【実施例】
【0042】
<実施例1>
<トリチウム吸着材の合成>
【0043】
以下の手順に従って、スピネル結晶構造を有したリチウム含有酸化マンガンで構成されるトリチウム吸着材、及びスピネル結晶構造を有した水素含有酸化マンガンで構成されるトリチウム吸着材を合成した。
<原料と混合> 和光純薬工業製の試薬炭酸マンガン水和物(MnCO
3・nH
2O)と水酸化リチウム水和物(LiOH・H
2O)の粉末を重量比2対1で混合し、室温下で黒色化するまでよく混合する。
<焼成> 電気炉(YAMATO製FO−410)を用いて同混合粉末を大気中390℃で6時間加熱した後、室温まで冷却する。
【0044】
<精製> 自然冷却後の粉末をビーカー等の容器内の適量のイオン交換純水に懸濁させ、ビーカー等の容器の壁面を通じて超音波をあてて粉末の凝集をほぐす。未反応の炭酸マンガンは比重が軽いためイオン交換純水の上澄みに濁りとして残り、比重の重たいスピネル結晶構造を有したリチウム含有酸化マンガンは容器の底に沈殿する。一定時間静置した後に上澄みの炭酸マンガンを、アスピレーター等を利用して除去し、沈殿したスピネル結晶構造を有したリチウム含有酸化マンガン粉末を回収する。この時、粉末を懸濁させたイオン交換純水のpHを弱アルカリからアルカリ側に維持する。この一連の精製処理を3回繰り返すことで焼成の工程で未反応物として残留している炭酸マンガンを除去する。
【0045】
<保管> 濾過処理等で回収されたスピネル結晶構造を有したリチウム含有酸化マンガン粉末を湿潤した状態で冷暗所に保管する。乾燥処理が必要な際には、120℃程度で12時間乾燥処理する。
【0046】
<酸処理> スピネル結晶構造を有したリチウム含有酸化マンガン1gを例えば0.5M濃度の希塩酸水溶液1L中に懸濁させてマグネチックスタラーを用いて1時間程攪拌を続け、その後、減圧濾過を用いて固液分離することで、スピネル結晶構造を有した水素含有酸化マンガン粉末を得る。なお、本合成方法で得られるリチウム含有酸化マンガンおよび、水素含有酸化マンガンの化学組成は、H. Koyanaka, O.Matsubaya, Y.Koyanaka, and N.Hatta, Quantitative correlation between Li absorption and H content in Manganese Oxide Spinel λ-MnO
2, Journal of Electroanalytical Chemistry 559 (2003) 77-81.において、それぞれ、(Li
1.15Mn
2O
4.6)、(H
1.35Mn
2O
4.1)と化学分析されている。
【0047】
以上の操作によって、一次粒子径が20〜70nmのスピネル結晶構造を有する水素含有酸化マンガンで構成されるトリチウム吸着材、およびスピネル結晶構造を有するリチウム含有酸化マンガンで構成されるトリチウム吸着材を得た。得られたスピネル結晶構造を有する水素含有酸化マンガン、およびスピネル結晶構造を有するリチウム含有酸化マンガンのX線回折パターンを
図1の上段および下段にそれぞれ示した。
図1では、上段に示した水素含有酸化マンガンに関する回折パターンが下段に示したリチウム含有酸化マンガンの回折パターンに比べて高角側にわずかにシフトしており、リチウム含有酸化マンガンを酸処理することでリチウムイオンが溶出し、イオンサイズがリチウムイオンよりも小さい水素イオンに置き換わったことによる結晶サイズのわずかな縮小効果が現れている。また、これらの分析結果は、それぞれの吸着材が、J. C. Hunter, Preparation of a new crystal structure of manganese dioxide: lambda-MnO
2, Journal of Solid State Chemistry 39 (1981) 142-147.で報告された、結晶性の高いスピネル結晶構造を有する酸化マンガンのX線回折パターンとピーク位置がほぼ一致していることを示している。また、焼成の工程において、焼成温度を本吸着材に適したイオン交換特性が得られる390℃に設定した場合のスピネル結晶構造を有したリチウム含有酸化マンガン、および異なる焼成温度によって得られるスピネル結晶構造を有したリチウム含有酸化マンガンの透過型電子顕微鏡写真を
図2に示した。この
