【文献】
NEC,On the need to extend coverage enhancement for Configurations #2, #3, #4, #5[online],3GPP TSG-RAN WG1#75 R1-135261,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_75/Docs/R1-135261.zip>,2013年11月 1日
【文献】
China Telecom (Rapporteur),Email discussion on remaining issues of LTE coverage enhancements[online],3GPP TSG-RAN WG1#75 R1-135281,インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_75/Docs/R1-135281.zip>,2013年11月 6日
(58)【調査した分野】(Int.Cl.,DB名)
前記制御部は、UpPTSが3シンボル以上で構成される特別サブフレーム構成を少なくとも含む複数の特別サブフレーム構成が定義されたテーブルに基づいて、前記特別サブフレームにおける信号の送受信を制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
【発明を実施するための形態】
【0014】
上述したように、LTE、LTE−Aシステムでは、Duplex modeとしてFDDとTDDの2つが規定されている(
図1A参照)。また、TDDでは上記
図2に示したUL/DL構成0〜6から選択される所定のUL/DL構成を利用して無線基地局−ユーザ端末間で通信を行う。このように、TDDでは、UL/DL構成毎にULサブフレームとDLサブフレームの送信比率が異なっており、各構成に対してそれぞれ送達確認信号(A/N)のフィードバックメカニズム(HARQメカニズム)等が規定されている。
【0015】
将来(例えば、Rel.12以降)のシステムでは、複数CC間で異なるDuplex−mode(TDD+FDD)を適用したCAも想定されている(
図1C参照)。この場合、TDDを適用するセル(以下、「TDDセル」とも記す)では、既存のシステム(例えば、Rel.10/11)と同様にUL/DL構成0〜6を適用することが考えられる。しかし、TDDセルを含む複数のセル間でCAを適用する場合、既存のUL/DL構成ではスループットの最適化が困難となるおそれがある。
【0016】
例えば、DLトラヒックがULトラヒックより大きい通信環境において、CAを適用する複数のセルの中から所定のセルをDL伝送用として利用する形態を想定する。この場合、DL伝送用として選択されたセルがFDDを適用するセル(以下、「FDDセル」とも記す)であれば、各サブフレームでDL伝送が可能となる。一方で、DL伝送用として選択されたセルがTDDセルである場合には、DLサブフレームの構成比率が最も高いUL/DL構成(
図2のUL/DL構成5)を適用することが考えられる。
【0017】
しかし、DLサブフレームの構成比率が最も高いUL/DL構成5を適用する場合であっても、ULサブフレームと特別サブフレームが含まれている(SF#1、SF#2)。このように、既存のUL/DL構成では少なくともULサブフレームが含まれているため、TDDセルをDL伝送用に利用する場合には、DLデータの伝送に利用できないサブフレーム(例えば、SF#2)が発生してしまう。その結果、スループットの向上を十分に達成することができない。なお、特別サブフレームは、下り時間区間(DwPTS)、ガード期間(GP)及び上り時間区間(UpPTS)で構成されるため、DwPTSを用いてDL伝送を行うことができる。
【0018】
そこで、本発明者等は、TDDセルを含む複数のセルを用いてCAを行う場合に、システムの利用形態によっては既存のUL/DL構成ではスループットの最適化が図れないことに着目し、新規のUL/DL構成を利用することを検討している。具体的には、TDDセルにおいて、全てのサブフレームでDL伝送が可能となるDL伝送用のUL/DL構成(以下、「UL/DL構成7」とも記す)を新たに導入する。また、当該UL/DL構成7は、TDDセルがセカンダリセル(SCell)である場合(プライマリセル(PCell)でない場合)に好適に利用することができる。
【0019】
ここで、プライマリセル(PCell)とは、CAを行う場合にRRC接続やハンドオーバを管理するセルであり、端末からのデータやフィードバック信号を受信するためにUL伝送も必要となるセルである。CAを行う場合、プライマリセルは上下リンクともに常に設定される。セカンダリセル(SCell)とは、CAを適用する際にプライマリセルに加えて設定する他のセルである。セカンダリセルは下りリンクだけ設定することもできるし、上下リンクを同時に設定することもできる。
【0020】
このように、無線通信システムの利用形態に応じてDL伝送用のUL/DL構成7を適用することにより、スループットを向上することが可能となる。なお、DL伝送用のUL/DL構成7としては、利用形態に応じて、DLサブフレームのみ設ける場合(特別サブフレーム非設定)と(
