特許第6371347号(P6371347)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シーイーエム・コーポレーションの特許一覧

<>
  • 特許6371347-水分および揮発物分析器 図000002
  • 特許6371347-水分および揮発物分析器 図000003
  • 特許6371347-水分および揮発物分析器 図000004
  • 特許6371347-水分および揮発物分析器 図000005
  • 特許6371347-水分および揮発物分析器 図000006
  • 特許6371347-水分および揮発物分析器 図000007
  • 特許6371347-水分および揮発物分析器 図000008
  • 特許6371347-水分および揮発物分析器 図000009
  • 特許6371347-水分および揮発物分析器 図000010
  • 特許6371347-水分および揮発物分析器 図000011
  • 特許6371347-水分および揮発物分析器 図000012
  • 特許6371347-水分および揮発物分析器 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6371347
(24)【登録日】2018年7月20日
(45)【発行日】2018年8月8日
(54)【発明の名称】水分および揮発物分析器
(51)【国際特許分類】
   G01N 5/04 20060101AFI20180730BHJP
【FI】
   G01N5/04 C
【請求項の数】7
【外国語出願】
【全頁数】16
(21)【出願番号】特願2016-173322(P2016-173322)
(22)【出願日】2016年9月6日
(65)【公開番号】特開2017-53851(P2017-53851A)
(43)【公開日】2017年3月16日
【審査請求日】2016年11月25日
(31)【優先権主張番号】62/217,375
(32)【優先日】2015年9月11日
(33)【優先権主張国】US
(31)【優先権主張番号】14/930,754
(32)【優先日】2015年11月3日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】500119569
【氏名又は名称】シーイーエム・コーポレーション
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100075270
【弁理士】
【氏名又は名称】小林 泰
(74)【代理人】
【識別番号】100101373
【弁理士】
【氏名又は名称】竹内 茂雄
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100186613
【弁理士】
【氏名又は名称】渡邊 誠
(72)【発明者】
【氏名】ジョセフ・ランバート
(72)【発明者】
【氏名】デーヴィッド・ディーズ
(72)【発明者】
【氏名】ウィリアム・ジェニングス
【審査官】 伊藤 幸仙
(56)【参考文献】
【文献】 特開2008−058301(JP,A)
【文献】 米国特許出願公開第2004/0020920(US,A1)
【文献】 特開2008−267858(JP,A)
【文献】 米国特許出願公開第2017/74766(US,A1)
【文献】 欧州特許出願公開第3141883(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 5/04
(57)【特許請求の範囲】
【請求項1】
空洞と、
前記空洞内の、少なくとも秤皿を備えた秤と、
前記空洞に赤外線を向けるように配置された赤外線源と、
前記赤外線源によって発生される赤外線周波数以外の周波数のマイクロ波放射線を発生して前記空洞に向けるマイクロ波源と、
前記秤皿上の試料を標的にするように配置された赤外線温度検出器と、
前記赤外線源は、前記マイクロ波源からのマイクロ波と同時的に、且つ、当該マイクロ波源によって発生されるマイクロ波周波数以外の周波数、及び、当該赤外線温度検出器によって測定される周波数以外の周波数で、前記空洞に赤外線を向けるように配置され、
冷却ファンと、
前記秤皿上の試料に赤外線をより効率的に向けるための、前記赤外線源と前記秤皿との間のレンズと、
え、
前記レンズは、前記マイクロ波源によって発生される前記マイクロ波周波数が前記レンズを通って前記空洞から出ることを妨げる寸法を有する、揮発性含量分析機器。
【請求項2】
前記レンズが、前記赤外線源と前記秤皿との間に配置された反射型コリメータを備え、
前記コリメータは、前記マイクロ波源によって発生される前記マイクロ波周波数が前記コリメータ開口を通って前記空洞から出ることを妨げる寸法を有する金属開口である、請求項1に記載の機器。
【請求項3】
前記検出温度に応じて試料への放射線の照射を加減するために、前記赤外線源、前記マイクロ波源、および前記温度検出器と通信する処理装置をさらに備える、請求項に記載の機器。
【請求項4】
前記レンズが、両端が開いていて、各セルの前記開口端が全体的に、前記赤外線源から前記秤皿まで画定される光路に沿って整列された状態で前記空洞の壁の中で方向付けられた複数の隣接しているセルを備え、