図2においては焼成温度を変化させて得られる一次粒子径の違いが比較できる。なお、
図2中の「RT」は室温を示す。また、
図3に、
図2に示した各リチウム含有酸化マンガンのX線回折パターンを示した。
図3の各回折パターンを比較することで、
図2に示した各リチウム含有酸化マンガンがスピネル結晶構造を有することがわかる。焼成温度が低いほど、
図3のX線回折ピーク強度が低下してブロードになっており、
図2からは焼成温度が低いほど得られる一次粒子のサイズが細かくなる様子がわかる。一般に、粒子径が細かいと比表面積値が大きくなるために化学的な反応性は高まる。
図2では、焼成温度が200℃の場合や、原料の混合だけで焼成を実施しない室温合成の場合には、390℃で焼成した吸着材に比べて細かい一次粒子が得られている。しかしながら、細か過ぎる一次粒子では表面の割合がバルクの割合に比べて高まるために、結晶構造が乱れた表面におけるアモルファス構造の影響が増加する。このため、スピネル結晶構造に由来するトリチウム吸着能は390℃で焼成した吸着材の方が良好である。390℃で焼成した同吸着材の比表面積は、窒素ガス吸着法によって約33m
2/gと測定された。また、1000℃の焼成によって得られるスピネル結晶構造を有するリチウム含有酸化マンガンは、単に比表面積が小さいだけではなく、結晶内のリチウムイオンと液相の水素イオンとの間でイオン交換反応性が著しく低下する。このため、390℃の焼成によって得られる20〜70nmのスピネル結晶構造を有したリチウム含有酸化マンガン、又は390℃の焼成によって得られる20〜70nmのスピネル結晶構造を有したリチウム含有酸化マンガン、および同リチウム含有酸化マンガンに対して上記の酸処理を実施して得られる水素含有酸化マンガンがトリチウム吸着材として好ましい。
【0048】
<トリチウムの吸着試験>
【0049】
トリチウム水の標準試薬(DuPont 5 mCi, 5.0 g, 1.0Ci/g 4/25/1985)40μLを室温(23.6℃、pH5.61)の蒸留水100mLで希釈して放射能濃度5606.87Bq/mLの実験用トリチウム含有水をガラス製のビーカーに調合した。したがって、同実験用トリチウム含有水100mLからは560687Bqのトリチウム由来の放射能が総量として発生している計算になる。放射能濃度の測定には、液体シンチレーションカウンター(Liquid Scintillation Analyzer TRI−CARB 2100TR PACKARD (USA))をもちいた。実験用トリチウム含有水のサンプル1mLに対し、シンチレーターとしてβ線で発光する蛍光剤を含んだ界面活性剤(Perkin Elmer PICO−FLUOR PLUS)を10mL添加して、サンプル1mLあたりからのトリチウム由来の放射能濃度を測定した。ブランク試料として、実験に用いた蒸留水1mLを同様に前処理してトリチウム由来の放射能を計測し、1.1Bq/mLを検出した。このため、本放射能の計測法においては1.1Bq/mLが実験用に添加したトリチウム由来の放射能の検出下限値であることを確認した。実験用トリチウム含有水のpH調整には、試薬0.01M、0.1M、0.5M希塩酸水溶液、および試薬0.01M、0.5M、1M水酸化ナトリウム水溶液を用いた。pHおよび水温の確認には、pHメーター(HORIBA製pH/DOメーター、D−55ガラス電極型式9678)、およびpH試験紙を使用した。
【0050】
<スピネル結晶構造を有する水素含有酸化マンガン吸着材を用いた吸着試験>
【0051】
次に、
図1下段にX線回折パターンを示したスピネル結晶構造を有したリチウム含有酸化マンガン(Li
1.15Mn
2O
4.6)0.73gを、室温の0.5M希塩酸1Lに添加し、テフロン(登録商標)樹脂でコーティングされた攪拌子とマグネチックスタラーをもちいて1時間攪拌した。この酸処理によって、同リチウム含有酸化マンガンに含まれるリチウムを溶出させて、スピネル結晶構造を有した水素含有酸化マンガン(H
1.35Mn
2O
4.1)へと化学組成を変化させた。同0.5M希塩酸中から減圧濾過によってガラス繊維濾紙(ADVANTEC製GS−25)上に、湿潤状態のスピネル結晶構造を有した水素含有酸化マンガン(H
1.35Mn
2O
