【0030】
式(I)のSTS誘導体の非限定例には、以下のものが含まれる:
スタウロスポリン(STS);化学名[9S−(9α,10β,11β,13α)]−2,3,10,11,12,13−ヘキサ−ヒドロ−10−メトキシ−9−メチル−11−(メチルアミノ)−9,13−エポキシ−1H,9H−ジインドロ[1,2,3−gh:3’,2’,1’−lm]ピロロ[3,4−j][1,7]ベンゾジアゾニン−1−オン、CAS番号62996−74−1:
【化2】
PKC412、別名ミドスタウリン、4’−N−ベンゾイルスタウロスポリン又はCGP41251;化学名[9S−(9α,10β,11β,13α)]−N−(2,3,10,11,12,13−ヘキサヒドロ−10−メトキシ−9−メチル−1−オキソ−9,13−エポキシ−1H,9H−ジインドロ[1,2,3−gh:3’,2’,1’−lm]ピロロ[3,4−j][1,7]ベンゾジアゾニン−11−イル)−N−メチルベンズアミド;CAS番号120685−11−2:
【化3】
K252a、別名SF2370;化学名9S,10R,12R)−2,3,9,10,11,12−ヘキサヒドロ−10−ヒドロキシ−9−メチル−1−オキソ−9,12−エポキシ−1H−ジインドロ[1,2,3−fg:3’,2’,1’−kl]ピロロ[3,4−i][1,6]ベンゾジアゾシン−10−カルボン酸メチルエステル;CAS番号99533−80−9:
【化4】
UCN−01、別名7−ヒドロキシ−スタウロスポリン;化学名(9S)−2,3,10,11,12,13−ヘキサヒドロ−3α−ヒドロキシ−10α−メトキシ−9−メチル−11α−メチルアミノ−9β,13β−エポキシ−1H,9H−ジインドロ[1,2,3−gh:3’,2’,1’−lm]ピロロ[3,4−j][1,7]ベンゾジアゾニン−1−オン;CAS番号112953−11−4:
【化5】
CEP−701、別名レストールチニブ;化学名(9S,10S,12R)−2,3,9,10,11,12−ヘキサヒドロ−10−ヒドロキシ−10−(ヒドロキシメチル)−9−メチル−9,12−エポキシ−1H−ジインドロ[1,2,3−fg:3’,2’,1’−kl]ピロロ[3,4−i][1,6]ベンゾジアゾシン−1−オン;CAS番号111358−88−4:
【化6】
SB−218078;化学名9、10、11、12−テトラヒドロ−9,12−エポキシ−1H−ジインドロ[1,2,3−fg:3’,2’,1’−kl]ピロロ[3,4−i][1,6]ベンゾジアゾシン−1,3(2H)−ジオン;CAS番号135897−06−2:
【化7】
【実施例】
【0048】
材料及び方法
真核生物の細胞培養及び小分子干渉RNA(siRNA)のトランスフェクション:この試験のために、本発明者らはT98G、U118MG、U251MG及びU87MGヒトグリア芽細胞腫細胞系を用いた。T98G及びU251MG細胞はイーグルのMEM培地で、U118MGはDMEM培地(Sigma−Aldrich)で、U87MGはDMEM/F−12培地(Gibco Products、Invitrogen)で、37℃で5%CO2の加湿雰囲気内で培養し、培地には、10%熱不活性化FCS及びペニシリン(100単位/mL)−ストレプトマイシン(100Ag/mL)を加えた。小分子干渉RNA(siRNA)のトランスフェクションは、製造業者の指示に従って、リポフェクトアミンRNAiMAX試薬(Invitrogen)で実施した。リバーストランスフェクションが96ウェルプレートで実施されたCellTiter−glo及びカスパーゼ−gloアッセイを除いて、全ての実験でトランスフェクションはフォワードトランスフェクションプロトコルを用いて実施された。以下のsiRNA配列が用いられた:スクランブルされた(5’−GUA ACA AUG AGA GCA CGG C−3’;配列番号4)、PME−1(5’−GGA AGU GAG UCU AUA AGC A−3’;配列番号1)、PME−1(5’−UCA UAG AGG AAG AAG AAG A−3’;配列番号2)又はPME−1(5’−AGG UCA AGA AUC CUG AAG A−3’;配列番号3)。