前記セルの内壁が、前記赤外線源によって発生される前記赤外線周波数の電磁放射線を反射するのに十分な鏡面性を有した表面を有し、
前記セルが、前記源によって発生され、前記空洞に伝播される前記マイクロ波周波数を減衰させるのに十分な、長さと開口の比を有する、請求項に記載の機器。
【請求項5】
前記源からの赤外線を前記レンズに向けるように配置された赤外線反射器をさらに備える、請求項に記載の機器。
【請求項6】
赤外線を平行にして揮発物含有試料に向けるステップと、
同時的にマイクロ波周波数を前記同試料に伝播するステップと、
前記同時的に伝播されたマイクロ波周波数を減衰させるように比例的な大きさになっているマイクロ波減衰器を通して前記赤外線を平行にするステップと、
加熱された試料によって発生される前記赤外線を測定するステップと、
前記加熱された試料からの前記測定された赤外線に応じて、前記平行にされた赤外線、前記伝播されたマイクロ波、およびそれらの組合せで構成される群から選択される要因を調整するステップと、
含む乾燥減量の含量測定の方法。
【請求項7】
前記平行化ステップおよびマイクロ波伝播ステップの前に前記試料の重さを量るステップと、
前記平行化ステップおよびマイクロ波伝播ステップの間に前記試料の重さを量るステップと、
前記試料が乾燥されたときに、前記試料の重さを量るステップと、
から成る群から選択される少なくとも一つのステップをさらに含む、請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]本発明は、多種多様な材料で含水量および揮発性含量の乾燥減量分析を実施するための計装に関する。
【背景技術】
【0002】
[0002]材料の含水量もしくは揮発性含量、または両方を測定することは、多くの状況において必要で、有益で、頻度の高い、反復的な作業である。
[0003]例えば、製作設定では、試料の揮発性含量の測定は、品質制御手順の重要なステップであり得る。分析を実施する時間が長い場合には、質の悪い試料が、数時間または数日の間検出されない場合もある。この状況では、製造用設備が、試験を実施するのに必要な時間の間ずっと低品質な製品を生産し続けてきた可能性もある。したがって、品質問題が発見される前に、大量の質の悪い材料が、生産される可能性がある。質の悪い製品は、処分が必要となる可能性があり、製造工程が再び開始されなければならないので、このような遅延は、結果的に費用超過および製作遅延につながる。
【0003】
[0004]最も簡略な形では揮発性含量または含水量を決めることは、材料の代表試料の重さを量ること、材料を乾燥させること、次いで、材料の重さを再度量って、乾燥減量と、その結果として試料の最初の揮発性含量とを確認することで構成される。この作業で多くの場合に使用される対流性の熱風炉は、比較的ゆっくりと試料を「炉乾燥」平衡に至らせることができる。このような装置は、それらがエネルギーを非効率的に消費するので、作動するのに費用がかかる可能性もある。こうした課題は、揮発物分析のための熱風装置の有用性を低下させるものである。
【0004】
[0005]マイクロ波エネルギーを使用して特定の物質を乾燥させて、揮発性含量または含水量を決めることは、一般的に便利で正確である。「マイクロ波」という用語は、約1ミリメートル(1mm)から1メートル(1m)の間の波長の、約300メガヘルツ(MHz)から300,000メガヘルツ(MHz)の間の電磁スペクトルの部分を意味する。これらは、言うまでもなく任意の境界であるが、赤外(IR)線の周波数を下回り、無線周波数と呼ばれる周波数を上回るようにマイクロ波を数値で表すのに役立つ。同様に、周波数と波長との間に確立される逆相関を考えると、マイクロ波は、赤外線より長いが、無線周波数波長より短い波長を有する。さらに、超小型処理装置を組み込んでいるマイクロ波機器は、試料の乾燥曲線(重量損失対時間)を監視することができ、乾燥曲線の初期部分に基づいて、最終的な乾燥重量(およびしたがって最初の含水量)を予測することができる。そのような分析は、自由水を含有する試料では約1分から3分の間に実施され得る。
【0005】
[0006]さらに重要なことに、含水量を測定するためにマイクロ波で乾燥させることは、通常、同等の熱風方法より短時間ですむ。しかしながら、マイクロ波は、材料との相互作用、異なる試料での非均一的な加熱および関連する課題につながる可能性がある特性において選択的である。換言すると、マイクロ波が特定の材料と相互作用する傾向がある急速なやり方は、何らかの状況では明らかな利点であるが、他の材料の2次的な加熱を生じさせる可能性があり、これは(少なくとも揮発物または水分を測定するのには)不利である。
【0006】
