【課題を解決するための手段】
【0018】
本発明は、従来の光学的方法において、粒度が問題になっていたという知見に基づいている。即ち、従来の光学的方法では、試料状態は均一であることが望ましく、粒度による影響を排除するために、何らかの手法による平均化に依存していた。
【0019】
本発明に係る光学分析装置は、
・光学積分キャビティを備え、該キャビティは、少なくとも1つの光学拡散壁により形成され、かつ1個以上の試料要素から成る固形農産物試料を含むように構成されており、
・光学積分キャビティ内に光を放出する光源を備え、少なくとも1つの光学拡散壁は、放出光を散光に変換するために利用され、該散光の少なくとも一部又は全部は、試料により、スペクトル的にフィルタリングされた光に変換され、
・スペクトルセンサを備え、該スペクトルセンサがスペクトル的にフィルタリングされた光に露出されている間、試料が光学積分キャビティ内に閉じ込められる。
【0020】
試料は、光学積分キャビティ内に閉じ込められる。即ち、試料は、光学積分が行われる光学積分キャビティの容積部内に保持されることを意味する。試料は、キャビティ内で必ずしも固定され若しくはロックされなくても、又は容積部により必ずしも完全に包囲され若しくは覆われなくても、容積部から離れることはない。
【0021】
積分キャビティ内の光子密度は、ほぼ均一である。従って、散光は、キャビティ内で均一に分布し、試料に反射するか又は試料を通過することにより試料と相互作用する。この場合、反射又は通過に関わらず、何れの場合にも散光スペクトルのフィルタリングが行われる。スペクトルのフィルタリングは、試料が含有する成分を特徴付けるものである。理想的には、散光の全て又はほぼ全てがフィルタリングされた光に変換されれば、良好な信号・ノイズ比を得ることができる。
【0022】
光学分析の対象は、固形農産物を含むか又は固形農産物で構成される試料である。この場合に試料とは、1個以上の試料要素、例えば穀物の穀粒又は他の固形農産物の最小単位から成るものである。試料は、僅かな量の干し草又は牧草であってもよい。
【0023】
定義によれば、穀物とは、小さく硬い乾燥した種子(http://en.wikipedia.org/wiki/Seeds参照)のことであり、主に人の食料又は動物の飼料として収穫される。穀物には、穀物、疑似穀物、穀実用マメ科作物及び油料種子が含まれる。収穫された穀物の選び出された部分は、翌年のための良質種子に使用される。また穀粒とは、穀物における単一の種子のことである。
【0024】
定義によれば、飼料とは、人が家畜(http://en.wikipedia.org/wiki/Domesticated及びhttp://en.wikipedia.org/wiki/Livestock参照)に与える食物(http://en.wikipedia.org/wiki/Food参照)のことである。これは、放牧(http://en.wikipedia.org/wiki/Grazing参照)された家畜が直接に食べる飼葉とは対照的なものである。
【0025】
定義によれば、作物とは、地上で栽培され、成長し又は収穫される農産物のことである。この定義には、特定の時期に人が収穫する任意の植物が含まれる。
【0026】
粒状農産物(GAP)とは、成長時又は収穫時、更には場合によっては加工時に、一貫して粒状硬度を有する任意の穀物又は他の作物のことである。この定義には、ジャガイモなどの根菜、リンゴ、ベリー類、トマト若しくはナッツなどの果物、干し草(http://en.wikipedia.org/wiki/Hay参照)などの飼料、サイレージ(http://en.wikipedia.org/wiki/Silage参照)、配合飼料(ペレット)、藁、ふすま若しくは油料種子塊、タバコの葉、又は新鮮な刈草などの飼料が含まれる。この定義には更に、作物における様々なライフサイクルも含まれる。例えば小麦又は大麦などの穀物であれば、穀粒を、引き続き成長させることができ、又は新たに収穫することができ、又は乾燥させることができ、又は製粉することができる。