【0049】
化学的阻害剤及び薬剤:H−7、H−8、H−89、塩化ケレリトリン(Chl Cl)、スニチニブ、タンデュチニブ、ラパチニブ、バンデタニブ、PKC412及びK252aを含有する小さな阻害剤スクリーニングセットを、Biaffin GmbH & Co KGから購入した。塩酸トポテカンは、Selleck Chemicalsから購入した。UO126、LY294002、RO−31−8220、GO6976及びSB218078は、Calbiochemから購入した。スタウロスポリン(STS)、CEP−701、UCN−01は、Sigma−Aldrichから得られた;Tocris Bioscienceからのテモゾロマイド(TMZ)、アルシリアフラビンA及びK252c;Enzo Life Sciencesからのレベッカマイシン及びLC laboratoriesからのエンザスタウリン。汎カスパーゼ阻害剤Z−VAD−FMK、PP2A阻害剤オカダ酸、並びに活性化剤セレン酸ナトリウム及びキシルロース−5−ホスフェートは、Sigma−Aldrichから得られた。別のPP2A活性化剤FTY720は、Cayman chemicalsから購入した。ヒト組換え体Fc−FasL融合タンパク質及びヒト組換え体イソロイシンジッパーTRAIL(TRAIL)は、John Eriksson教授(Åbo Akademi University)から寄贈された。供給業者によって推奨される通りに、全ての化学物質は水又はDMSOのいずれかで再構成した。
【0050】
ウェスタンブロット法及び抗体:培養及び処理された細胞を2×SDS試料緩衝液/Laemmli緩衝液に溶解し、沸騰させ、10%アクリルアミドゲルを用いてSDS−PAGEによって分解した。タンパク質をPVDF膜に移した。膜をブロックし、5%ミルク−PBS−Tween20中で一次抗体の必要な希釈溶液及び二次抗体の1:5000希釈溶液と一緒に必要な時間インキュベートし、強化化学発光(ECL)によって発光させた。抗PME−1(クローンH−226)及び抗CIP2A(クローン2G10−3B5)抗体(1:1000希釈溶液)は、Santa Cruz Biotechnologyから購入した。抗アクチン(クローンAC−40)抗体(1:10,000希釈溶液)は、Sigma−Aldrichから購入した。ウェスタンブロットの濃度測定分析は、MCID画像アナライザーソフトウェアを用いて実施した。
【0051】
細胞生存力アッセイ:細胞生存力は、代謝活性のある生存可能な細胞の指標として細胞性ATPレベルを測定する、CellTiter−glo(CTG)アッセイで判定した。CTG試薬キットをPromega Corp.から購入し、その推奨に従ってアッセイを実施した。アッセイは白色ポリスチレン96ウェルプレート(Nunc、Thermo Fisher Scientific Inc.)で実施し、発光はPerkin Elmer Victor2プレートリーダーで測定した。
【0052】
カスパーゼ−3及び−7の活性の分析:カスパーゼ−3及び−7の活性は、カスパーゼ−Glo3/7アッセイ(Promega Corp.)と命名された、カスパーゼ−3及び−7標的ペプチドDEVDを含有する基質を利用する発光に基づく方法で測定した。アッセイは製造業者の指示に従って白色ポリスチレン96ウェルプレート(Nunc、Thermo Fisher Scientific Inc.)で実施し、発光はPerkin Elmer Victor2プレートリーダーで測定した。
【0053】
サブG0/G1画分推定によるアポトーシスアッセイ:ヨウ化プロピジウム(PI)で染色された断片化核を含有するサブG0/G1画分の百分率を、アポトーシス細胞の目安としてとった。3.5〜4×10