[0007]さらに、マイクロ波は、「結合」すなわち材料のマイクロ波放射への応答(「ロード」)として知られるやり方で材料と相互作用する。いくつかの材料は、マイクロ波エネルギーとうまく結合せず、乾燥または他の揮発物除去技術を困難または不正確にする。含水量または他のマイクロ波応答性材料(例えばアルコールおよび他の極性溶剤)の含量が高い場合には、他の材料がうまく結合する。しかしながら、それらがマイクロ波の影響を受けて乾燥する際に、それらは次第に結合しなくなり、効果が低くなる、すなわちロードが変化する。その結果、試料上のマイクロ波の効果は、満足なものではなくなり、制御するのがより困難になる。さらに、試料は、乾燥するのではなく燃焼する、または何らかの他の望ましくないやり方で劣化する傾向があり得る。両方の状況は、言うまでもなく、不満足な結果をもたらす傾向がある。
【0007】
[0008]他の要因として、「遊離」水(すなわちどのような化合物または結晶にも結合しない)などの揮発物は、直ぐにマイクロ波放射に応答するが、「結合」水(すなわち炭酸ナトリウム一水和物、NaCO・HOなどの化合物の水和水)および非極性揮発物(例えば低分子量炭化水素および関連化合物)は、標準的には、マイクロ波放射に対して無応答性を有する。その代わりに、そのような結合水または他の揮発物は、熱的に、すなわち周囲から伝わった熱によって排除されなければならない。
【0008】
[0009]したがって、試料がマイクロ波に応答する他の材料を含有する場合、マイクロ波は試料から結合水を除去するのに役立つことができる。このような場合には、マイクロ波応答性材料で(またはそれによって)発生される2次的な熱は、結合水を放出するのに役立つことができる。しかしながら、マイクロ波放射の性質は、マイクロ波に曝されるとき、すべてのそのような材料または周囲が加熱され得るわけではないようなものである。したがって、マイクロ波を使用する乾燥減量測定は、一般的に、より従来型の加熱法と比べて、結合水を決めることに関して満足度が低い。
【0009】
[0010]マイクロ波を直ちに吸収するまたはそれと結合する試料に対するマイクロ波結合の速度を生かすために、マイクロ波を吸収して、そうしたマイクロ波に応答して加熱される材料(しばしばサセプタと呼ばれる)の上に、試料が配置される技術が、組み込まれるようになった。米国特許第4,681,996号は、そのような技術の実例である。そこに述べられるように、目的は、熱的応答性材料が、試料を伝導的に加熱して、結合水を放出することである。理論的には、熱的に加熱された材料が試料を加熱して、結合水を除去し、一方で、自由水が、マイクロ波の直接的効果に応答して、それによって除去されるので、真に相乗的な効果が、得られるはずである。
【0010】
[0011]しかしながら、サセプタ技術は、実際には成功していない。1つの不利な点としては、必要なサセプタが、マイクロ波への温度応答を自己制限することが多く、したがって、異なる所望の温度を得るのに、異なる組成物が必要とされることが挙げられる。
【0011】
[0012]別の不利な点として、サセプタの温度応答の予測性が、不安定であり得ることが挙げられる。含量分析に精通している人には知られているように、ある種の標準化された乾燥試験は、試料を規定温度まで加熱して、試料を特定時間の間特定温度に維持することに基づいている。そのような状態での重量損失は、試験が規定状態下で実行されるのであれば、有用で所望される情報を提供する。したがって、そのような温度制御のないマイクロ波技術は、そのような標準化されたプロトコルには魅力的ではない可能性がある。
【0012】
[0013]別の不利な点として、サセプタが、試料を不均一に加熱する傾向があり得ることが挙げられる。例えば、多くの状況において、サセプタと直接接触している試料の部分は、そのように直接接触していない試料の部分より暖かくなり得る。そのように不均等な温度は、結果的に結合水分の不完全な除去ならびに不正確な乾燥減量分析につながる可能性がある。
【0013】
[0014]結合水は、試料に赤外線を当てることによって、いくつかの状況では除去される可能性がある。赤外線は、試料の温度を水分子結合の活性化エネルギーに打ち勝つ程度まで上げることによって、結合水(ならびに何らかの自由水)を排除することに成功する。さらに、赤外線乾燥は、多くの試料に関して炉乾燥より短時間ですむ。にもかかわらず、赤外線は、マイクロ波と比較して、水分含有試料を比較的にゆっくり加熱する傾向がある。その上、赤外線は、一般的に材料の表面(または表面近く)を加熱し、その後、熱が内向きに伝わり、一般的に、それらには時間がかかる。しかしながら、赤外線は、ある程度ほとんどすべての材料を加熱し、したがって、赤外線は、マイクロ波で結合しない材料には利点を提供する。
【0014】
[0015]2種類の揮発物を除去するのに、単に2つの装置(例えば、一方はマイクロ波および一方は赤外線)を使用するだけでは、この問題に満足な解決法を提供しない、なぜならば、装置の間で試料を移動させることが、一般的には、少なくとも何らかの冷却、いくらかの時間(効率性)の損失、水分を回復する可能性(物理的平衡および化学平衡の原則下で)、および結果的な測定の実験としての不確定性(正確さおよび精度について)の増大をもたらすからである。その上、試料が、マイクロ波空胴内の第1の秤から赤外線に曝される第2の(別の)秤まで移動される場合には、第1の秤上での自重は、第2の秤の使用に関しては意味がない。
【0015】