【0027】
粒状農産物は、物理的に分離可能な最小単位で構成されている。以下、これら最小単位を試料要素と称する。全粒穀物、例えば処理前の穀物であれば、試料要素は穀粒である。穀粒は、一単位内では必ずしも均一ではないが、単位間では類似している。全粒穀物以外の粒状農産物(GAP)において、試料要素は穀粒でなくてもよい。これら試料要素は、例えばブルーベリー若しくは(やはり均一な)配合飼料のペレットのように類似していてもよく、又は例えばジャガイモ若しくは藁のように物理的な大きさ及び形状が異なっていてもよい。干し草又は藁の試料では、細長形状が異なっており、より小さな単位に切り刻むことにより、試料要素に形成することができる。
【0028】
有利には、農産物試料に、機械を必要とするフロー又は流れを加える必要はない。また試料要素、例えば全粒穀物であれば穀粒、又は他の粒状農産物(GAP)であれば他の試料要素が測定時に一箇所に完全に固定されていなくても、スペクトル分析にとって問題にはならない。しかしながら、一連の試料要素を完全に静的な状態とすれば測定が最も容易に実現される。なぜなら、積分は、流動する試料要素により行われるわけではなく、拡散される放出光が各試料要素とほぼ全ての側面から相互作用することにより行われるからである。本発明の発明者が行った実験によれば、積分キャビティ内におけるフィルタリングされた光のスペクトル特性、従ってスペクトルの測定結果も、他の方法に比べて再現性及び信頼性が遥かに大きい。実際のところ、試料が放出光のフィルタリングに最も寄与するのは、散光が試料要素の大部分又は全部と可及的に多くの方向から相互作用できるよう、光学積分キャビティ内で試料要素が他の試料要素及び拡散壁に対して分布される場合である。
【0029】
試料要素においては、隣接する試料要素による遮光が極めて僅かであることが有利である。若干の遮光は許容され得るものではあるが、これは光学積分キャビティ内の隠された質量の増加につながる。
【0030】
隠された質量とは、所望の光フィルタリングに寄与しない試料質量の割合のことである。上述したように、隠された質量効果は粒状試料では容易に生じ得るものである。これは、試料質量の一部により、試料質量の他の一部が測定光に対して遮蔽され易いからである。このように、積分キャビティ内における隠された質量効果は、試料内の遮光により生じるものであり、個々の試料要素を互いに最小距離で配置すれば、最小化又は排除することができる。これにより、全ての試料要素が可及的に多くの方向から照射される。隠された質量効果の第2タイプは、単一の穀粒内又は他の単一の試料要素内で生じ得る。この第2タイプの隠された質量効果は、使用される測定波長で、試料要素の物理的な大きさによる吸収係数が大きいことにより、特定の試料要素内の光子密度が該試料要素表面の光子密度に比べて大幅に小さい場合に生じる。
【0031】
隣接する試料要素間で最小距離を保てば、隠された質量効果の第2タイプが更に低減される。
【0032】
更に、光学積分キャビティにより、センサが直接に露光される問題が回避可能である。これは、放出光が光学拡散壁により又は代替的若しくは付加的にバッフルにより拡散されるからである。これにより、放出光は、ほぼ全ての方向に均一に分布される散光に変換される。
【0033】
スペクトルセンサは、光学積分キャビティからの入射光にスペクトルセンサを露出させることにより、フィルタリング光の少なくとも一部を捕捉する機能を有する。この場合の入射光には、フィルタリングされた散光のみならず、フィルタリングされていない散光も含まれ得る。議論されている測定の時間分解能は、1ナノ秒よりも遥かに大きいため、フィルタリング散光及び非フィルタリング散光(the contributions)は極めて効果的に混合され、センサに対する混合光出力は極めて安定している(1ナノ秒で、光は約1フィート進行する)。この状態は、透過光分析での放出光に関する制御不能かつ直接的なスループットに比べれば、大きな問題にはならない。光学積分キャビティが使用される場合、非フィルタリング散光は、センサ信号内にオフセットを生じさせるにすぎない。即ち、このセンサ信号は、関連があるスペクトル範囲に亘って、使用された光源のスペクトルを再現するものである。従って、フィルタリングされた散光を、非フィルタリング散光から容易に分離することができる。