4個の細胞を24ウェルプレートに平板培養し、siRNAで48時間トランスフェクトさせ、次に新鮮な培地で試験化合物の指示濃度で処理した。24時間の処理の後、浮遊細胞及び付着細胞の両方を遠心分離によって収集した。細胞ペレットは、PBSに40mMの三ナトリウムシトレート(Merck)、0.3%Triton X−100(Sigma−Aldrich)及び50μg/mlのヨウ化プロピジウム(Sigma−Aldrich)を含有する、400μlの低張PI緩衝液に再懸濁させ、暗室で10分の間室温でインキュベートした。PIで染色した核のフローサイトメトリー分析を実施し、記録したデータは、FACScanのフローサイトメーター及びソフトウェア(Becton Dickinson)をそれぞれ用いて分析した。
【0054】
汎カスパーゼ阻害剤を用いる実験では、トランスフェクションの18時間後からPI染色まで、30μMのZ−VAD−FMKを含有する増殖培地に細胞を保った。
【0055】
コロニー形成アッセイ:6ウェルプレートに超低密度(4〜6×10
3)で平板培養された細胞を、それらが小さなコロニーをつくるまで約7日の間増殖させた。製造業者の指示に従ってリポフェクトアミンRNAiMAX試薬(Invitrogen)を用いて、次にこれらの細胞をスクランブル又はPME−1のsiRNAでトランスフェクトさせた。48時間後に、化学薬剤の指示濃度による処理をさらに48時間与えた。細胞コロニーをPBSで洗浄し、3.7%ホルムアルデヒドで固定し、各々室温で15分の間0.2%クリスタルバイオレット溶液(10%エタノールで作製)で染色した。過剰な染色剤は、PBSによる反復洗浄によって除去した。プレートを乾燥させ、オリンパスSP−600UZカメラ又はEpson perfection V700スキャナで撮影し、ImageJで分析した。
【0056】
統計分析:試料平均の間の等しい分散を仮定する対応のないスチューデントのt検定を用いて、2群のデータの平均値間の差の有意水準を評価した。全てのp値は両側性であった。確率値p<0.05のパラメータは統計的に有意なものとして表され、p<0.001は非常に有意な差として表された。
【0057】
結果
がん細胞の生存及び異なる化学薬剤への感受性におけるPME−1の役割を研究するために、PME−1タンパク質レベルを有効に低減するために、ヒトグリア芽細胞腫T98G細胞をPME−1 siRNAで72時間、一時的にトランスフェクトさせた(
図1A)。正常レベル又は低減されたレベルのPME−1を含有するT98G細胞(配列番号4に表すスクランブルsiRNA又は配列番号1に表すPME−1 siRNAでそれぞれトランスフェクトさせた細胞)を、セリン−トレオニンタンパク質キナーゼの広く特異的な阻害剤(H7、H8、H89、塩化ケレリトリン、UO126、LY294002、及びスタウロスポリン)、チロシンキナーゼ阻害剤(スニチニブ、タンデュチニブ、ラパチニブ及びバンデタニブ)、DNAトポイソメラーゼI阻害剤(トポテカン)、並びに多形神経膠芽腫(GBM)の処置のために現在用いられているDNAメチル化薬剤、テモゾロマイド(TMZ)を含む異なる化学薬剤で処理した。
【0058】
siRNAで48時間トランスフェクトさせたT98G細胞に薬剤処理を24時間与え、その後溶解し、それらの核は低張ヨウ化プロピジウム緩衝液を用いて染色した。溶解物は、断片化核のサブG0/G1画分の変化について、フローサイトメトリー(FACS)によって分析した(
図1B)。核の凝縮及び断片化はアポトーシスの重要な生化学的特徴であり、サブG0/G1分析はアポトーシスの検出のために広く使われている(FEBS Lett.、1986、194(2):347〜50;Cytometry、1991、12(4):323〜329;Nature Protocols、2006、1:1458〜1461)。
【0059】