図3A参照)、DLサブフレームと特別サブフレームを設ける場合が考えられる(
図3B参照)。
【0021】
ところで、将来の無線通信システムでは、LTEシステムを、事業者にライセンスされた周波数帯域(Licensed band)だけでなく、ライセンス不要の周波数帯域(Unlicensed band)で運用することも検討されている。ライセンス帯域(Licensed band)は、特定の事業者が独占的に使用することを許可された帯域であり、非ライセンス帯域(Unlicensed band)は特定事業者に限定せずに無線局を設置可能な帯域である。非ライセンス帯域(Unlicensed band)として、例えば、WiFiやBluetooth(登録商標)を使用可能な2.4GHz帯や5GHz帯、ミリ波レーダーを使用可能な60GHz帯等がある。
【0022】
非ライセンス帯域は、ライセンス帯域と異なり特定の事業者のみが使用するわけでないため、予期しない干渉が発生する可能性がある。例えば、非ライセンス帯域において、LTEシステムと異なる無線通信システム(気象・航空レーダー、放送、防災無線、公共無線、地域無線、WiFi、Bluetooth等)が運用される(周波数を共有する)可能性がある。この場合、異なる無線通信システム間で、互いに予期しない干渉が生じるおそれがある。
【0023】
異なる無線通信システム間の干渉を抑制するために、いずれかの無線通信システムを優先して動作するように制御することも考えられる。例えば、他の無線通信システムがLTEシステムに対して優先されるように規定される可能性も想定される。かかる場合、非ライセンス帯域において他の優先無線システムの運用を検出した場合、LTEシステムを利用した通信を停止することとなる。
【0024】
また、異なるLTE事業者同士が非ライセンス帯域における同一の周波数を利用してLTEシステムを運用する可能性も考えられる。例えば、異なる事業者同士が近接する場所にLTE基地局を設置して同一周波数で運用を行う場合、互いに大きな干渉を生じるおそれがある。そのため、非ライセンス帯域を利用してLTEシステムを運用する利用形態では、上述した干渉等を考慮することが必要となる。
【0025】
本発明者等は、ライセンス帯域(Licensed band)に加えて非ライセンス帯域(Unlicensed band)でLTEシステムを運用する場合に、上述したUL/DL構成7を、非ライセンス帯域で使用することも検討している(
図4参照)。例えば、ライセンス帯域でFDDセルを運用し、非ライセンス帯域でTDDセル(UL/DL構成7)を運用し、FDDセルとTDDセル間でCAを適用する利用形態(
図4B参照)が考えられる。あるいは、ライセンス帯域及び非ライセンス帯域でTDDセルを運用し、TDDセル間でCAを適用する利用形態(
図4A参照)も考えられる。
【0026】
ライセンス帯域では、事業者が基地局の運用により干渉を制御することができるため、制御信号や高品質が要求されるデータの通信に利用することができる。一方で、非ライセンス帯域では予期しない干渉が発生する可能性があるが、比較的広い帯域が使用可能なため、パケット等のトラフィックが大きいデータ通信(DL伝送)に好適に利用することができる。そのため、非ライセンス帯域のTDDセルでUL/DL構成7を利用してCAを行うことにより、ライセンス帯域と非ライセンス帯域の双方のメリットを生かした通信を実現することが可能となる。
【0027】
また、将来の無線通信システムでは、上述のようにセカンダリセル(SCell)として用いていたTDDセルを、CAを設定しない場合でも(すなわち、別途プライマリセル(PCell)による通信を前提とせずに)接続可能なセルとして運用することも考えられる。具体的には、ユーザ端末が初期接続可能なセル(Stand−alone)、又は、独自にスケジューリング可能なセル(Dual connectivity)として適用することも考えられる。なお、Stand−aloneで動作するセルは、独立して(つまりCAのセカンダリセル(SCellでなくとも)ユーザ端末と初期接続が可能となる。また、Dual connectivityとは、それぞれ独立してスケジューリングする(スケジューラを具備する)複数のセルにユーザ端末が接続する形態を指す。
【0028】
このような利用形態では、TDDセルにおいてUL伝送を行う必要があるが、かかる場合にUL/DL構成7をどのように利用して通信を行うかが問題となる。つまり、UL/DL構成7をStand−alone又はDual connectivityで用いるためには、上りチャネルや上り参照信号のサポートが必要となる。例えば、UL/UD構成7を利用して、少なくともPRACH信号、ランダムアクセス処理におけるメッセージ3、上位レイヤ制御信号、下りHARQ−ACK(送達確認信号)、CQI(チャネル品質情報)、SR(スケジューリング要求信号)、SRS(チャネル品質測定用参照信号)等の上りリンク信号の送信を行う必要がある。
【0029】
そのため、UL/DL構成7として、上りのタイミングを有する(特別サブフレームを含む)上記
図3Bの構成を利用することが考えられる。しかし、既存のLTEシステム(Rel.10/11)の特別サブフレームの構成では、上り時間区間(UpPTS)を用いて上述した上りリンク信号の送信を行うことができない。以下に、既存の特別サブフレーム構成(Sp−SF Config)について