【0034】
試料に関する光学的なフィルタリングは、試料が含有する物質のタイプ及び量、並びにこれら物質の吸収係数に依存するものである。フィルタリングされた光は、試料が含有する各成分の吸収スペクトルを数学的に重ね合わせた吸収スペクトルを有する。この場合、各成分の吸収スペクトルは、濃度パラメータによりスケーリングされる。従って、分析には、試料が含有する既知の物質又は成分、例えば、油分、水分、タンパク質に関する特性吸収スペクトルの回帰分析、特に線形回帰分析が含まれ得る。この場合、各吸収スペクトルは、対応する濃度パラメータで乗算される。従って、フィルタリングされた光に関して得られた吸収スペクトルを、正確な濃度パラメータを選択することにより適合させることができる。このアプローチが適用可能なのは、各成分の濃度が特性吸収ピークの振幅に正比例するからである。代替的には、いわゆる逆回帰法、例えばPLS又はPCRが適用可能である。これら手法では、測定された一連のスペクトルを、参照法により判定された実際の分析物濃度に対して回帰させ、その解に基づいて新たなスペクトルを予測する。
【0035】
有利には、試料要素の少なくとも一部又は全部を、光学積分キャビティ内で互いに分離して静止させる。これにより、放出光によるほぼ全面的な拡散照明が可能となるため、隠された質量効果が回避される。特に、試料要素は、ガイドを支援する試料開口を利用して配置されるのが有利である。これにより、充填プロセスの運動エネルギーは、体系的で非遮光的な分布に変換される。このようなガイドを支援する部分は、試料要素が望ましい位置に分布されるよう、一部又は全部が漏斗、ノズル、又は任意のガイドスロープで構成される。
【0036】
試料要素を互いに最小距離で配置するよう構成された光学分析装置が提供されれば、更に有利である。このような分析装置により、やはり遮光が回避される。試料要素を互いに最小距離で配置する点は、光学積分キャビティ内における最も近い拡散壁に対する規定距離と組み合わせることができる。
【0037】
有利には、光学分析装置は、光学的に薄い試料を分析するよう構成される。光学的に薄い試料とは、隠された質量効果が約40%未満のものを指す。隠された質量値が約10%未満であれば、測定条件はほぼ理想的と言える。
【0038】
幸いにもこれまで認識されていなかったことだが、小麦や大麦を含め、多くの重要なタイプの穀物では、試料に関する上記の理想的な状況が比較的容易に実現される。これは、3次オーバートーンの近赤外波長範囲で測定した場合、試料における個々の穀粒が十分に小さく、従って光学的に薄いからである。これら穀粒を光学積分キャビティ内で互いに最小距離で配置すれば、試料全体を光学的に薄くすることができる。例えば、大麦の穀粒を3次オーバートーンの近赤外波長範囲で測定した場合、1000 nm周辺での隠された質量は、重量が約53 mgという比較的大きな穀粒であっても僅か約13%である。また小麦の穀粒であれば、重量が約40 mgであるのに対して、穀粒の隠された質量は、典型的には10%未満である。更に重量が19〜25 mgの米粒であれば、隠された質量は僅か約5%である。
【0039】
これに対して、他の粒状農産物における試料要素、例えばトウモロコシ又はリンゴでは、切り刻み又は圧搾又は他の方法により縮小化を図り、光学的に薄い試料を生成する必要がある。3次オーバートーンの近赤外光波長範囲では、多くの粒状農産物試料は、スライス又は圧搾された試料プレートの幾何学的厚さが約3 ミリメートル未満であれば、光学的に薄いと見なされる。試料を薄いプレート形状に形成すれば、光学的な薄さが一次元方向で実現される。これは、試料全体の薄さを実現するのに十分である。試料が光学的に薄い状態で配置されれば、試料質量は、積分キャビティ内の散光に関して実質的に透過的である。極めて小さな試料要素、例えばアマの穀粒であれば、上部に複数の層が重なっていたとしても光学的に薄い試料が生成される。なぜならこの場合、光は、複数個の試料要素を通過するときに僅かにしか減衰されないからである。
