操作される場合に、前記遠隔操縦機5からの操縦信号を受信し、操縦信号を前記制御演算部36に入力する。或は、前記下カメラ7、前記上カメラ8で撮影した画像データを地上側の前記地上基地4に送信する等の機能を有する。
【0062】
前記制御演算部36は、前記記憶部38に格納された所要のプログラムに基づき画像取得する為に必要な制御を実行する。又、前記制御演算部36は、前記操縦信号及び前記ジャイロユニット42の検出結果に基づき、飛行に関する制御信号を演算し、前記飛行制御部41に出力する。
【0063】
該飛行制御部41は、前記制御演算部36から飛行に関する制御信号が入力されると、該制御信号に基づき前記モータドライバ部43を介して前記プロペラモータ18を所要の状態に駆動する。
【0064】
図5は、前記航空写真装置2、前記トータルステーション3、前記地上基地4、前記遠隔操縦機5の関連を示す図である。
【0065】
前記地上基地4は、前記基地通信部12、演算装置44、基地記憶部45を具備している。
【0066】
前記基地通信部12は、前記航空写真装置2、前記トータルステーション3間の通信を行う。前記基地通信部12は、前記航空写真装置2からの画像データ、画像データを撮影した時点のシャッタタイミング情報を受信し、又前記トータルステーション3からの座標データを受信する。前記演算装置44は、クロック信号発生部を有し、受信した画像データ、シャッタタイミング情報、座標データをクロック信号に関連付け、クロック信号に基づき時系列のデータとして処理し、前記基地記憶部45に保存する。
【0067】
該基地記憶部45には、画像データ、座標データを格納する格納領域を具備すると共に写真測量に必要な演算プログラム、前記基地通信部12と前記飛行体通信部11間で通信を行う為の通信プログラム、シャッタタイミング、測量データに基づき静止画像を取得した撮影位置を演算するプログラム等のプログラムが格納されている。
【0068】
以下、本実施例に係る前記航空写真装置2の作動について説明する。
【0069】
前記飛行体15の飛行を制御する場合、2つのプロペラモータ18を1組としてプロペラの駆動を制御する。例えば、プロペラモータ18a,18b、プロペラモータ18c,18d、プロペラモータ18e,18f、プロペラモータ18g,18hをそれぞれ1組として、プロペラ19a,19b、プロペラ19c,19d、プロペラ19e,19f、プロペラ19g,19hの回転駆動を個別に制御する。
【0070】
例えば、前記プロペラモータ18a〜18hを均等に駆動し、前記プロペラ19a〜19hの回転による推力を同じに制御すれば、前記飛行体15は垂直に上昇する。
【0071】
又、水平方向に飛行(移動)させる場合、例えば
図6に示される様に、図中左方に移動させる場合は、前記プロペラモータ18e,18fを増速回転させ、前記プロペラ19e,19fの推力を、前記プロペラ19a,19bより増大させると、前記飛行体15が傾斜し、推力は斜め下方に作用するので、水平分力が発生して前記飛行体15が水平方向に移動する。
【0072】
前記飛行体15が傾斜した状態でも、重力の作用によって前記シャフト6は鉛直を維持する。従って、前記下カメラ7、前記上カメラ8の光軸も鉛直状態を維持し、同時に前記プリズム9の光軸も鉛直を維持する。前記下カメラ7は鉛直下方の画像を取得し、前記上カメラ8は鉛直上方の画像を取得する。尚、ここでは、前記下カメラ7により下方の画像が取得される場合を説明する。
【0073】
前記トータルステーション3は、前記プリズム9を視準し、又追尾しつつ該プリズム9の位置(3次元座標)をリアルタイムで測定する。
【0074】
前記航空写真装置2は前記遠隔操縦機5により操縦され、該航空写真装置2の飛行中、前記下カメラ7により動画像撮影しつつ、所要時間間隔で静止画像を取得する。尚、静止画像を撮影する時間間隔、撮影時期については、予めプログラムしておいてもよく、或は前記遠隔操縦機5により静止画像の撮影地点を選択し、撮影の指令を発してもよい。尚、以下は、予めプログラムされた時間間隔で静止画像を撮影する場合を説明する。
【0075】
前記制御演算部36は前記撮像制御部39に前記下カメラ7の撮影に関する制御指令を発する。前記撮像制御部39は、制御指令に基づき、前記下カメラ7にシャッタ信号を発する。前記下カメラ7は、シャッタ信号に基づき静止画像を撮影する。又、前記撮像制御部39からのシャッタ信号は前記飛行体通信部11を介して前記地上基地4に送信され、該地上基地4に於いて静止画像毎の撮影時刻が記録される。