図5を参照して説明する。
【0030】
既存のLTEシステム(Rel.10/11)では、特別サブフレーム構成(Sp−SF Config)として、通常CP(Normal CP)で10種類、拡張CP(Extended CP)で8種類が定義されている(
図5A参照)。また、特別サブフレーム構成に関する情報は、プライマルセルにおいてはシステム情報(SIB1)を用いてユーザ端末に通知され、セカンダリセルにおいてはRRCシグナリングを用いてユーザ端末に通知される。
【0031】
図5Aの表に記載された数字はOFDM(またはSC−FDMA)シンボル数を表す。既存の特別サブフレーム構成では、上り時間区間(UpPTS)が最大で2シンボルまでしか設定されない。そのため、ULサブフレームにおいてPUSCHを用いて送信するユーザデータ(PUSCH信号)やPUCCHを用いて送信する上り制御信号(PUCCH信号)等の送信は行えない。一方で、既存の特別サブフレームでは、UL伝送としてPRACH信号とSRSの送信のみサポートされている。したがって、上述したUL/DL構成7を利用する場合(
図5B参照)、既存の特別サブフレーム構成では、セカンダリセル(SCell)以外の運用を想定した場合に必須となるUL信号(ユーザデータや上り制御情報等)を送信することができない。
【0032】
そこで、本発明者等は、UL/DL構成7のうち、特別サブフレームを含む
図3Bを利用する場合であっても、PRACH信号とSRS以外のUL信号の送信が可能となるように、特別サブフレーム構成の上り時間区間(UpPTS)を拡張することを着想した(
図6参照)。以下に、UpPTSを拡張した特別サブフレーム構成について説明する。
【0033】
図7は、特別サブフレーム構成として、既存の特別サブフレーム構成0〜9に加えて、新たにUpPTSを拡張した特別サブフレーム構成10(Sp−SF Config10)を定義したテーブルを示している。新たに追加する特別サブフレーム構成10としては、UpPTSを既存より拡張した内容(少なくともUpPTSが3シンボル以上)とすればよい。以下、このようなUpPTSを拡張UpPTS(Extended UpPTS)と呼ぶ。
【0034】
図7では、特別サブフレーム構成10として、DwPTSを「3」、GPを「2」、UpPTSを「9」とする場合を示している。つまり、UpPTSのシンボル数を既存の1又は2から9まで増やして特別サブフレームにおけるUL送信容量を増大する。なお、新たに追加する特別サブフレーム構成は1種類に限られない。UpPTSを3シンボル以上に増やした特別サブフレーム構成を複数定義してもよい。また、拡張UpPTSとしては、少なくとも3シンボル以上であればよいが、好ましくは4シンボル以上、さらに好ましくは5シンボル以上とする。また、新規に導入する特別サブフレーム構成10は、UL/DL構成7の場合にのみ適用する構成としてもよい。
【0035】
あるいは、既存の特別サブフレーム構成を利用するユーザ端末が、下りリンクで通知される特別サブフレーム構成の変更要求信号に基づいて、特別サブフレーム構成を変更する(UpPTSを拡張する)構成としてもよい(
図8参照)。
【0036】
図8Aは、特別サブフレーム構成の変更要求信号を受信したユーザ端末が、GP長及びUpPTS長を変更する場合を示している。ユーザ端末は、無線基地局から所定の指示(特別サブフレーム構成の変更要求信号)がない限り、レガシー端末(Rel.8−11UE)と同様に既存の特別サブフレーム構成を用いる。一方で、特別サブフレーム構成の変更要求信号を受信した場合には、UpPTS長を3シンボル以上に拡張し、且つUpPTSの拡張シンボル数だけGPのシンボル数を減らすように制御する。なお、特別サブフレーム構成の変更要求信号は、下り制御信号(例えば、ULグラント)を用いて無線基地局からユーザ端末に通知することができる。
【0037】
なお、ユーザ端末は、UpPTSの拡張に応じてDwPTSのシンボル数を減らすように制御してもよい。
図8Bは、特別サブフレーム構成の変更要求信号を受信したユーザ端末が、DwPTS長及びUpPTS長を変更する場合を示している。具体的には、UpPTS長を3シンボル以上に拡張し、且つUpPTSの拡張シンボル数だけDwPTSのシンボル数を減らすように制御する。
【0038】
このように、DwPTS及び/又はGPを短縮してUpPTSを拡張することにより、特別サブフレームにおけるUL送信容量を増大することができる。これにより、ULサブフレームが設定されないUL/DL構成7を利用する場合であっても、特別サブフレームを用いて上り制御情報(UCI)、上位レイヤ制御信号、ULデータの送信も可能となる。その結果、通信システムの利用形態がStand−alone及び/又はDual connectivityであっても、UL/DL構成7を好適に利用することができる。
【0039】
一方で、TDDにおいて、DwPTSの第2OFDMシンボル(サブフレームの先頭から3番目のOFDMシンボル)には同期信号(PSS)が割当てられる。このため、特別サブフレームにおいて、DwPTSは3シンボル以上必要となる(換言すれば、3シンボル以下にはできない)。また、タイミングアドバンスをサポートするためには、少なくともGPに1シンボル必要となる(