【0040】
特定試料における隠された質量を、簡単な実験により測定することができる。まず、原状の試料における吸収信号を記録する。次いで、(試料要素が互いにまだ分離されていなければ)試料要素を互いに分離し、積分キャビティ内で再度測定する。これら2つの吸収スペクトルの振幅を比較すれば、原状の試料に影響を及ぼしていた遮光による隠された質量効果が判定される。最後に、試料要素をより小さく切り刻み、互いに分離して積分キャビティ内で再度測定すれば、隠された質量効果が全て判定される。各試料要素を切り刻むことにより、これら試料要素が透過フィルタとして機能する大きさに縮小されるまで、隠された質量が減少する。この状態において、隠された質量は0%であるのに対して、検査された質量は100%である。800〜1050 nmの波長範囲では、漸近減少は極めて迅速に進行する。例えば、約53 mgの重量を有する大麦の大穀粒が試料要素として使用される場合、長手方向にスライスすることにより、穀粒全体の(ほぼ無視できるほど既に小さな)隠された質量効果が実質的に排除される。
【0041】
有利には、固体農産物は、粒状農産物(GAP)、例えば穀物、特に小麦、大麦、トウモロコシ、オート麦、ライ麦、又はエンドウなどのマメ科、又はリンゴ、ブルーベリーなどの果物、又は飼料若しくは藁混合物などの配合ペレットとする。
【0042】
穀物試料及び他の試料を区別することは、合理的なことである。これは、多くのタイプの穀物が十分に小さな個別の穀粒を有し、従ってこれら穀粒が光学的に薄いからである。従って、このような穀粒試料を、光学的に薄い試料として容易に配置することができる。他の多くの試料、例えばジャガイモ又はリンゴ又は藁又は油料種子塊に関しては、手動による何らかの前処理又は機械的な前処理を施し、光学的に薄い所望の試料を生成する必要がある。
【0043】
更に、光学分析装置は、試料のスペクトル分析を行うのに十分なエネルギー負荷が貯蔵可能なエネルギーストレージを備えるのが有利である。このように、光学分析装置は携帯型であり、電力網の接続システムに依存することがない。これにより、使用者は、電力供給システムから遠く離れた場所、例えば居住地域から遠く離れたトウモロコシ畑で光学分析装置を作動させることが可能となる。エネルギーストレージとして特に有利なのは、電気エネルギーによるストレージ、例えば電池又は充電池である。
【0044】
光学分析装置を、試料の光学分析が行われている間、手動で保持され、特に人の手又は人の片手だけで保持されるように構成すれば操作性が向上する。このように、光学分析装置は、手で操作可能であるのみならず、検査者が1人しかいなくても任意の場所で作動可能である。この場合、検査者は、作物から試料を採取し、必要に応じて予調整し、光学分析装置内に収容することができる。その後、光学分析を行うことができる。このように、濃度結果を容易に得ることができる。
【0045】
有利には、試料要素間のスペースは、試料を構成する試料要素による吸収に比べて、非吸収的又はほぼ非吸収的に維持される。このように、試料要素による遮光は回避され、隠された質量効果を低く抑えることが可能である。試料用の保持装置、例えば試料ホルダが備えてあれば、放出光にとって透明な材料で構成されるのが望ましい。理想的には、試料要素間のスペースは、例えば空気以外の物質は存在しないものとし、完全に非吸収的とする。
【0046】
例えばアマの種子のように試料要素が極めて小さければ、複数個の試料要素を単に試料ホルダの窪み又は凹部に配置すればよい。この場合、窪み又は凹部の容積により、試料要素の光学的な薄さが少なくとも一方向においてサポートされる。器具を使用すれば、試料ホルダの窪み又は凹部の容積を超過する試料要素を除去することができる。