図1Bに例示されるように、インタクトなレベルのPME−1を発現するT98G細胞は、TMZ及びSTS以外の薬物による処置に良好に応答しなかった。しかし、誘導された核断片化の非常に高いレベルで判断されるように、PME−1の消失はSTSへの細胞の感受性を著しく増加させた。PME−1の消失は、試験した全ての化学物質のアポトーシス誘導作用をある程度増加させたが、H7、スニチニブ、LY294002及びTMZの作用だけが中等度とみなされた。換言すると、大部分の化合物(
図1B)、又は細胞死誘導リガンド、FasL(組換えFc−FasL融合タンパク質)及びTRAIL(
図1C)による細胞の処置は同じ傾向を示さなかったので、PME−1消失の相乗効果はSTSに特異的であることが見出された。
【0060】
さらに、STSは、スクランブルsiRNAによるトランスフェクション細胞で細胞死を誘導しなかった濃度で、PME−1減少細胞で用量依存的にアポトーシスを誘導することが見出された(
図1D)。しかし、50nMより高い濃度では、対照の(スクランブルsiRNAでトランスフェクトさせた)T98G細胞においてさえも、STSは単独で細胞死を誘導し始めた。
【0061】
次に、STSへのグリア芽細胞腫細胞の感受性に及ぼすPME−1発現の作用を、T98Gグリア芽細胞腫細胞及び別のグリア芽細胞腫細胞系U118MGでのコロニー形成アッセイによって試験した。この実験のために、これらの細胞を小さなコロニーの形成まで6ウェルプレートで増殖させ、それらのコロニーは、次にスクランブル又はPME−1のsiRNAで48時間トランスフェクトさせ、続いて指示された濃度のSTSでさらに48時間処理した。コロニーをホルムアルデヒドで固定し、クリスタルバイオレットで染色し、画像をImage Jで分析した。インタクトなレベルのPME−1を発現する細胞は、STS処置に良好に応答しなかったが、PME−1消失は細胞を感作し、コロニーのほとんど完全な喪失をもたらした(
図1E及び1F)。類似した結果が、両方のグリア芽細胞腫細胞系で得られた。
【0062】
上の実験で使用したPME−1 siRNA(配列番号1)の配列特異的標的外作用の可能性を排除するために、3つの異なるPME−1特異的siRNA配列(配列番号1〜3)をT98G細胞にトランスフェクトさせ、STS処置の後にアポトーシス性核断片化を分析した(
図2A)。これらのPME−1 siRNAの有効性をウエスタンブロット法で測定し(
図2B)、バンド強度を定量化してベータアクチンに対して標準化した(
図2C)。全てのPME−1 siRNA配列は、グリア芽細胞腫T98G細胞をSTS媒介アポトーシスに感作させることができた。スクランブルsiRNAのトランスフェクションに起因するあらゆる可能なバックグラウンド効果を排除するために、トランスフェクションされなかったT98G細胞をSTSの漸増濃度で処理し、これらの細胞でのアポトーシスの核断片化をPME−1 siRNA及び同じ濃度のSTSを受けた細胞と比較した(
図2D)。30nMより高い濃度のSTS単独で、限定量の細胞死が観察された。他方、PME−1が下方制御された細胞は、この実験で用いられた最も低い濃度でも、STS誘導細胞死に非常に感受性であった。
【0063】
PME−1減少細胞でSTSによって誘導される細胞致死の特徴を調べるために、グリア芽細胞腫T98G細胞の生存力に及ぼすPME−1 siRNAとSTS処理とのこの二重組合せの影響を、細胞−力価−glo(CTG)アッセイによって先ず分析した(
図3A)。PME−1減少は多少細胞生存力を低減するが、同じ細胞がSTS処理も受けたときには細胞生存力の急激な低減があったので、結果はサブG0/G1分析と強く相関する。
【0064】
アポトーシスの別の生化学的特徴は、エフェクターシステイン−アスパラギン酸プロテアーゼカスパーゼー3及び7の活性化である。PMEー1減少単独は、カスパーゼ3/7の活性を2倍を超えて増加させることが見出され、それは、STS処理と組み合わせると6倍以上上昇し(