図9参照)。これらを考慮すると、UpPTSの拡張は最大10OFDMシンボル(第4OFDMシンボル〜第13OFDMシンボル)まで拡張することが想定される。
【0040】
つまり、UpPTSを拡張する場合であっても、少なくともサブフレームの先頭4OFDMシンボルがUL伝送に利用することができなくなる。この場合、サブフレーム内のOFDMシンボル方向で直交拡散符号による同一リソースブロックへのユーザ多重が不可能となることから、拡張UpPTSにおいてPUCCHの物理フォーマットを利用することは困難となる。そのため、拡張UpPTSにおいてPUSCHの物理フォーマットを利用することが考えられる。ここで、既存のULサブフレームにおけるPUSCHの物理フォーマットの一例を
図10に示す。
【0041】
PUSCH信号を送信するタイミングで上り制御情報(UCI)のフィードバックがある場合、上り制御情報をPUSCHに割当てて送信する。この場合、送達確認信号(A/N)、ランク指標(RI)、チャネル品質情報(CQI)/プリコーディングマトリクス指標(PMI)は、
図10に示すように多重される。また、各スロットの先頭から4シンボル目(第3シンボル、第10シンボル)にPUSCH信号を復調する参照信号(PUSCH用のDMRS)が割当てられる。
【0042】
したがって、拡張UpPTSを含む特別サブフレームにPUSCHの物理フォーマットを利用する場合、少なくとも先頭4シンボルがUL伝送に利用できないため、DMRSが1つ送信できなくなる。これにより、チャネル推定精度(特に、時間変動耐性)が劣化するおそれがある。また、MU−MIMO向けのDMRSに対するOCCの適用が困難となる。さらに、既存システムにおいてPUSCHを用いて上り制御情報(UCI)を送信する際(UCI on PUSCH)のマッピング方法では、DMRSが無いために、上り制御情報をDMRSの周辺(近傍リソース)にマッピングできなくなる場合が生じる。
【0043】
そこで、本発明者等は、拡張するUpPTSの長さに基づいてDMRSの配置(位置、配置数等)を制御して上りリンク信号の割当てを行うことを着想した。あるいは、拡張されたUpPTSでPUSCHを用いて信号を送信する場合に、1以上のDMRSとSRSをUpPTSに多重して送信することを着想した。
【0044】
以下に、本実施の形態にかかる無線通信方法について図面を参照して詳細に説明する。なお、本実施の形態では、
図3BのUL/DL構成7を利用するTDDセルは、ライセンス領域又は非ライセンス領域で用いることができる。
【0045】
(第1の態様)
第1の態様では、特別サブフレームの上り時間区間(UpPTS)を拡張する場合に、当該拡張UpPTSに設定するDMRS(Demodulation Reference Signal)の配置方法について説明する。
【0046】
図11は、UpPTSのシンボル数と、当該UpPTSに配置される上り復調用参照信号(PUSCH用のDMRS)の配置関係を示している。
図11に示すように、ユーザ端末は、特別サブフレームのUpPTSの長さに対応してDMRSの配置(位置、配置数等)を変更する。
【0047】
例えば、UpPTSのシンボル数が所定値(
図11では、6)未満の場合には、UpPTSにおいて1つ(1シンボル分)のDMRSを設定する。一方で、UpPTSのシンボル数が所定値以上の場合には、UpPTSにおいて2つ(2シンボル分)のDMRSを設定する。
【0048】
UpPTSに2つのDMRS(例えば、第1のDMRSと第2のDMRS)を設定する場合、UpPTSの長さに応じて第1のDMRSと第2のDMRS間の距離を制御する。
図11では、UpPTSのシンボル数が増加するにつれて、第1のDMRSと第2のDMRS間の距離を大きく設定する。また、UpPTSのシンボル数が7以上の場合には、第1のDMRS及び第2のDMRSの隣接シンボルに上りリンク信号を割当てることが可能となる。
【0049】
このように、拡張UpPTSの長さに応じてDMRSの配置を制御することにより、DMRSが割当てられるシンボルに隣接するシンボル数が増加するため、DMRSの隣接シンボル(例えば、前後)に重要な情報である上り制御情報(UCI)をマッピングすることができる。
【0050】
また、UpPTSのシンボル数に関わらず、少なくとも所定のシンボル(例えば、第10シンボル)にDMRSを固定的に設定することが好ましい。第1のDMRSと第2のDMRSを設定する場合には、UpPTSの長さに応じて第1のDMRSの割当て位置を変更する一方で、UpPTSの長さに関わらず第2のDMRSの割当て位置を固定とする。
【0051】
このように、少なくとも1つのDMRS(第2のDMRS)をUpPTSの長さに関わらず同一のシンボル(例えば、第10シンボル)に配置することにより、周辺セルで異なるUpPTS長を設定する場合であっても、第2のDMRSに対して、ULデータに干渉を及ぼすことを抑制することが可能となる。また、拡張UpPTSにDMRSを2つ配置すると共に、拡張UpPTS長が比較的長い場合(例えば、UpPTSが6以上の場合)には、拡張UpPTSの長さによらず、2つのDMRSに隣接するPUSCH領域を設けることにより、重要情報である上り制御情報(UCI)を2つのDMRSそれぞれの前後にマッピングすることができる。