4.1)を回収した(120℃で5時間乾燥した際の重量としては0.5g)。この湿潤状態のスピネル結晶構造を有した水素含有酸化マンガンを、上記の放射能濃度5606.87Bq/mLの実験用トリチウム含有水100mLに懸濁させて、マグネチックスタラーで攪拌しながら10分間保った。その際、実験用トリチウム含有水のpHは、吸着材懸濁前の初期値pH5.61から懸濁直後に2.96に変化した。その時点で水酸化ナトリウム水溶液の滴下を開始して、実験用トリチウム含有水のpHを5.75〜5.91の間で維持しながら、水酸化ナトリウム滴下開始から10分経過時点のpH5.8の際に、ロックシリンジ注射器に装着するタイプのガラス繊維製濾紙が内装されたアドバンテック製の濾過用器具(DISMIC−25AS)をもちいて実験用トリチウム含有水のサンプル2mLを懸濁液から濾取し、その2mLから精秤・分取した1mLに対して上記の界面活性剤10mLを加え、液体シンチレーションカウンターで放射能濃度を計測した結果、5177.58Bq/mLを得た。さらに、同様にpHを5.72〜5.88に維持して10分経過した20分経過時点で同様に採取した実験用トリチウム含有水のサンプル1mLからの放射能を分析した結果、3861.12Bq/mLを得た。したがって、約20分で初期放射能濃度5606.87Bq/mLが3861.12Bq/mLに減少した。よって、サンプル1mLに関する放射能の減少濃度は、1745.75Bq/mLと得られた。したがって、100mLの同実験用トリチウム含有水中では、放射能174575Bqのトリチウムがスピネル結晶構造を有した水素含有酸化マンガン吸着材の吸着効果によって、同実験用トリチウム含有水の液相から吸着材の固相に移動した。したがって、同吸着材の乾燥重量0.5gあたりに174575Bqが約20分間で吸着したことがわかった。以上の結果から、同吸着材の乾燥重量1gあたりのトリチウム放射能の最大吸着率は、349150Bq/gに達し、本吸着材の高いトリチウム吸着能力が確認された。吸着によって減少した放射能の値を以下の(4)式により、トリチウムのモル数に換算すると、0.325 × 10
−9moLとなる。したがって、吸着したトリチウムの質量は、トリチウムの質量数3を同モル数に乗じて、0.975ngと得られた。
【0052】
【化2】
【0053】
ここで、(4)式において、-dN/dtはトリチウムの一秒間あたりの崩壊数(Bq); lnは自然対数記号; Tはトリチウムの半減期12.32(年); およびNはトリチウムの原子数を表す。
【0054】
さらに、同実験用トリチウム含有水のpHを5.70〜5.92に保って、最初の水酸化ナトリウムの添加から100分間攪拌保持した。同100分の間で一定時間の経過時点において、上記と同様に実験用トリチウム含有水をサンプリングし、放射能濃度を計測した結果、
図4に示した各1mLのサンプルに関する放射能濃度の変化を得た。
【0055】
図4から、20分経過時点までの放射能濃度の減少傾向に比べて、20分経過以降には吸着したトリチウムが再び実験用トリチウム含有水に溶出していることが示唆されている。この理由は、結晶構造内に吸着したトリチウムイオンがβ線(電子線)を発しながらマンガンを溶解性の高い+2価のマンガンイオンに還元する効果、および吸着材に含まれるイオン交換性の水素イオンが20分経過時点でトリチウムイオンを液相から吸着材の固相に移動させるために不足したことによるものと考えられる。また、吸着したトリチウムはβ崩壊することで希ガスのヘリウム
3Heに変化するため、吸着材の結晶構造内に発生したヘリウムが留まり、吸着材の結晶構造におけるトリチウムイオンの侵入経路の内圧が高まることで、新たにトリチウムイオンが結晶構造内に侵入することを阻害している可能性もある。上記の還元効果に関する考察を裏付ける現象として、同吸着材1gあたりのトリチウム吸着放射能が約10000〜30000Bq/gを超えた状態でサンプリングされた実験トリチウム含有水にはマンガンの溶解を示す薄い黄茶系の着色が見られた。この様な着色は、同吸着材に対する同様なpH条件下におけるリチウムイオンの吸着に関する過去の研究報告(例えば、H. Koyanaka, O.Matsubaya, Y.Koyanaka, and N.Hatta, Quantitative correlation between Li absorption and H content in Manganese Oxide Spinel λ-MnO
