【実施例】
【0031】
本発明に従うプローブピンに使用する合金は、それ自体既知の方法に従い、例えばPtにCrを上記の量で添加、原料配合物を調整し、それを高周波溶解炉など適当な金属溶解炉で溶解することにより製造することができる。溶解時の炉雰囲気としては、不活性ガスまたは真空を使用することができる。また溶融状態の上記の合金を適当な型に鋳造し、インゴットを作製する。必要に応じて、インゴットを鍛造やスェージング加工を施し、溝ロールにより角形または多角形の棒材または線材に加工する。さらにダイスを用い伸線加工することにより、プローブピン用材料を作製することができる。また圧延により板形状を作製し、そこから切削加工等を用いて、所定形状のプローブピンとするプローブピン用材料を作製することができる。
【0032】
以下、本発明を実施例によりさらに具体的に説明する。
【0033】
Ptに、Cr、Ni、Rh、Irを所定量に配合し、1試料につき30gになるよう所定量配合、アーク溶解炉にて溶解、鋳造によりインゴットを作製した。表1に作製した組成を示す。
【0034】
【表1】
【0035】
加工性を見極めるため、作製したインゴットは、1000℃×30min熱処理し、加工性調査用サンプルとした。
【0036】
調査方法は、1回目は圧延率[=((圧延前の厚さ−圧延後の厚さ)/圧延前の厚さ)×100]が15〜30%になるよう圧延、1000℃×30min熱処理を行い、2回目以降は30〜80%内の圧延率で実施、中間に熱処理を行い、最終板厚が約0.5mmとなるよう圧延加工を行い、加工工程中でのインゴットの状態を調査した。
【0037】
結果を表2に示す。
【0038】
【表2】
【0039】
参考例、実施例、比較例1-1、比較例1-7は、特に問題なく圧延できた。
比較例1-2〜1-6は、初期圧延の数パスで中心部まで割れが入ったことから加工性が悪いことが分かる。その後の特性調査用サンプルの作製が困難なため以後の調査を中止した。
比較例の結果から、Crが7mass%以上含有している、Crと10%以上Niが含有している、Crと10%を超えるRh、Irが含有すると冷間での塑性加工が困難になることが分る。
【0040】
(硬さ試験)
表2の組成のサンプルの各加工率に対する硬さを測定、その後250〜700℃の範囲で30min熱処理し、再度硬さを測定した。測定結果を表3に示す。表3の時効処理後の硬さは、250〜700℃の温度範囲で熱処理を行った際、最も硬かった値である。
【0041】
時効硬化能を調べるため、時効処理前後の硬さの差ΔHV[=時効処理後の硬さ−時効処理前の硬さ]も算出した。試験結果を表3に示す。
【0042】
【表3】
【0043】
表3の結果から、
参考例および実施例は全て時効処理後の硬さがHV300以上となっているが、比較例1-1は、析出硬化が起こらず逆に軟化している。
また
参考例1-1と
参考例1-6、
参考例1-3と実施例1-10のように0.2%NiやRhを添加すると、ΔHVが僅かではあるが上昇し、0.2%程度添加しても効果があることが確認できた。
一方、比較例1-7のように0.02%Rh添加では、
参考例1-3の添加無と硬さおよびΔHVはほとんど変わらず、第3元素の微量添加では硬さへの寄与はほとんどない。
【0044】
(比抵抗調査)
各試料の圧延材と250〜700℃の範囲で最も硬くなった温度で30min時効処理した時効処理材の比抵抗を測定した。室温で各試料の抵抗を測定し、式1に従い比抵抗を算出した。
【0045】
式1:比抵抗=(抵抗×断面積)/測定長
【0046】
比抵抗測定結果を表4に示す
【0047】
【表4】
【0048】
参考例および実施例は、加工時と比較して時効処理材の比抵抗は低下しており、CrまたはCr+特定元素を添加させると時効処理により硬さを上昇しつつ、比抵抗を低下させる効果があることが分かる。
【0049】
(加工率調査)
表1に示す作製した試料の
参考例および実施例の内、
参考例1-3、1-7を抜粋し、伸線加工を行った。
試料の組成を表5に示す。
【0050】
【表5】
【0051】
作製方法は、アーク溶解により約φ11mmの棒材のインゴットを作製し、下記に示す加工履歴のように各試料の伸線加工を行った。
【0052】
インゴットからの加工履歴
・
参考例1-3
熱処理(1100℃×1hr水冷)→□2.5mmまで溝ロール加工→φ1.5mmまでダイス伸線→
熱処理(1100℃×1hr水冷)→φ1.0mmまでダイス伸線
・
参考例1-7
熱処理(1100℃×1hr水冷)→□7.6mmまで溝ロール加工→熱処理(1100℃×1hr水冷)→
□3.3mmまで溝ロール加工→熱処理(1100℃×1hr水冷)→□2.5mmまで溝ロール加工→
φ1.5mmまでダイス伸線→熱処理(1100℃×1hr水冷)→φ1.0mmまでダイス伸線
【0053】
上記のような加工履歴から中間で調査用サンプルを採取し、加工率に対する硬さおよび各加工率での時効処理による硬さを調査した。表6に
参考例1-3、表7に
参考例1-7の結果を示す。
【0054】
【表6】
【0055】
表6に示すように、ΔHVはほとんど変わらない。
【0056】
【表7】
【0057】
表7に示すように、Cr+Ni材は、加工率に対するΔHVはほとんど変わらない。
【0058】
表6および表7の結果から、Cr添加材は、ΔHVに対する加工率の影響が小さいことが分かる。ただし、時効処理後の硬さは、加工時の硬さに依存することから一定の加工を施す必要がある。
【0059】
(ハンダとの反応性調査)
プローブピンにハンダが溶着するのは、ハンダに接触するプローブピン先端の形状や表面粗さに起因した機械的な溶着、プローブピンとハンダが反応することによる溶着、あるいは複合的な要因が考えられている。
機械的な溶着は、プローブピンの形状、表面粗さ等で変わるため、プローブピンに使用する合金とハンダとの反応を調査した。
試験方法を下記に示す。
【0060】
使用するハンダ: フラックス入り無鉛ハンダ
組成:Sn-3.0Ag-0.5Sn[融点:221℃]
試 験 基 板: t0.5mm×□20mm板
試験基板組成 : 表8に示す。[プローブピンの酸化防止にAuやPtが被覆されることが
あるため比較例として試験を行った]
【0061】
【表8】
【0062】
試験方法: 試験基板にハンダを100〜300mg載せ、基板毎加熱。
試験終了後、ハンダごと基板を切断し、樹脂に埋め込み鏡面研磨し、
ハンダと基板およびハンダと基板の界面を観察した。
加熱条件: 230℃×5min
加熱雰囲気: 大気
【0063】
参考例1-3、比較例2-1、比較例2-2の各断面写真を
図1〜
図3に示す。
【0064】
拡散層を確認するため、EPMAによる線分析及びSEM等によるハンダと基板の界面の観察を行った。結果を表9に示す。
【0065】
【表9】
【0066】
表9で分かるようにPt合金やPtはハンダとの反応はなく、反応による溶着は起こりにくい。ただし、Ptは硬さが足らないため、単独ではプローブピン用材料に適していない。一方、Auは、ハンダ部全体にAuが検出され、反応による溶着が非常に起こりやすい。