【0052】
なお、拡張UpPTSに設定するDMRSの配置方法は、上記
図11に示した構成に限られない。例えば、UpPTSを構成する先頭シンボルにDMRSの割当てを行う構成としてもよい(
図12参照)。UpPTSに2つのDMRS(例えば、第1のDMRSと第2のDMRS)を設定する場合には、UpPTSを構成する先頭シンボルに第1のDMRSを割当て、UpPTSの長さに関わらず第2のDMRSを所定のシンボル(例えば、第10シンボル)にDMRSを固定的に割当てる。
【0053】
図12に示すように、UpPTSを構成する先頭シンボルと固定位置にDMRSを割当てることにより、時間変動の追従特性を向上することが可能となる。また、
図12に示す構成においても、DMRSの隣接シンボル(例えば、前後)に重要な情報である上り制御情報(UCI)をマッピングすることが好ましい。
【0054】
このように、拡張UpPTSにDMRSを2つ配置すると共に、2つのDMRSの時間的距離を大きくすることにより、時間追従特性や時間変動耐性を効果的に向上することが可能となる。また、少なくとも1つのDMRS(第2のDMRS)をUpPTSの長さに関わらず同一のシンボル(例えば、第10シンボル)に配置することにより、周辺セルで異なるUpPTS長を設定する場合であっても、DMRSに対してULデータが干渉を及ぼすことを抑制することが可能となる。
【0055】
(第2の態様)
第2の態様では、特別サブフレームの上り時間区間(UpPTS)を拡張する場合に、当該拡張UpPTSにDMRS(Demodulation Reference Signal)とSRS(Sounding Reference Signal)を多重するPUSCHフォーマットについて説明する。
【0056】
図13は、拡張されたUpPTSにおいて、DMRSとSRSとを配置したPUSCHフォーマットの一例を示している。ここでは、UpPTSにおいて1つ(1シンボル分)のDMRSとSRSとを設定する場合について説明するが、本実施の形態はこれに限られない。
【0057】
ユーザ端末は、拡張UpPTSにおいて、少なくともPUSCHに割当てられた帯域幅を包含する帯域幅でSRSを送信する。UpPTSにSRSを多重して送信することにより、UpPTSに設定されるDMRSが1つ(1シンボル分)であっても、DMRSに加えてSRSを用いてチャネル推定を行えることから、チャネル推定精度の劣化を抑制することができる。
【0058】
また、ユーザ端末は、SRSを周期的(Periodic-SRS)に送信してもよいし、無線基地局からの指示に応じて非周期的(Aperiodic-SRS)に送信してもよい。無線基地局がSRSを非周期的にトリガする場合(Aperiodic-SRS trigger)には、当該トリガ情報を用いてSRSの系列やCombをユーザ端末に指示してもよい。
【0059】
また、ユーザ端末は、SRSを各特別サブフレームのUpPTSに多重して送信してもよいし、複数のUpPTSに1回の割合で多重して送信してもよい。
図13では、SRSを1つのOFDMシンボルおき(偶数又は奇数のOFDMシンボル)に多重する場合を示しているが、複数のOFDMシンボルにまたがって多重してもよい。
【0060】
また、ユーザ端末は、UpPTSにSRSを多重する場合、SRSに隣接するシンボルに上り制御情報を多重してもよい。
図13に示す場合、ユーザ端末は、SRSの1つ前のシンボル(第12OFDMシンボル)に上り制御情報を多重することが好ましい。上り制御情報をSRSに隣接するシンボルに多重することにより、チャネルの時間変動に起因するチャネル推定精度劣化を抑制し、特性を向上することが可能となる。
【0061】
また、ユーザ端末は、UpPTSにおいて、当該UpPTSのシンボル数に関わらず、DMRSを所定のシンボル(例えば、第10シンボル)に固定的に設定することが好ましい。これにより、周辺セルで異なるUpPTS長を設定する場合であっても、DMRSがULデータに干渉を及ぼすことを抑制することが可能となる。
【0062】
このように、特別サブフレームのUpPTSを拡張して上りリンク信号を送信する場合に、UpPTSにおいてDMRSとSRSを多重したPUSCHフォーマットを適用することにより、DMRS挿入によるオーバヘッドの増加を抑制すると共にチャネル推定精度を向上することができる。
【0063】
(第3の態様)
第3の態様では、UpPTS長を拡張した特別サブフレームを用いて送信する上りリンク信号に関連する動作のタイミング制御について説明する。
【0064】
既存のLTEでは、特別サブフレームを用いたPUCCH信号やPUSCH信号の送信をサポートしておらず、特別サブフレームでは、PDCCH信号やPDSCH信号の送信(DL割当て)のみサポートされていた。このため、ユーザ端末は、特別サブフレームをDLサブフレームとみなして動作していた。つまり、既存のLTEでは、特別サブフレームで送信する上りリンク信号に関連する動作(例えば、DL HARQフィードバック、ULグラントに対するPUSCH送信、PUSCHに対するPHICH受信(UL HARQ))のタイミング制御について規定されていない。