2, Journal of Electroanalytical Chemistry 559 (2003) 77-81.)では全く見られなかった現象であり、同吸着材へのトリチウムの吸着による影響と考えられた。
【0056】
上記の結果を踏まえると、本吸着材を実際のトリチウム含有水に適用する際には、本吸着材とトリチウム含有水を接触させる処理槽において、既存のフロータイプの液体シンチレーションカウンターを設置し、リアルタイムで処理中のトリチウム含有水の放射能濃度をモニタリングすることによって、処理水のトリチウム放射能濃度が吸着材の添加によってトリチウムの吸着が最も進んだ時点で吸着材と処理水とを分離する必要がある。処理槽においてトリチウム濃度が充分下がらない内は処理水を処理槽内で循環処理するシステムを構築し、トリチウム濃度が公共用水域に法規上排出できる濃度に減少した時点で処理水を排出用タンクに移し、公共用水域に排出することによって、実質的な水中のトリチウムの吸着・分離が可能となる。
【0057】
<スピネル結晶構造を有するリチウム含有酸化マンガン吸着材を用いた吸着試験>
【0058】
トリチウムの標準試薬(DuPont 5 mCi, 5.0 g, 1.0Ci/g 4/25/1985)40μLを室温(22.9℃)のイオン交換純水100mLで希釈して放射能濃度5718.13Bq/mLの実験用トリチウム含有水をガラス製のビーカーに調合した。したがって、同実験用トリチウム含有水100mLからは571813Bqのトリチウム由来の放射能が総量として発生している計算になる。放射能濃度の測定には、液体シンチレーションカウンター(Liquid Scintillation Analyzer TRI−CARB 2100TR PACKARD(USA))をもちいた。実験用トリチウム含有水のサンプル1mLに対し、シンチレーターとしてβ線で発光する蛍光剤を含んだ界面活性剤(Perkin Elmer PICO−FLUOR PLUS)を10mL添加して、サンプル1mLあたりからのトリチウム由来の放射能濃度を測定した。実験用トリチウム含有水のpH調整には、試薬0.01M、0.1M、0.5M、1M希塩酸水溶液、および試薬0.01M、0.1M、0.5M、1M水酸化ナトリウム水溶液をもちいた。pHおよび水温の計測には、pHメーター(HORIBA製pH/DOメーター、D−55ガラス電極型式9678)、およびpH試験紙を使用した。
【0059】
次に、
図1中の下段にX線回折パターンを示したスピネル結晶構造を有するリチウム含有酸化マンガン約0.725g(乾燥重量としては約0.5g)を、上記の実験用トリチウム含有水に懸濁させた。同吸着材は上述の精製過程において弱アルカリ〜アルカリ性の水溶液で湿潤しているために、実験用トリチウム含有水100mLに懸濁させた際に、実験用トリチウム含有水のpHは懸濁前のpH5.58からpH9.5程度まで吸着材の懸濁後、素早く上昇した。これに、0.01M、0.5M、または1Mの希塩酸水溶液を適量・適時に滴下することで、約5分程度の時間、pH3〜4に調整した。その後、同実験用トリチウム含有水のpHを試薬0.01M、0.1M、0.5M、1M水酸化ナトリウム水溶液を適量・適時に滴下する事で、pH5.75〜5.98に収束する様に調整しながら、テフロン(登録商標)樹脂コーティングされた攪拌子を用いてマグネチックスタラーで攪拌を続けた。上記の希塩酸水溶液の滴下によるpHの調整を開始した時点から、10分、20分、30分、40分、50分の各経過時点で、ロックシリンジ注射器に装着するタイプのガラス繊維製の濾紙が装填されたアドバンテック製の濾過用器具(DISMIC−25AS)をもちいて実験用トリチウム含有水のサンプル2mLを濾取し、その2mLから精秤・分取した1mLに対して上記の界面活性剤10mLを加え、液体シンチレーションカウンターで放射能濃度を計測した。以上の実験から得られた結果を、
図5に示した。
図5では30分経過後に採取された同実験用トリチウム含有水サンプルの放射能濃度が2971.28Bq/mLと最も低下したことがわかる。同実験用トリチウム含有水の初期放射能濃度は5718.13Bq/mLであることから、30分経過時点における同初期濃度からの減少濃度は2746.85Bq/mLに達した。したがって、同実験用トリチウム含有水100mL中の減少放射能は274685Bqとなった。すなわち、同実験で添加した吸着材の0.5g(乾燥重量)あたりのトリチウム吸着は、274685Bqに達し、吸着材1gあたりの放射能除去率に換算すると、549370Bq/gに相当する結果が得られた。