【0047】
隠された質量効果を更に効果的に低減するために、試料要素の一部又は全部は、平面に、一列に又は球内に配置されるのが有利である。これにより、試料が空間方向のほぼ全てから均一に照射される。分析では、光学積分キャビティ内の全スペースに亘って試料要素、例えば穀粒を均一に分布させるのが最適である。なぜなら、これにより試料間に、実現可能な最大距離が生じるからである。ただし実行上の理由により、二次元方向への分布とするのが好適である。
【0048】
他の好適な実施形態において、試料は、単一の試料要素、例えば単一のジャガイモ又は単一のリンゴをスライスした試料プレートとする。試料をプレート状に切断すれば、理想的には、試料プレートの光学的な薄さに関する基準が法線方向に満たされ、特に厚さが約3 ミリメートルの場合に満たされる。この場合、有利には、試料ホルダが不要である。なぜなら、切断又は圧縮された試料プレートを、光学積分キャビティ内に自己保持的に配置することができるからである。代替的には、試料プレートは、切断又は圧砕された複数個の試料要素、例えばマメ若しくはトウモロコシ穀粒、又は圧縮された複数個の試料要素、例えば干し草若しくは藁で構成される。
【0049】
試料要素が試料ホルダの窪みにより配置され、かつ光学分析装置が試料ホルダを光学積分キャビティ内で収容するよう構成されていれば、分析装置の使用が大幅に簡略化される。これは、試料ホルダにより、試料要素の配置が規定されるのみならず、試料要素の個数が各分析においてほぼ等しく維持されるからである。更に、光学積分キャビティは開放される必要がないために保護されており、従って拡散壁が外部に露出することがない。これにより、拡散壁表面の汚染が回避される。窪みは、試料ホルダにおける空間若しくは孔として構成され、又は代替的にはハッチ若しくは凹部として構成される。
【0050】
有利には、試料ホルダは、放出光が透過できるように一部又は全部を透明とする。ただし、試料ホルダが光学積分キャビティの拡散壁の一部を構成する実施形態ではこの限りではなく、このような実施形態では、試料ホルダにより該試料ホルダ周りの光学積分キャビティが適切に閉鎖され、日光の入射が回避される。また、試料ホルダが容易に洗浄でき、従って汚染や粒子が試料ホルダ上に存在しなければ、測定時に試料ホルダが光学積分キャビティ内に配置されたときに有利である。
【0051】
有利には、試料ホルダは、50〜110、特に70〜80又は70〜100の窪みを有する。これら窪みは、試料要素を配置又は保持するよう形成される。このように、本発明に係る光学分析装置では、従来技術の光学分析装置に比べて試料の量が大幅に減少する。この点は、小麦又は大麦のように個々の試料要素が光学的に薄く、従って隠された総質量が無視可能、即ち試料質量が実質的に全て検査され、これによりスペクトル的にフィルタリングされた光に寄与する場合に特に当てはまる。穀物業界では、手動装填を促進する適切な窪み形状、即ち単一の穀粒だけが充填される窪み形状が既知である。この場合、最適な窪み形状は、異なるタイプの穀物間で変動するだけでなく、同一穀物の異なる品種間でも(それほど大きな程度ではないにせよ)変動する。試料ホルダは、有利には、分析装置から容易に取り外し可能に構成されるだけでなく、分析装置内に容易に再度配置可能に構成されるため、使用者は、異なるタイプの穀物を測定するために、1個の試料ホルダを他の試料ホルダに交換することができる。
【0052】
有利には、試料ホルダの厚さは、光学的に薄い試料に特徴的な厚さに対応し、この特徴的な厚さは特に約2〜4 ミリメートル又は4 ミリメートル未満とする。このように、隠された質量の測定基準に満たない試料を試料ホルダに充填し、該試料ホルダをガイド要素として使用すれば、穀粒又は他の試料要素の大きさ及び光学的な薄さを変更し、隠された質量を低減することができる。2〜4 ミリメートルの厚さとすれば、光学的薄さに関して、ほぼ全ての穀物で要件が満たされる。