【0076】
更に、シャッタ時刻を受信した際の、前記プリズム9の前記トータルステーション3による測定結果が取得され、静止画像を取得した位置(3次元位置)が特定される。
【0077】
又、前記下カメラ7と前記プリズム9との位置関係は既知で、且つ固定されている。更に、前記方位センサ29によって前記飛行体15の向きが検出されるので、既知の位置関係と前記飛行体15の向きから測定値を補正することができ、補正により前記下カメラ7の3次元位置、即ち該下カメラ7の撮影位置を求めることができる。
【0078】
次に、隣接する2地点で撮影した静止画像により写真測量を実行する為には、2地点での2つの画像の相互標定を行う必要があり、相互標定を実行する為には、2つの静止画像間で共通する少なくとも5の特徴点を決定する必要がある。
【0079】
特徴点を設定するには、最初の画像からエッジ処理等の画像処理を行い特徴点を抽出し、動画像トラッキングにより次の静止画像中に共通する特徴点を特定する。
【0080】
尚、動画像トラッキングについては特許文献3に記載されている。
【0081】
相互標定後、前記撮影地点の3次元座標に基づき絶対標定が行われることで写真測量が行われる。
【0082】
尚、写真測量については、静止画像データが前記地上基地4に送信される度に、リアルタイムで実行してもよく、或は飛行完了迄の静止画像データ、測量データを前記地上基地4で保存し、飛行後静止画像データ、測量データに基づき写真測量を実行してもよい。
【0083】
上記した様に、静止画像撮影位置は前記トータルステーション3により測定されるので、高精度であり、更に、衛星の電波が届かない環境でも前記航空写真装置2による写真測量が可能となる。
【0084】
上記説明では、前記トータルステーション3により前記プリズム9の位置がリアルタイムで測定され、静止画像撮影位置をシャッタタイミングと同期させて取得したが、前記トータルステーション3が所定時間間隔で距離測定のデータを取得する場合を説明する。
【0085】
前記航空写真装置2による撮影タイミング(シャッタタイミング)と前記トータルステーション3が座標データを取得するタイミングが必ずしも一致していない場合がある。
【0086】
図7は、撮影タイミングと測量データを取得するがタイミング同期していない場合の撮影位置の3次元座標を取得する方法を示している。
【0087】
前記下カメラ7による撮影がI1の時間間隔で実行され、前記トータルステーション3による測量結果がI2(I2<I1)の時間間隔で実行されたとすると、撮影時刻と合致して測定結果が取得されることは殆どない。
【0088】
前記航空写真装置2からのシャッタタイミングを受信すると、クロック信号47からシャッタタイミングの時間が分る。又、I2の時間間隔で測量結果が取得されており、各測量結果が取得された時間もクロック信号47から特定できる。
【0089】
前記シャッタタイミングs(時間ts)に対し時間的に前後に位置する測定結果d1,d2を選択し、クロック信号47から各測定結果d1,d2を測定した時の時間(t1,t2)を特定する。
【0090】
時間tsと時間t1,t2の関係を用いて、前記測定結果d1,d2の前記シャッタタイミングsに於ける測定値を内挿により求めることができる。
【0091】
而して、撮影タイミングと測定タイミングとが同期していなくても、正確な位置測定が行える。
【0092】
尚、上記説明では、前記シャフト6の下端、上端にそれぞれ前記下カメラ7、前記上カメラ8を設けたがいずれか一方を省略してもよい。更に、前記下カメラ7を省略する場合は、前記シャフト6の下端に前記プリズム9を設けてもよい。該プリズム9を前記シャフト6の下端に設ける場合は、前記上カメラ8と前記プリズム9の光軸が合致するので、前記トータルステーション3による測定結果を補正する必要がなくなる。
【0093】
又、前記シャフト6は、重力の作用で鉛直方向に向く様、前記ジンバル25により支持されたが、前記揺動軸27a,27b(
図3参照)にそれぞれモータを連結し、前記傾斜センサ28からの傾斜信号に基づき強制的に前記揺動軸27a,27bを傾きとは逆方向に回転し、鉛直状態を維持する様に構成してもよい。