また、pH6.5以上でサンプリングされた実験用トリチウム含有水、および同吸着材1gあたりのトリチウムの放射能除去率が約10000〜30000Bq/gを超えた状態でサンプリングされた実験用トリチウム含有水にはマンガンの溶解を示す薄い黄茶系の着色が見られた。
【0060】
<水素含有酸化マンガン吸着材に対する乾燥処理がトリチウム吸着に及ぼす影響>
【0061】
図6に、トリチウム含有水に添加する前の水素含有酸化マンガン吸着材に対する乾燥処理が、トリチウム吸着に及ぼす影響をトリチウム濃度の減少率を比較することで実験的に確認した結果を示した。すなわち、水素含有酸化マンガン吸着材粉末(0.5g)を、乾燥処理無し、100℃で4時間乾燥、および100℃で16時間乾燥処理と、3種類の各粉末サンプルを作成し、他は同一条件下でトリチウム含有水に適用した際のトリチウム濃度の減少率の変化を比較した。
図6に示した結果で明らかな様に、100℃で乾燥処理した水素含有酸化マンガンのサンプルらは、乾燥処理無のサンプルに比べて、トリチウム濃度の減少率が10%以下であり、吸着能が乾燥処理無しのサンプルの結果に比べて明らかに低い。これは、乾燥処理によって水素含有酸化マンガン吸着材に含まれるイオン交換性の水素イオンが水として蒸発することで吸着材から失われ、結果としてトリチウム吸着能が劣化するためである。このためスピネル結晶構造を有する水素含有酸化マンガンは、乾燥処理せずに酸処理の工程後に得られる湿潤状態で保管されるべきである。
【0062】
<比較例>
【0063】
<他の酸化マンガンをトリチウム吸着材としてもちいた比較実験>
【0064】
上記の実施例1で述べたトリチウムの吸着効果が、スピネル結晶構造を有した水素含有酸化マンガン、およびスピネル結晶構造を有したリチウム含有酸化マンガンに特有な機能性であることを確認するために、スピネル結晶構造以外の結晶構造を有する酸化マンガンをトリチウム吸着材として試験した。
図7にX線回折パターンを示した(a)ラムズデライト型(オルソロンビック構造)の結晶構造を有した二酸化マンガン(下段には理想的なラムズデライト型二酸化マンガンの理論ピークが示されている)、(b)多くの結晶構造が混晶している市販の二酸化マンガン(和光純薬工業製 酸化マンガンIV化学処理品)、および(c)ベータ型(ルチル構造)の結晶構造を有した二酸化マンガンの各々0.5gを比較対象として、実施例1と同様なトリチウム吸着実験を実施した。実験用トリチウム含有水(初期pH5.68、水温24.5℃、初期放射能濃度5509Bq/mL)、および(初期pH5.63、25.5℃、初期放射能濃度5644Bq/mL)を調合し、ラムズデライト型の結晶構造を有した二酸化マンガン、および多くの結晶構造が混晶している市販の二酸化マンガンを、それぞれ試験した。また、ベータ型の二酸化マンガンの実験では、初期放射能濃度2510Bq/mL、初期pH5.85、水温25.0℃の条件下で実験を実施した。実験用トリチウム含有水のpHは、いずれの実験においても、実施例1と同様に、マグネチックスタラーで攪拌しながら、水酸化ナトリウム水溶液を滴下することでpH5.50〜5.98を維持した。pH調整を開始した時点から、10分、20分、30分経過時点で実験用トリチウム含有水を濾過サンプリングし、実施例1と同様に放射能濃度の変化を調べた。実験結果を、
図8に示した。これらの比較対象として試験された酸化マンガンでは、初期放射能濃度から最大でも66Bq/mL程度の低下しか見られない。したがって、トリチウムに対する吸着性は結晶構造に強く依存しており、実施例1で記述したスピネル結晶構造を有した水素含有酸化マンガン、およびスピネル結晶構造を有したリチウム含有酸化マンガンに特有な性質に基づくことを確認した。
【0065】
<実施例2>
<スピネル結晶構造を有する水素含有酸化マンガン吸着材を電極化して用いたトリチウム吸着試験>
【0066】
図1の下段にX線回折パターンを示したスピネル結晶構造を有したリチウム含有酸化マンガン粉末(化学組成:Li
1.15Mn
2O
4.6)を、乾燥機(EYELA製WFO-401)内で大気中120℃に保ち、12時間乾燥した。乾燥した吸着材粉末0.1gを、