【0053】
好適な実施形態において、試料ホルダは、フレームにより、形状適合により、又は力拘束により、光学積分キャビティ内に配置可能及び/又は固定可能である。これにより、光学積分キャビティ内における各試料要素の位置は、光学積分キャビティの拡散壁に対して明確に規定され、従ってスペクトル結果の再現性を更に高めることが可能となる。試料要素を光学積分キャビティ内に配置するには、キャビティを開放して試料要素を導入するか、又は試料ホルダをキャビティ内で配置及び固定できるようにする。また、フレームを使用すれば有利である。これは、フレームが試料ホルダ上のハンドルとして機能し、及び/又は、キャビティを閉鎖又はロックするためにフレームを使用できるからである。
【0054】
光学分析装置は、有利には、試料又は試料ホルダを差し込むための試料スロットを備える。試料スロットは、手動装填又は自動供給により、試料又は試料ホルダを光学積分キャビティ内に適切に配置するのに機能する。フレーム又は他の閉鎖部を使用すれば、日光又は他の妨害光が光学積分キャビティ内に入射することを付加的又は代替的に回避することができる。
【0055】
好適な実施形態において、スロットの入口にブレード又はブレードの対が配置されることにより、試料は、光学分析装置内に差し込まれるときに部分的にスライスされ、これにより光学的に薄い試料に加工される。このように、試料の調製及び光学分析装置内への差し込みは、測定前の1つの調製ステップとして組み合わされる。
【0056】
好適な実施形態では、光学分析装置により、複数個の異なるタイプの粒状農産物に関するスペクトル分析を行うことが可能である。この点は、分析装置が物理的に類似するタイプの農産物、例えば、小麦や大麦などの小さな穀物、又はトウモロコシやソラマメなどのより大きな穀物、又は干し草や藁、又は小麦粉などの粉末、又は単一のプレートに切断する必要のあるリンゴやジャガイモなどの果物や根菜を測定するよう構成される場合に特に可能である。このように、農産物は、隠された質量値を最小限とした所望の試料に加工するために必要な前処理に従って分類される。前処理を施した後、試料として光学分析装置内に導入することができる。
【0057】
有利には、試料は、特に切り刻まれ、スライスされ又は圧縮された粒状農産物とする。これにより、隠された質量を低減することができ、試料質量に関してフィルタリングされる散光の割合が増加する。理想的には、前処理により、試料の光学的な薄さが実現される。
【0058】
好適には、光源は、電球、発光ダイオード(LED)、広帯域発光ダイオード、ハロゲンランプ、又はこれら光源の組み合わせとする。測定すべき成分濃度の吸収帯を検出するため、有利には、スペクトル的に少なくともほぼ連続している放出光、例えば熱光源が使用される。また、複数個のLEDを光源として使用すれば、所要の波長スペクトルがカバーされる。このように、スペクトル分析は、放出光における特徴的なスペクトル構造により妨害されることはない。
【0059】
有利には、光源の波長スペクトルは、少なくとも一部が800〜1050 ナノメートルのスペクトル範囲とする。光源により生成された放出光は、理想的には、約800〜1050 ナノメートルの3次オーバートーンの近赤外領域(第3次高調波)を含むスペクトル波長範囲を有する。この領域は、粒状農産物における最も重要な成分、例えば水分、脂質、タンパク質の特徴的な吸収帯をカバーしており、シリコン(SI)検出器によりこの波長範囲が検出可能である。
【0060】