[0016]米国特許第7,581,876号は、いくつかのこれら問題に首尾よく対処している。本明細書に述べているように、本発明は、温度測定の加熱効率および精度の両方をさらに上昇させる。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】米国特許第4,681,996号
【特許文献2】米国特許第7,581,876号
【特許文献3】米国特許第6,521,876号
【特許文献4】米国特許第6,288,379号
【特許文献5】米国特許第4,457,632号
【発明の概要】
【課題を解決するための手段】
【0017】
[0017]第1の態様では、本発明は、空洞と、空洞内の、少なくとも秤皿(または台)を備えた秤とを含む揮発性含量分析機器である。赤外線源は、前記秤皿上の試料に赤外線をより効率的に向けるために、前記赤外線源と前記秤皿との間にレンズを備えて、空洞に赤外線を向けるように配置される。
【0018】
[0018]「レンズ」という用語は、赤外線またはマイクロ波放射線などの、可視光線以外の周波数(波長)を含む放射線を向けるまたは集中させる要素または装置という意味で本明細書では使用されている。本明細書に記載して請求される反射型コリメータは、この辞書的定義の範囲に入る。
【0019】
[0019]別の態様では、本発明は、空洞と、赤外線周波数以外の周波数のマイクロ波を発生して空洞に向けるように配置されたマイクロ波源とを含む揮発性含量分析機器である。秤は、少なくとも秤皿(または台)を備えて、空洞内に含まれる。赤外線源は、マイクロ波源によって発生されるマイクロ波周波数以外の周波数の赤外線を発生して空洞に向けるように配置される。レンズは、秤皿上の試料に赤外線をより効率的に向けるために、赤外線源と秤皿との間に配置される。レンズは、源によって発生されて空洞に向けられる周波数のマイクロ波が、空洞から出ることを妨げる寸法を有する。
【0020】
[0020]別の態様では、本発明は、乾燥減量の含量測定の方法である。この態様では、本発明は、赤外線を平行にして揮発物含有試料に向けるステップと、同時的にマイクロ波周波数を同じ試料に伝播するステップとを含む。
【0021】
[0021]さらに別の態様では、本発明は、組み合わされた赤外線コリメータおよびマイクロ波減衰器である。コリメータは、両端が開いていて、各セルの開口端が全体的に、実質的に互いに平行に整列されて方向付けられた、複数の隣接しているセルで形成される。セルの内壁は、赤外線周波数の電磁放射線を反射するのに十分な鏡面性を有した表面を有し、セルは、電磁放射線をマイクロ波周波数内に減衰させるのに十分な、長さと開口の比を有する。
【0022】
[0022]本発明および本発明が達成される方法の前述および他の目的および利点は、添付の図面と関連付けられる以下の詳細な説明を根拠にすることでより明らかになる。
【図面の簡単な説明】
【0023】
図1】[0023]本発明による機器の正面立面図である。
図2】[0024]空洞部分および秤皿を示すために覆われていない、図1の機器の正面斜視図である。
図3】[0025]図2の覆われていない機器の背面斜視図である。
図4】[0026]本発明による機器の側面立面図である。
図5】[0027]図4と一致しているが、機器が開いた状態の側面立面である。
図6】[0028]閉塞方向にある機器の背面立面図である。
図7】[0029]機器の内部の部分的断面の、部分斜視図である。
図8】[0030]本発明による機器の図7に対して垂直に方向付けられた部分的な遠近法的、部分断面図である。
図9】[0031]図12に対して垂直な機器の直接的断面図である。
図10】[0032]赤外線センサ温度を示す機器内部の一部の拡大図である。
図11】[0033]本発明によるコリメータの分割部の拡大図である。
図12】[0034]図9の断面図に対して垂直に切られた断面図である。
【発明を実施するための形態】
【0024】
[0035]図1は、本発明の機器の斜視図であり、概括的に20と示されている。図1は、上側ハウジング21、下側ハウジング22、およびタッチスクリーンの形で示される入出力制御装置23を示す。ラッチ24は、上側ハウジング21の部分であり、さらに本明細書に記載されるように、この図示している実施形態の赤外線ランプに接近することを可能にしている。
【0025】
[0036]図2は、内部の部分を示すためにヒンジ18でハウジングを開いた状態の部分斜視図で機器20を示す。具体的には、図2は、上側の特殊形状の室26および空洞床面27の形をした空洞25を示す。機器20は、秤を含み、秤のさらなる細部は、他の図面に関して説明してゆくが、秤は、空洞25の中で、空洞床面27の真上に少なくとも秤皿30を有する。
【0026】
[0037]図3は、開位置にある上側ハウジングを示している機器20の背面立面図である。図3は、上側ハウジング21および下側ハウジング22を含む他の図と共通するいくつかの要素を示す。図3は、複数のネットワーク接続部46と、下側ハウジング22および機器20の残りの部分が載っている複数の台脚15とをさらに示す。図3は、電源スイッチ16が、電源コード用の差込み17と共に機器20の後方に配置され得ることをさらに示す。
【0027】