【0065】
特別サブフレームで送信する上りリンク信号に関連する動作のタイミングが正しく設定されていない場合、特別サブフレームにおける動的なスケジューリングやHARQが適用できず、上りリンク通信を適切に行うことが困難となる。
【0066】
本発明者等は、既存の特別サブフレームをDLサブフレームとみなした場合、既存のUL/DL構成5のULとDLの比率がDL:UL=9:1である点に着目した(
図14参照)。
図14は、既存のUL/DL構成5のULサブフレームで送信する上りリンク信号に関連する動作(DL HARQフィードバック、ULグラントに対するPUSCH送信、PUSCHに対するPHICH受信(UL HARQ))のタイミングについて示している。
【0067】
また、本発明者等は、UpPTS長を拡張した特別サブフレームをULサブフレームとみなせる点に着目した。この場合、拡張UpPTSを含む特別サブフレーム構成のULとDLの比率がDL:UL=9:1とみなせる。そこで、UpPTS長を拡張した特別サブフレームを用いて上りリンク信号を送信する場合に、既存のUL/DL構成5のメカニズムを利用することを着想した。
【0068】
図15に、本実施の形態に係るUL/DL構成7の特別サブフレーム(ULサブフレーム)で送信する上りリンク信号に関連する動作(DL HARQフィードバック、ULグラントに対するPUSCH送信、PUSCHに対するPHICH受信(UL HARQ))のタイミング制御を示す。
図15では、既存のUL/DL構成5のDL/UL HARQタイミングとULスケジューリングタイミングと同じメカニズムを利用している。但し、
図15では、既存のUL/DL構成5と比較して、各動作のタイミングに対応するサブフレーム番号を全て−1だけシフトする。
【0069】
このように、本実施の形態では、UL/DL構成7を適用する場合に、UpPTS長を拡張した特別サブフレームで送信する上りリンク信号に関連する動作タイミングを、既存のUL/DL構成5のメカニズムを利用して制御する。これにより、新たなDL/UL構成7においても、Rel.8で規定されたHARQタイミングやULスケジューリングタイミングに所定のオフセットを適用する(サブフレームを−1とする)だけであるため、既存のユーザ端末にも容易に適用することが可能となる。
【0070】
(無線通信システムの構成)
以下、本実施の形態に係る無線通信システムの一例について、詳細に説明する。
【0071】
図16は、本実施の形態に係る無線通信システムの概略構成図である。なお、
図16に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)を適用することができる。また、この無線通信システムは、IMT−Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
【0072】
図16に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。また、無線基地局11と無線基地局12間で基地局内CA(Intra−eNB CA)、又は基地局間CA(Inter−eNB CA)が適用される。また、無線基地局11と無線基地局12間のCAとしては、TDD−TDD CA又はTDD−FDD CA等を適用することができる。
【0073】
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。ユーザ端末20と無線基地局12間のキャリアタイプとしてニューキャリアタイプ(NCT)を利用してもよい。無線基地局11と無線基地局12(又は、無線基地局12間)は、有線接続(Optical fiber、X2インターフェース等)又は無線接続されている。
【0074】
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
【0075】
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、Home eNodeB、マイクロ基地局、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
【0076】
無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
【0077】
ここで、
図16に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(EPDCCH)により、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。このEPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重される。
【0078】
上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHや、PUSCH(ユーザデータと同時に送信時)により、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
【0079】
図17は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