光学積分キャビティ内の容積部にて放出光を均一に分布させるには、好適には、光学拡散壁が白色塗料で塗装され、高拡散性材料で構成された層を含むか又は拡散性材料で構成される。拡散効果により、光学積分キャビティ内の拡散壁の少なくとも1つに放出光が反射することにより放出光が散光に変換される。従って散光に変換される光照射を光学積分キャビティ内で複数の方向にランダムに分布させる。理想的には、光学拡散壁の表面は、測定の波長範囲に亘って白色であり、95%を超える拡散反射率を有するものとする。この点は、様々な方法で実現される。第1には、拡散性白色塗料、例えばDuraflect(商標)をキャビティ壁に適用することができる。第2には、高度な反射性材料、例えばODM98-F01で構成された層をキャビティ壁に適用することができる。第3には、キャビティ壁は、適切な白色材料、例えばスペクトラロン(商標)又は二酸化チタン粒子に基づく大きな顔料体積濃度を含有するポリエチレンで構成することができる。代替的には、ポリエチレンを射出成型することにより、光学積分キャビティの一部又は全部を容易に形成することができる。
【0061】
好適な実施形態において、光学積分キャビティは、主に2個の半球で構成される。これにより、いわゆる積分球の利点を利用することができる。興味深いことに、試料ホルダは、測定を行うために2個の半球間に配置することができる。また、光学積分キャビティが球状に構成されることにより、有利な分散特性がもたらされる。
【0062】
更に、少なくとも1個の半球は、透明な保護部、特に保護ガラスでシールされるのが好適である。保護ガラスにより、汚染や他の妨害物質の付着が回避されるのみならず、試料自体とキャビティ壁との相互作用が回避される。これにより、分散壁の分散能力が影響を被ることがない。
【0063】
有利には、スペクトルセンサは、検出器アレイ、線形可変光学フィルタ及び/又は集束手段を含む。検出器アレイは、分光要素、例えばプリズム又は回折格子により、これらアレイにおける単一の検出器に特定の波長又は波長範囲を割り当てれば使用することができる。このように、可動光学素子を必要とする走査装置の使用は不要である。また、可変光学フィルタが同様に使用可能である。集束手段は、基本的に、ビームに影響する焦点距離を有するレンズ又は素子とする。
【0064】
好適には、スペクトルセンサにより感知された吸収スペクトルを分析することにより、試料が含有するタンパク質、水分、炭水化物及び/又は脂質の濃度が測定可能である。また、光学分析により、他の任意の濃度又は特性値を把握することができる。これは、農業上の決断及び計画にとって有益である。理想的には、光学分析装置は、複数の成分の濃度を連続的に又は同時に分析できるよう構成される。
【0065】
他の好適な実施形態においては、コンピュータのソフトウェアが使用される。ソフトウェアを使用すれば、コンピュータは、試料の吸収スペクトルを生成することにより、少なくともスペクトル的にフィルタリングされた光の分析を行うことができる。また、ソフトウェアにより、以下に記載する方法における任意のステップの支援又は制御を行うことができる。
【0066】
本発明に係る光学分析方法は、
・光学積分キャビティ内に光を放出し、該光学積分キャビティにおける少なくとも1つの光学拡散壁により放出光を散光に変換するステップと、
・スペクトルセンサがスペクトル的にフィルタリングされた光に露出されている間、試料を光学積分キャビティ内に閉じ込め、固形農産物試料を利用することによって、散光の一部又は全部をスペクトル的にフィルタリングされた光に変換するステップと、
・試料の吸収スペクトルを生成することにより、スペクトル的にフィルタリングされた光を分析するステップと、
を含む。
【0067】
光学積分キャビティは、粒状農産物試料の局所的かつ迅速な分析を可能にする方法の簡略化をもたらすものである。また、試料に関して調製が必要であったとしても、手間のかかる調製は不要である。
【0068】
いわゆる積分球で行われる積分に比べて、拡散壁により行われる光学積分が十分でなければ、拡散壁又はバッフルを追加することができる。拡散壁又はバッフルは何れも、反射により散光を生成する。
【0069】