[0038]ネットワーク接続部は、過度な実験をすることなく当業者によって選択され得るが、機器および処理装置は、ほとんどの場合、イーサネット(登録商標)接続、または802.11のワイヤレス通信(「WiFi」)、または2.4ギガヘルツ規格(「ブルートゥース(登録商標)」)に広く対応し、これが使用される短距離無線周波数接続にふさわしい。さらにまた、選択肢は、制限的ではなく例示的である。
【0028】
[0039]図3は、他の図面に示される空洞25に連結され、加熱工程の間に空洞から揮発性気体および水蒸気を引き出すのに使用される排気エルボ28をさらに示す。
[0040]図4は、いくつかの、図1から図3と同じ要素を示している機器20の側面立面図であり、通気孔29ならびに、通気孔29に隣接するプリンタ38をさらに示す。プリンタは、巻取紙が所望または必要に応じて加えられ得るように、下方に動く扉39を有する。
【0029】
[0041]図5は、図4と同じ向きではあるが、開位置にある機器を示す。したがって、図5は、秤皿30および空洞床面27を示す。
[0042]図6は、図3と同じ要素を示しているが、機器が閉位置にある機器20の背面立面図である。
【0030】
[0043]空洞の使用は、主にマイクロ波技術用と考えられるが、赤外線を伴って空洞を使用することは、マイクロ波の使用とは別の利点をさらに有する。1つの利点として、空洞は、試料用に定義された熱環境を提供し、したがって加熱効率を上げることが挙げられる。別の利点として、空洞が、赤外線を反射する材料(典型的には金属などの)でできているとき、空洞は、同様に全体的な加熱効率を高めることが挙げられる。さらに別の利点として、小さい気流でさえ誤ったまたは不正確な読取りをもたらす可能性がある高感度の秤を使用するときには、同一出願人による米国特許第6,521,876号に記載されているように、空洞が、外側気動に対する遮蔽を提供し、この場合も重さを量るステップの正確さおよび精度を上昇させ、したがって全体的効率を上げる。
【0031】
[0044]さらにマイクロ波が機器で使用される場合、空洞は、マイクロ波の、機器の外への望ましくない伝播を防ぐために所望の遮蔽を提供し、いくつかの空洞設計は、源によって発生される周波数の1つまたは複数のためにマイクロ波放射の単一モードを維持するのを助ける。にもかかわらず、放射線がマイクロ波目的で入れないまたは出られないように閉じられている空洞は、結果的に通常、可視周波数または赤外周波数に不透明であり、二重源機器の中には、可視周波数または赤外周波数のために何らかの開口が、設けられなければならない。
【0032】
[0045]図7は、本発明による機器20の部分的断面の、部分斜視図である。図7は、図1および図2と同じ要素を示しているが、内部の詳細が付加されている。内部詳細の多くは、簡略化されており、特定のサイズおよび形状の外側ハウジングの中に組み合わされた部品以外は、本明細書で詳述される必要がないことを当業者であれば理解されよう。したがって、一対の赤外線ランプ54(図9)は、上側ハウジング21の最上部近くに配置されており、通常(必ずというわけではないが)金属で形成され、通常高反射性表面を有する赤外線反射器31で被覆されている。これらの特性の中で、反射面と、赤外線ランプ54に近接しているという能力と、機能的に最も重要であり、セラミックまたは工学ポリマー類などの他の材料が、ランプによって発生される周囲熱に耐えることができ、ランプ又は他の任意の部分の機能若しくは機器の動作を妨げない場合は、他の材料が潜在的に組み込まれる可能性がある。
【0033】
[0046]ハニカム形のコリメータとして示されるレンズ32は、ランプ54と秤皿30との間で、空洞25の上側壁に配置される。レンズ32は、単に空洞を赤外線で溢れさせるのではなく、赤外線を秤皿30の位置に(または位置に向けて)より効率的に向けるように機能する。このようにして赤外線を集中させることは、温度制御が赤外線温度センサ(例えば59、図9)を使用して行なわれるときに、より効率的に試料を加熱すること(したがってより少ないエネルギーを使用する)、何らかの干渉を最小化するまたはなくすことなどの、これらに限定されるわけではないが、少なくともいくつかの便益を有する。
【0034】
[0047]顕著な点を繰り返すと、「レンズ」という用語は、赤外線またはマイクロ波放射線などの、可視光線以外の周波数(波長)を含む放射線を向けるまたは集中させる要素または装置という意味で本明細書では使用されている。本明細書に記載して請求される反射型コリメータは、この辞書的定義に入るものである。
【0035】
[0048]さらに、図7は、例示する実施例ではマグネトロンであるマイクロ波源33を示すが、(コストおよび他の要因に応じて)クライストロンまたはIMPATTダイオードを含み得る。アンテナ34は、マイクロ波を導波管35に、導波管35から空洞25に投射する。電源36は、マイクロ波源33に電力を供給し、機器20のこれらの部分は、1つまたは複数のファン40、41によって必要に応じて冷却される。切替電源(例えば同一出願人による米国特許第6,288,379号)は、さらなる精度および制御を提供することができる。
【0036】