図9(a)に示したように、白金メッシュ(サイズ5cm×2cm×0.16mm、100メッシュ)Aの表面4cm×2cmに、導電性塗料と混合して塗布し、乾燥機内で大気中150℃に保ち、3時間乾燥した。この処理によって、スピネル結晶構造を有するリチウム含有酸化マンガンの粉末(PMOS)を、表面に厚さ0.3mmで担持した白金電極Bが作成できた。同電極を、
図9(a)に示した。なお、導電性塗料には、藤倉化成製のエポキシ樹脂にカーボンフィラーが混合された塗料XC-12を使用した。
【0067】
トリチウムの標準試薬(DuPont 5 mCi, 5.0 g, 1.0Ci/g, 4/25/1985)40μLを、室温(20℃)の蒸留水100mLで希釈して、放射能濃度3574.73Bq/mLの実験用トリチウム含有水をガラス製のビーカーに調整した。したがって、同実験用トリチウム含有水100mLからは357473Bqのトリチウム由来の放射能が総量として発生している計算になる。放射能濃度の測定には、液体シンチレーションカウンター(Liquid Scintillation Analyzer TRI−CARB 2100TR PACKARD(USA))をもちいた。ブランク試料として、実験に用いた蒸留水1mLを同様に前処理してトリチウム由来の放射能を計測し、1.1Bq/mLを検出した。このため、本放射能の計測法においては1.1Bq/mLが実験用に添加したトリチウム由来の放射能の検出下限値であることを確認した。実験用トリチウム含有水からサンプル1.2mLを、0.2μmメッシュのフィルターユニット(DISMIC−25AS, ADVANTEC製) とディスポーザブル・シリンジ(テルモ SS−02Sz)を使って採取し、この内1mLを精秤・分取した。同サンプル1mLに対し、シンチレーターとしてβ線で発光する蛍光剤を含んだ界面活性剤(Perkin Elmer PICO−FLUOR PLUS)を10mL添加した。同シンチレーターを加えたサンプルを、液体シンチレーションカウンターをもちいて、サンプル1mLが含むトリチウム由来の放射能濃度を測定した。実験用トリチウム含有水100mLのpH調整には、試薬0.01M、0.1M、および0.5M水酸化ナトリウム水溶液をもちいた。pHおよび水温の計測には、pHメーター(HORIBA製pH/DOメーター、D−55ガラス電極型式9678)、およびpH試験紙を使用した。
【0068】
実験に当たっては、まず、スピネル結晶構造を有したリチウム含有酸化マンガンの乾燥処理粉末0.1gを導電性塗料によって表面に固着させた白金メッシュ電極(
図9(a))を作成し、それを40mLの0.5M 希塩酸に浸してマグネチックスタラーを用いて1時間攪拌した(
図9(b))。この酸処理によって、スピネル結晶構造を有したリチウム含有酸化マンガンからリチウムイオンを除去して、スピネル結晶構造を有した水素含有酸化マンガン(化学組成:H
1.35Mn
2O
4.1)を表面に担持した白金メッシュ電極を得た。
図9(c)に示すように、この水素含有酸化マンガンを表面に担持した白金メッシュ電極をトリチウム含有水100mLに浸した。試薬水酸化ナトリウム水溶液の滴下によってトリチウム含有水のpHを5.5〜6.0に保ちながら、トリチウム含有水をテフロン(登録商標)コートされた攪拌子を用いてマグネチックスタラーにより攪拌し、規定の時間経過毎にトリチウム含有水からサンプル1.2mLを採取し、採取したサンプルから分取した1.0mL中の放射能濃度の変化を計測した。本実験では、
図9(c)に示したように同電極を実験の間中、銅線を通じて電気的にアースに接地した。また、同電極からアースに流れる微小電流値を、日置電気製の微小電流計DSM−8104で測定した。
【0069】
本実験結果を、