【0080】
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
【0081】
ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
【0082】
また、ベースバンド信号処理部104は、上位レイヤシグナリング(RRCシグナリング、報知信号等)により、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、TDDセルで利用するUL/DL構成に関する情報、特別サブフレームに関する情報、上りリンク又は下りリンクにおけるシステム帯域幅、フィードバック用のリソース情報等が含まれる。特別サブフレームに関する情報としては、利用する特別サブフレーム構成、特別サブフレーム構成の変更指示、特別サブフレームを変更する場合の変更内容(UpPTSの拡張情報)等が挙げられる。
【0083】
また、ベースバンド信号処理部104は、特別サブフレームの構成(拡張UpPTSの長さ)に応じて上り復調用参照信号(DMRS)の配置(位置やDMRS数)を制御すると共に、上りリンク信号(ユーザデータや上り制御情報)やSRSの割当てを制御する。
【0084】
各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
【0085】
送受信部103は、TDDセルで利用するUL/DL構成に関する情報や特別サブフレームに関する情報等を上位レイヤシグナリング(報知信号、RRCシグナリング等)で送信する送信部として機能する。また、送受信部103は、UpPTSの拡張に応じてDMRSの配置が変更して制御される場合、DMRSの配置に関する情報を下りリンク信号(下り制御情報、報知信号、RRCシグナリング又はこれらの組み合わせ)を用いてユーザ端末に通知することができる。なお、各UpPTS長に応じたDMRSの配置があらかじめ定義されている場合(例えば、UpPTSのシンボル数とDMRSの配置が関連づけられている場合)には、DMRSの配置に関する情報の通知は省略することができる。
【0086】
一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
【0087】
ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
【0088】
図18は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。
図18に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、DL信号生成部302と、UL/DL構成決定部303と、特別サブフレーム構成決定部304と、マッピング部305と、UL信号復号部306と、判定部307と、を少なくとも含んで構成されている。
【0089】
制御部301は、PDSCHで送信される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御情報、下り参照信号等のスケジューリングを制御する。また、制御部301は、PUSCHで伝送される上りユーザデータ、PUCCH又はPUSCHで伝送される上り制御情報、上り参照信号(DMRS、SRS)のスケジューリングの制御(割当て制御)も行うことができる。上りリンク信号(上り制御信号、上りユーザデータ)の割当て制御に関する情報は、下り制御信号(DCI)を用いてユーザ端末に通知される。
【0090】
具体的に、制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号及び上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。また、無線基地局10がTDDを利用する場合には、利用するUL/DL構成や特別サブフレーム構成に基づいて、各サブフレームに対する下りリンク信号及び上りリンク信号の割り当てを制御する。
【0091】
UpPTSを拡張した特別サブフレームを含むUL/DL構成7を利用する場合、制御部301は、特別サブフレームの拡張UpPTSに割当てる上りリンク信号を制御する。例えば、制御部301は、特別サブフレームの拡張UpPTSを用いて、PRACH信号、ランダムアクセス処理におけるメッセージ3、上位レイヤ制御信号、下りHARQ−ACK、CQI、SR、SRS等の上りリンク信号の割当てを制御する。
【0092】
また、制御部301は、拡張UpPTSのシンボル数に応じて設定されるDMRSを考慮して、上り制御情報の割当てを制御することができる。例えば、拡張UpPTSに配置されるDMRSに隣接するOFDMシンボルに上り制御情報を割当てる。上記
図11に示すように、拡張UpPTSにDMRSを2つ配置する場合には、上り制御情報(UCI)を2つのDMRSの前後に割当てるように制御することができる。
【0093】
DL信号生成部302は、制御部301により割当てが決定された下り制御信号(PDCCH信号及び/又はEPDCCH信号)や下りデータ信号(PDSCH信号)を生成する。具体的に、DL信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割当て情報を通知するDL割当て(DL assignment)と、上りリンク信号の割当て情報を通知するULグラント(UL grant)を生成する。