[0049]いくつかの追加的な詳細として、図7は、秤皿30が、硬質または半硬質の試料皿を支持する開いた枠組みの形をしている、すなわち秤皿自体が、中実の平面的物体である必要はないことを示す。秤皿30は、シャフト42によって支持される。
【0037】
[0050]この例示した実施形態を含む大部分の実施形態では、秤44は、ひずみゲージ型のロードセルであるが、これは、本発明を制限するものではなく、むしろ本発明の例示である。機械秤は、それが、正確で、精密で、信頼性が高く、正しく目盛りが定められて維持されるのであれば、許容可能である。動作方法は、重量平衡機構の使用または機械てこによって生じた力の検出のどちらかを含むことができる。
【0038】
[0051]処理装置およびその関連する電子機器は、45と図示される。処理装置は、秤、赤外線源54、マイクロ波源33、温度センサ55、および入出力制御装置23と通信している。タッチスクリーン入力制御23用の電子機器は、47と図示される。図7は、機器の底の下の支持構造床53などの、機器全体にわたる補強部材と、タッチスクリーン23下方の格子50と、電源36上方の格子51とをさらに示す。マグネトロン33上の複数の放熱フィン52は、赤外線ランプ54近くの熱シンクフィン57(図8)のように、蓄熱を減少させるのに役立つ。
【0039】
[0052]図8は、機器20の別の部分的な斜視部分断面図である。図8は、図1図3と同じ要素の中の多くを示しているが、反射器31、一対の赤外線ランプ54として示される赤外線源、および赤外線検出器55として示される温度センサを特に示している。図8が示すように、検出器55は、試料皿30上、したがって使用中は試料上に焦点を合わせる。皿30上の試料の温度が、乾燥が進む際に考慮され得るように、赤外線検出器55は、処理装置45と通信している。図8は、下側ハウジング22の後方近くに位置付けられるオンオフスイッチ56をさらに示す。
【0040】
[0053]図9は、図12の縦断面図に対して概ね垂直な断面図である。図9は、先の図面と同じ要素の中の多くを含むが、赤外線ランプ54、赤外線反射器31、複数の熱シンクフィン57、および次に図10でさらに詳しく図示される赤外線検出器55の部分の詳細をさらに示す。図9に示される赤外線検出器55の部分は、取付台60およびカラー61を含む。図9は、さらに、ランプ電子機器62の部分と、処理装置および平衡電子機器63の部分とを広範に示す。
【0041】
[0054]本技術に精通している人にはよく理解される理由で、赤外線温度検出器55は、秤皿30上の試料を標的にするように配置される。特に、検出器の性質および検出器から源(この場合加熱された試料)までの距離は、そのような検出器から得られる結果の有効性および精度を高めるのに役立ち、これらの要因は、当技術では同様によく理解される。
【0042】
[0055]放射線(赤外線もしくはマイクロ波、または両方)を試料に照射することが、検出温度に応じて加減され得るように、処理装置45は、赤外線源ランプ54、マイクロ波源33、および温度検出器55と通信している。そのような温度検出および温度応答は、試料加熱の精密な制御を提供し、その試料の測定された重量変化に基づいて不正確な結果をもたらす望ましくない分解を引き起こすことなく、水分および他の揮発物を排除する範囲内に温度を保つことに役立つ。
【0043】
[0056]図10は、図9のセグメント10−10に概ね沿って切り取られた切取斜視図である。図10は、さらに詳細に赤外線検出器55、特にカラー61と、空洞25からの赤外線をハウジング65の中の検出器ダイオード(図示せず)に反射するように向ける鏡64とを示す。
【0044】
[0057]図11は、本発明によるコリメータ32の分割斜視図である。有利であることが分ってきた、例示される実施形態では、コリメータは、フレーム66と、カラー66によって画定された周囲の中の複数の小さい六角形状の開放セル67とで形成される。コリメータが2つの機能を果たすことから、コリメータは、両方の機能を満たすように設計され、釣り合いのとれた大きさになっている。第1の機能として、コリメータは、ランプ54および反射器31からの赤外線を、試料が配置される空洞25の部分に再方向付けする(もしくはより厳密に向ける)。例示した実施形態では、この位置は、主に秤皿30によって画定されている。
【0045】
[0058]したがって、セル67の大きさ(長さおよび幅)、表面、およびそれらが作られる材料はすべて、セルの赤外線関連の機能にふさわしくなければならない。
[0059]しかしながら、同時的な機能として、コリメータは、源33によって発生される周波数を有するマイクロ波エネルギーが、空洞25から出ることを妨げなければならない。したがって、セル67の大きさおよび材料は、同様にその機能を満たさなければならない。機能は、減衰と呼ばれ、そのような機能を備える要素は、非公式にはチョークと呼ばれる。チョークとして働くためには、開口構造の長さ(長い方の寸法)は、画定された比例量だけ、構造の直径(もしくは開放区域)を超えていなければならない。そのような減衰器の使用および寸法決めは、当技術ではよく理解されており、シリンダの形の減衰器が、伝播された波長(λ)より小さい直径と、伝播された波長の少なくとも1/4の長さとを有しなければならないことに言及する以外に本明細書において詳述される必要はない。