図3B)、カスパーゼがアポトーシス誘導に関与することを示唆する。さらにカスパーゼ誘導の役割をさらに検証するために、PME−1 siRNA及びSTS処理を受けた細胞を実験期間中汎カスパーゼ阻害剤、z−VAD−fmkで処理し、アポトーシスを核断片化アッセイによって分析した(
図3C)。本発明者らは、PME−1減少細胞でのSTS媒介アポトーシスの、カスパーゼ活性の阻害による完全な逆転を見出し、このアポトーシスがカスパーゼの誘導に完全に依存することが示唆された。
【0065】
次に、本発明者らが重視したのは、PME−1によって媒介される、STS誘導アポトーシスに対するグリア芽細胞腫細胞の抵抗性の背後にある可能な機構を調査することであった。PME−1の唯一の確立された直接標的はPP2Aであるので、それがPME−1阻害の影響を元に戻し、したがって細胞生存を促進するはずであるとの推測により、PP2Aの化学的阻害剤、オカダ酸(OA)を用いた。実際に、STS処理の前の24時間のOAでグリア芽細胞腫T98G細胞の前処理は、PME−1 siRNA及びSTS媒介アポトーシスから細胞を用量依存的に救済するのに十分だった(
図4A)。これは、本発明者らが、これらのPP2A媒介アポトーシス作用がPME−1に特異的であるか、他のPP2A阻害/調節タンパク質と共有されるかどうかをさらに調べることにつながり、STS処理に応じてグリア芽細胞腫細胞をアポトーシスに感作させるそれらの能力について、CIP2A及びPME−1減少を比較した。CIP2A下方制御はアポトーシスを非常にわずかに増加させることを見出したので、それは、PME−1減少細胞(
図4B)によって媒介されるような相乗作用とみなすことができず、これらの作用がPME−1下方制御に特異的であるという考えを支えた。それらのそれぞれのsiRNAによるCIP2A及びPME−1の有効な下方制御は、ウェスタンブロット法によって検証された(
図4C)。
【0066】
上の全ての結果は、PME−1陽性のグリア芽細胞腫細胞がSTSによる処置に良好に応答しないことを実証する。他方、インタクトなPME−1発現を有するグリア芽細胞腫細胞は、STSによって媒介されるアポトーシスに感受性である。
【0067】
STSはキナーゼの広く特異的な阻害剤であることが文献で実証されているので、それは、臨床的に関連する治療薬とみなされていない。しかし、はるかにより特異的で、より少ない副作用を有し、現在異なる疾患の処置のために臨床試験中である、いくつかのSTS誘導体が知られている。そこで、本発明者らは、本発明者らの実験セットアップで、STSを異なる濃度のその誘導体、PKC412、K252a、RO−31−8220、GO6976、SB218078、アルシリアフラビンA、K252c、レベッカマイシン、エンザスタウリン、UCN−01又はCEP−701に交換した(
図5A)。驚いたことに、PKC−412、K252a、UCN−01及びCEP−701が、STS自体よりさらに高いレベルで、PME−1減少グリア芽細胞腫細胞でアポトーシスを誘導することが可能なことが見出された。SB218078は、より高い濃度で中レベルのアポトーシスを誘導した。インタクトなレベルのPME−1を発現するグリア芽細胞腫細胞は、試験したSTS誘導体のいずれにも応答しなかった。
【0068】
2つの活性薬剤、PKC412及びK252aを用いるT98G細胞でのコロニー形成アッセイも、上記の知見を補強する(
図5B)。細胞系特異的作用を避けるために、アポトーシス感作薬剤、STS、PKC412及びK252aの効力を、他のPME−1減少グリア芽細胞腫細胞系U251MG及びU87MGでも試験した。全ての試験細胞系で、PME−1減少はSTS、PKC412及びK252aの細胞致死活性を強化したが、処理の組合せの効力には細胞型依存性の差があった(
図5C及び5D)。