有利には、定量分析は、試料の吸収スペクトルを生成することにより行われる。この吸収スペクトルの振幅は、キャビティ内における試料の吸収係数に比例するものである。吸収スペクトルの生成は、積分キャビティ内に試料が配置されていない状態で測定された基準スペクトルを測定し、試料が配置された状態で測定された試料スペクトルを比較することにより行われる。吸収スペクトルにより、試料によるフィルタリング作用を分析するときに、光学分析キャビティ又は試料ホルダに起因するスペクトル上のフィルタリング作用を全て考慮することが可能となる。即ち、フィルタリング作用の一部は、試料ホルダ又は光学分析キャビティが汚染されていれば、必ずしも試料に由来するものではない。有利には、使用者は、光学分析装置を入念に又は全く洗浄する必要がない。これは、スペクトル分析に際して、汚染によるフィルタリング作用を排除することができるからである。
【0070】
較正を行うために、光源をオフに切り替える間又は遮光する間に、暗スペクトルが生成される。この暗スペクトルにより、センサに影響する任意の副作用を把握することができる。このような副作用は、試料の光学分析とは無関係であり、センサの特性応答に起因し得るものである。暗スペクトルを、所定の時間間隔、例えば、試料スペクトル測定及び基準スペクトル測定の直前又は直後に再度測定することができる。その後、試料スペクトル及び基準スペクトルは、暗スペクトルに関して補正されてから、試料スペクトル及び基準スペクトルに基づいて吸収スペクトルが算出される。この場合、吸収スペクトルの振幅は、試料成分の濃度に関して、より正確な線形性を示す。
【0071】
好適な実施形態において、試料要素は、光学積分キャビティ内にて互いに最小距離で配置されることにより遮光が回避され、従って隠された質量が総質量の約40%、理想的には約10%未満に低減される。
【0072】
有利には、光学的に薄い試料、特に約2〜4 ミリメートル以下の厚さを有する光学的に薄い試料の分析を行う。ただし、濃度の測定結果の精度が特に良好なものでなくてもよければ、光学的な薄さは必ずしも必要ない。
【0073】
本発明に係る方法の有用な実施形態において、スペクトル分析を、試料のスペクトル分析を行うのに十分なエネルギー負荷が貯蔵可能なエネルギーストレージで作動する光学分析装置により行う。これにより、使用者は、私有であるか公共であるかに関わらず電力供給網から遠く離れた場所で光学分析を行うことが可能となる。有利には、エネルギーストレージは、電気エネルギーによるストレージ、例えば電池又は充電池とする。
【0074】
本発明に係る試料調製装置は、複数の窪みを有する試料ホルダと、第1可動ブレードとを備える。この場合、第1可動ブレードは、窪みにおける一連の第1開口により規定される第1平面内で移動可能である。本発明に係る試料調製装置により、試料の調製のみならず、光学分析装置内での光学分析に関しても試料ホルダを使用できるため極めて有益である。
【0075】
好適には、光学分析装置は、第2可動ブレードを備える。この第2可動ブレードは、窪みにおける一連の第2開口により規定され、かつ第1平面と平行な第2平面内で移動可能とする。これにより、試料要素は、任意の厚さ、理想的には光学的な薄さに必要な厚さにスライス可能であると共に、窪み内に押し込まれることにより該窪み内に留まるため、測定時に他の固定手段を必要とすることがなく、しかも後で容易に除去することが可能である。
【0076】
有利には、第1ブレードは、第2ブレードに固定されることにより、窪みの1つに配置された試料の少なくとも一部がこれら2個のブレードで同時にスライスされる。これにより、より高精度で所定の試料厚さが保証される。
【0077】
理想的には、第1及び第2ブレード間の最小距離は、特定タイプの試料に特徴的な厚さ、即ち光学的に薄い厚さに対応し、特に約2〜4 ミリメートル以下の厚さに対応している。このような装置は、特にトウモロコシに関して有益である。
【0078】
他の好適な実施形態において、試料調製装置は、3つのガラス層で構成され、中間層が移動することにより試料要素が3つにスライスされる。この場合、試料は光学的に薄く、しかも穀粒の総質量が維持されるため、測定誤差を低減することができる。
【0079】
本発明の他の好適な実施形態及び有利な構成は、図面又は従属請求項に記載したとおりである。