【0046】
[0060]したがって、両端が開いており、独立しているセル67は、セルのそれぞれの開口端が相互に対して実質的に平行に概ね整列された状態で一定方向に向けられている。セル67の内壁68は、赤外線周波数の電磁放射線を反射するのに十分な鏡面を有している表面を有し、セル67は、電磁放射線をマイクロ波周波数範囲内に減衰させるのに十分な長さと開口の比を有する。
【0047】
[0061]関連する赤外線源の実例として、水晶ハロゲンランプは、主に、約3.5ミクロン(μm)の波長を、タングステンランプは、約2.5μmの波長を放射する。検出器55は、特定範囲の中で最高の感度を提供するように選択または設計されることができる。例示的な実施形態では、検出器55は、約8〜15μmの範囲の試料から放射線を測定する。この選択によって、赤外線源の周波数(または対応する波長)は、マイクロ波周波数および赤外線検出器周波数の両方とも異なっており、したがって、温度測定、ひいてはフィードバック制御の正確さおよび精度を高める。
【0048】
[0062]このようにして表される、内部壁面68は、約1ミクロン(μm)から1ミリメートル(mm)の間の波長を有する赤外線を反射し、セル67は、約1mmから1メートルの間の波長を有するマイクロ波放射線を減衰させる。ほとんどの場合、組み合わされたコリメータおよび減衰器は、金属で形成されたセルを有する。
【0049】
[0063]言うまでもなく、マイクロ波減衰目的のために、セル壁68は、鏡面である必要はなく、また、平行化目的のために、セル67は、マイクロ波減衰比を満たす必要はないことに気付かれるであろう。したがって、これらの機能の組合せは、単独では、減衰器も赤外線コリメータも提供し得ない予想外の便益を両方の目的に提供する。
【0050】
[0064]本明細書に記載される機器は通常、米国および他の電磁放射線の規制に基づいて、S帯域(2〜4ギガヘルツ、7.5〜15ミリメートル)で作動するようには設計される。それに基づいて、例示した実施形態では、フレーム全体は、約14センチメートル×約12センチメートルの寸法を有し、六角形の開口は、幅およそ0.9センチメートルおよび長さ約1センチメートルである。ある意味では、赤外線およびマイクロ波減衰の比例的要件が満たされる場合には、使用可能空間、ランプの大きさおよび位置決め、および空洞に伝播されているマイクロ波周波数に基づいて異なる大きさを選択することができる。
【0051】
[0065]図12は、機器を通る縦方向の全体断面図であり、図7の中のすべてのものにいくつかの追加要素を加えて示している。具体的には、図12は、小型回転シャフト71に取り付けられたマイクロ波攪拌羽根70を示す。さらに、図12は、同一出願人による米国特許第6,521,876号に記載される形状と同じまたは同様であり得る空洞25の形状の優れた具体例を提供しており、同特許の内容をすべて、参考文献として本明細書に援用する。
【0052】
[0066]別の態様では、本発明は、赤外線を平行にして揮発物含有試料に向け、一方、同時的にマイクロ波周波数を同じ試料に伝播する乾燥減量の含量測定の方法を含む。方法では、マイクロ波は、試料を乾燥させるのに使用される赤外線を平行にするコリメータで減衰される。それに基づき、マイクロ波減衰器は、伝播されているマイクロ波周波数を減衰させるのに必要な比例的寸法を有する。
【0053】
[0067]図面上の減量技術の基礎となるように、方法は、平行化ステップまたはマイクロ波伝播ステップのどちらかを始める前に、試料の重さを量るステップをさらに含み、重さを量るステップは、さらに加熱ステップおよびマイクロ波ステップの間に実行される。このようにして、試料は、完全に乾燥することができ、完了後に、重さを量るステップが実行されれば、材料内の揮発物の割合は、容易に算出され得る。
【0054】
[0068]しかしながら、マイクロ波技術に精通している人であれば気付かれるように、多くの場合、加熱工程の間の水分および揮発物の損失は、乾燥中に、数回(多くの場合、2回または3回で十分である)の測定値がとれれば、そこから終点(すなわち、完全な乾燥試料を数学的に表す)が、算出され得る急激な漸近曲線をとる。機器と共に含まれる処理装置も、同様にこの機能を提供することができ、米国特許第4,457,632号を参照されたい。
【0055】
[0069]図面および明細書では、本発明の好ましい実施形態が記載されており、特定の用語が使用されてきたが、それらは、一般的および記述的な感覚で使用されているに過ぎず、限定を目的とするものではない。本発明の範囲は、特許請求の範囲の中で画定される。
〔態様1〕
空洞と、
前記空洞内の、少なくとも秤皿を備えた秤と、
前記空洞に赤外線を向けるように配置された赤外線源と、
前記秤皿上の試料に赤外線をより効率的に向けるための、前記赤外線源と前記秤皿との間のレンズとを備える揮発性含量分析機器。
〔態様2〕
前記レンズが、前記赤外線源と前記秤皿との間に配置された反射型コリメータを備える、態様1に記載の機器。