図10においてInitialと記述した曲線に示した。各サンプル中の放射能濃度は、初期濃度である3575Bq/mLから15分経過時には、3257Bq/mLに低下し、その後、再上昇と再下降を示した。同15分経過時に試験水100mLから吸着材に吸着されたトリチウムの総量は、初期濃度からの減少値318Bq/mLを100倍することで、31800Bqと算出された。上記の実施例1において、0.5gのスピネル結晶構造を有した水素含有酸化マンガン粉末を吸着材としてもちいた際には、最大で174575Bqのトリチウムが20分かけて吸着された。これに対して、約0.1gの吸着材を電極化して適用した本実施例2では、吸着材の単位重量あたりの最大トリチウム吸着量は、0.5gの粉末吸着材を利用した実施例1の場合と同程度に維持された結果が得られた。さらに、実施例1の実験において、pH6以上で観られたマンガンの溶出による試験水の着色は、電極化して吸着材を適用した本実施例2では観察されなかった。これは吸着したトリチウムが発するβ線由来の電子をアースに逃がすことによって、吸着材を構成するマンガンの還元と溶出を防止した効果と考えられた。同効果によって、吸着材を粉末として適用する場合に比べて吸着材の寿命を延ばすことができると考えられる。また、微小電流測定によって、トリチウム濃度の低下前にはマイナス数百ピコアンペアレベルの電流(アースに向かう電子の流れに基づく電流値ためにマイナス表示となる)が、間欠的に観測された。同電流は、本吸着材と導電性塗料および白金メッシュから構成されたトリチウム吸着電極からのアースへの放電を捉えたものと考えられる。
【0070】
次に、上記の実験によってトリチウムを吸着した電極を、
図9(b)に示した濃度0.5Mの希塩酸40mLに10分間浸して、吸着材に吸着したからトリチウムを希酸に溶出させた。同希塩酸へのトリチウムの溶出量は、吸着量の約10%相当することをシンチレーションカウンターによる計測によって確認した。
【0071】
さらに、上記の希塩酸に10分浸してトリチウムを脱着させた電極を、
図9(c)の実験系において上記実験終了後の残液に再度接触させた。このように、本電極を用いて、トリチウム含有水に浸漬(10分)、酸処理によるトリチウム脱着と水素イオンの補充(10分)、トリチウム含有水に再度浸漬(10分)を繰り返すことで、
図10の2nd、3rdに示した結果を得た。結果として、
図10では、同一のトリチウム含有水に対して、10分間の吸着処理を3回繰り返すことで、トリチウム濃度を初期濃度3575Bq/mLから3043Bq/mLまで、532Bq/mL低下させた結果が得られた。本測定結果を、実験に用いたトリチウム含有水100mL中の低下量に換算すると、53200Bqとなる。したがって、本実施例の電極(4cm×2cm×0.3mm)を利用した3回の吸着処理によって、約50000Bqのトリチウムが除去された。したがって、吸着時間と酸処理時間を考慮したうえで、同電極の単位平方メートル当たりのトリチウム吸着効率は、3.3×10
7 Bq/m
2 hと算出された。実施例1に記載の粉末吸着材としての適用に比較して、電極化することによって、固液分離が簡易となり、かつ吸着材の結晶内においてトリチウムイオンとイオン交換するための水素イオンの補充を簡易な酸処理で実施できることが利点である。
【0072】
<実施例3>
<スピネル結晶構造を有する水素含有酸化マンガン吸着材を電極化してトリチウム分離膜として用いたトリチウム吸着試験>
【0073】
本実験系を、
図11に示した。透明アクリル製の水槽を、電極化したスピネル結晶構造を有する水素含有酸化マンガン吸着材(化学組成:H
1.35Mn
2O
4.1)が、トリチウム含有水と接触する面積(1cm×1cm)を有するアクリル壁によって二槽に仕切り、左側の槽には100mLのトリチウム含有水を満たし、右側の槽には濃度0.5Mの希塩酸(和光純薬工業製)40mLを満たした。実験では、これらの二槽に満たされたトリチウム含有水および希塩酸中のトリチウムの放射能濃度の経時変化を調べた。
【0074】
トリチウムの標準試薬(DuPont 5 mCi, 5.0 g, 1.0Ci/g 4/25/1985)40μLを室温(25.0℃)の蒸留水100mLで希釈して放射能濃度4396.4Bq/mLの実験用トリチウム含有水をガラス製のビーカーに調合した。したがって、同実験用トリチウム含有水100mLからは439640Bqのトリチウム由来の放射能が総量として発生している計算になる。放射能濃度の測定には、液体シンチレーションカウンター(Liquid Scintillation Analyzer TRI−CARB 2100TR PACKARD(USA))をもちいた。実験用トリチウム含有水および希塩酸のサンプル1mLに対し、シンチレーターとしてβ線で発光する蛍光剤を含んだ界面活性剤(Perkin Elmer PICO−FLUOR PLUS)を10mL添加して、サンプル1mLあたりからのトリチウム由来の放射能濃度を測定した。実験用トリチウム含有水のpH調整には、試薬0.1M水酸化ナトリウム水溶液をもちいた。pHおよび水温の計測には、pHメーター(HORIBA製pH/DOメーター、D−55ガラス電極型式9678)、およびpH試験紙を使用した。ブランク試料として、実験に用いた蒸留水1mLを同様に前処理してトリチウム由来の放射能を計測し、1.0Bq/mLを検出した。このため、本放射能の計測法においては1.0Bq/mLが実験用に添加したトリチウム由来の放射能の検出下限値であることを確認した。
【0075】
実験にあたっては、まず、
図1下段にX線回折パターンを示したスピネル結晶構造を有したリチウム含有酸化マンガン(化学組成:Li
1.15Mn
2O
4.6)を、乾燥機(EYELA製WFO-401)内で大気中120℃に保ち、12時間乾燥した。次に、乾燥した同吸着材粉末(Li
1.15Mn
2O
4.6)0.1gを、白金メッシュ(サイズ5cm×2cm×0.16mm、100メッシュ)の表面4cm×2cmに、導電性塗料と混合して塗布し、乾燥機内で大気中150℃に保ち、3時間乾燥した。この処理によって、スピネル結晶構造を有したリチウム含有酸化マンガンの粉末を、表面に厚さ0.3mmで担持した白金電極を作成した(
図9(a))。なお、導電性塗料には藤倉化成(株)製のエポキシ樹脂にカーボンフィラーが混合された塗料XC-12を使用した。この電極の表面を1cm
2露出させて、厚さ0.5mmのシリコンゴム膜の防水シールとアクリル板で挟み込み、これをアクリル壁に接着固定することによって、
図11に示した実験用のアクリル槽を二層に隔てるアクリル壁を構成した。漏水防止のために、アクリル槽の各継ぎ目にはシリコンシーラを塗布して2日間乾燥した。また、電極化した吸着材は銅線を通じてアースに接地した。実験を開始する24時間前に、同アクリル槽の二槽に0.5Mの希塩酸を満たし、二層を隔てる電極面のリチウム含有酸化マンガンからリチウムを溶出させて、水素含有酸化マンガン(化学組成:H
1.35Mn
2O
4.1)に組成を変化させた。
【0076】
実験開始直前に、0.5M希塩酸を二槽から除去して蒸留水で充分すすいだ後、トリチウム含有水100mLと0.5M希塩酸を二槽にそれぞれ満たした。次に、同トリチウム含有水をテフロン(登録商標)コートされた攪拌子とマグネチックスタラーで攪拌しながら、トリチウム含有水のpHをpH5.5〜6.5に維持した。規定の時間が経過する毎にトリチウム含有水と0.5M希塩酸のサンプルを、それぞれの槽から1mLずつ精密マイクロピペットで採取し、上記の手法でサンプル中の放射能濃度を計測した。なお、トリチウム含有水のpHは、試薬水酸化ナトリウム水溶液の滴下によって調整した。
【0077】
図12に実験結果を示した。
図12(a)はトリチウム含有水のトリチウム濃度変化を示し、
図12(b)は0.5M希塩酸中のトリチウム濃度変化を示す。
図12(a)から、60分経過時にトリチウム含有水中のトリチウム濃度が初期濃度の4396.4Bq/mLから3916.1Bq/mLへと、480.3Bq/mL減少したことがわかる。実験では100mLのトリチウム含有水を使用しているので、本実験で試験した電極膜に48030Bqのトリチウムが吸着したことがわかった。また、同電極膜で隔てられた0.5M希塩酸の中のトリチウム濃度が、トリチウム含有水側とは異なって増減変動せずに上昇している結果も得られた。この0.5M希塩酸の中のトリチウム濃度の上昇は、同電極膜に吸収されたトリチウムが電極膜を通じて希塩酸側に移動した結果であると考えられる。本実験系では、二槽の間に設置した水素含有酸化マンガン電極膜に対して希塩酸槽側から水素イオンが同電極膜に供給され、同電極膜内で形成される水素イオンの濃度勾配にしたがってトリチウム含有水槽側の電極膜表面に水素イオンが供給されているものと考えられる。このため、実施例2で連続的なトリチウムの吸着処理のために必須であった電極の酸処理を繰り返して水素イオンを電極に補充する操作が必要なくなるために、より実用的な手法であるといえる。本手法では、フロータイプのシンチレーションカウンターで処理対象水中のトリチウム濃度を常時モニタリングすることによって、約1時間程度で最大のトリチウム分離効果が得られている。同電極膜の面積を増すことによって、より高い分離効率が得られるものと期待できる。