〔態様3〕
前記機器が、前記赤外線源によって発生される赤外線周波数以外の周波数のマイクロ波放射線を発生して前記空洞に向けるマイクロ波源を含み、
前記コリメータが、前記マイクロ波源によって発生される前記マイクロ波周波数が、前記コリメータ開口を通って前記空洞から出ることを妨げる寸法を有する金属開口である、態様2に記載の機器。
〔態様4〕
前記秤皿上の試料を標的にするように配置された赤外線温度検出器をさらに備える、態様3に記載の機器。
〔態様5〕
前記検出温度に応じて試料への放射線の照射を加減するために、前記赤外線源、前記マイクロ波源、および前記温度検出器と通信する処理装置をさらに備える、態様4に記載の機器。
〔態様6〕
空洞と、
赤外線周波数以外の周波数のマイクロ波を発生して前記空洞に向けるように配置されたマイクロ波源と、
前記空洞内の、少なくとも秤皿を備えた秤と、
前記マイクロ波源によって発生される前記マイクロ波周波数以外の周波数の赤外線を発生して前記空洞に向けるように配置された赤外線源と、
前記秤皿上の試料に赤外線をより効率的に向けるための、前記赤外線源と前記秤皿との間のレンズとを備え、
前記レンズは、前記源によって発生され、前記空洞に向けられる前記周波数のマイクロ波が、前記空洞から出ることを妨げる寸法を有する揮発性含量分析機器。
〔態様7〕
前記秤皿上の試料を標的にするように配置された赤外線温度検出器をさらに備える、態様6に記載の機器。
〔態様8〕
前記検出温度に応じて資料への放射線の照射を加減するために、前記赤外線源、前記マイクロ波源、および前記温度検出器と通信する処理装置をさらに備える、態様7に記載の機器。
〔態様9〕
前記レンズは、前記マイクロ波源によって発生されるマイクロ波が、前記レンズを通って前記空洞から出ることを妨げる寸法を有する金属開口である、態様6に記載の機器。
〔態様10〕
前記レンズが、両端が開いていて、各セルの前記開口端が全体的に、前記赤外線源から前記秤皿まで画定される光路に沿って整列された状態で前記空洞の壁の中で方向付けられた複数の隣接しているセルを備え、
前記セルの内壁が、前記赤外線源によって発生される前記赤外線周波数の電磁放射線を反射するのに十分な鏡面性を有した表面を有する、態様6に記載の機器。
〔態様11〕
前記複数の隣接しているセルが、金属で形成される、態様10に記載の機器。
〔態様12〕
前記セルが、前記源によって発生され、前記空洞に伝播される前記マイクロ波周波数を減衰させるのに十分な、長さと開口の比を有する、態様10に記載の機器。
〔態様13〕
前記源からの赤外線を前記レンズに向けるように配置された赤外線反射器をさらに備える、態様6に記載の機器。
〔態様14〕
赤外線を平行にして揮発物含有試料に向けるステップと、
同時的にマイクロ波周波数を前記同試料に伝播するステップとを含む乾燥減量の含量測定の方法。
〔態様15〕
前記赤外線を平行にするコリメータにおいて前記マイクロ波周波数を減衰させるステップをさらに含む、態様14に記載の方法。
〔態様16〕
前記同時的に伝播されたマイクロ波周波数を減衰させるように比例的な大きさになっているマイクロ波減衰器を通して前記赤外線を平行にするステップをさらに含む、態様14に記載の方法。
〔態様17〕
加熱された試料によって発生される前記赤外線を測定するステップをさらに含む、態様14に記載の方法。
〔態様18〕
前記加熱された試料からの前記測定された赤外線に応じて、前記平行にされた赤外線、前記伝播されたマイクロ波、およびそれらの組合せで構成される群から選択される要因を調整するステップをさらに含む、態様17に記載の方法。
〔態様19〕
前記平行化ステップおよびマイクロ波伝播ステップの前に前記試料の重さを量るステップと、
前記平行化ステップおよびマイクロ波伝播ステップの間に前記試料の重さを量るステップとをさらに含む、態様14に記載の方法。
〔態様20〕
前記平行化ステップおよびマイクロ波伝播ステップの前に前記試料の重さを量るステップと、
前記試料が乾燥されたときに、前記試料の重さを量るステップとをさらに含む、態様14に記載の方法。
〔態様21〕
組み合わされた赤外線コリメータおよびマイクロ波減衰器であって、
両端が開いていて、各セルの前記開口端が全体的に、実質的に互いに平行に整列された状態で方向付けられた複数の隣接している前記セルを備え、
前記セルの内壁が、前記赤外線周波数の電磁放射線を反射するのに十分な鏡面性を有した表面を有し、
前記セルが、電磁放射線を前記マイクロ波周波数内に減衰させるのに十分な、長さと開口の比を有する組み合わされた赤外線コリメータおよびマイクロ波減衰器。
〔態様22〕
前記内部壁面が、約3ミクロンから1ミリメートルの間の波長を有する赤外線を反射し、
前記セルが、約1ミリメートルから1メートルの間の波長を有するマイクロ波放射線を減衰させる、態様21に記載の組み合わされた赤外線コリメータおよびマイクロ波減衰器。
〔態様23〕
前記セルが、金属で形成される、態様22に記載の組み合わされた赤外線コリメータおよびマイクロ波減衰器。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12