【0094】
また、DL信号生成部302は、UL/DL構成決定部303で決定されたUL/DL構成に関する情報や、特別サブフレーム構成決定部304で決定された特別サブフレーム構成に関する情報を生成する。DL信号生成部302は、ユーザ端末に対して特別サブフレームの変更を指示する場合(上記
図8参照)には、ULグラントとして特別サブフレームの変更要求信号を生成する。
【0095】
UL/DL構成決定部303は、ULとDLのトラヒック等を考慮してTDDで利用するUL/DL構成を決定する。UL/DL構成決定部303は、DL伝送用のUL/DL構成(上述したUL/DL構成7)を含めた複数のUL/DL構成の中から所定のUL/DL構成を選択することができる(上記
図3B等参照)。なお、UL/DL構成決定部303は、上位局装置30等からの情報に基づいてUL/DL構成を決定することができる。
【0096】
特別サブフレーム構成決定部304は、特別サブフレーム構成を決定する。なお、特別サブフレーム構成決定部304は、上位局装置30等からの情報に基づいてUL/DL構成を決定することができる。特別サブフレーム構成決定部304は、既存の特別サブフレーム構成0〜9に加えて、新たにUpPTSを拡張した特別サブフレーム構成10を定義したテーブルから所定の特別サブフレーム構成を決定することができる(上記
図7参照)。
【0097】
あるいは、特別サブフレーム構成決定部304は、UpPTSの長さを3シンボル以上に拡張すると共に、当該UpPTSの拡張シンボル数分だけGPのシンボル数を減らす(上記
図8A参照)。あるいは、特別サブフレーム構成決定部304は、UpPTSの長さを3シンボル以上に拡張すると共に、当該UpPTSの拡張シンボル数分だけDwPTSのシンボル数を減らす(上記
図8B参照)。
【0098】
マッピング部305は、制御部301からの指示に基づいて、DL信号生成部302で生成された下り制御信号と下りデータ信号の無線リソースへの割当てを制御する。
【0099】
UL信号復号部306は、ユーザ端末から送信されたフィードバック信号(送達確認信号等)を復号し、制御部301へ出力する。また、UL信号復号部306は、上り共有チャネル(PUSCH)でユーザ端末から送信された上りデータ信号を復号し、判定部307へ出力する。判定部307は、UL信号復号部306の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部301に出力する。
【0100】
図19は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
【0101】
下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
【0102】
送受信部203は、ユーザ端末20がTDDセルと接続する場合に、UL/DL構成に関する情報や特別サブフレームに関する情報を受信する受信部として機能する。特別サブフレームに関する情報としては、適用する特別サブフレーム構成、特別サブフレーム構成の変更指示、特別サブフレームを変更する場合の変更内容(UpPTSの拡張情報)等が挙げられる。
【0103】
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H−ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
【0104】
図20は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。
図20に示すように、ユーザ端末20が有するベースバンド信号処理部204は、DL信号復号部401と、UL/DL構成判断部402と、特別サブフレーム構成判断部403と、判定部404と、制御部405と、UL信号生成部406と、マッピング部407と、UL参照信号生成部408と、を少なくとも含んで構成されている。
【0105】
DL信号復号部401は、下り制御チャネル(PDCCH)で送信された下り制御信号(PDCCH信号)を復号し、スケジューリング情報(上りリソースへの割当て情報)を制御部405へ出力する。また、DL信号復号部401は、下り共有チャネル(PDSCH)で送信された下りデータ信号を復号し、判定部404へ出力する。判定部404は、DL信号復号部401の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部405に出力する。
【0106】
受信した下りリンク信号にUL/DL構成に関する情報や特別サブフレームに関する情報が含まれている場合には、DL信号復号部401は、復号した情報をUL/DL構成判断部402や特別サブフレーム構成判断部403に出力する。
【0107】
UL/DL構成判断部402は、無線基地局から通知されるUL/DL構成に関する情報に基づいて、ユーザ端末が適用するUL/DL構成を判断する。また、UL/DL構成判断部402は、適用するUL/DL構成に関する情報を制御部405等に出力する。
【0108】
特別サブフレーム構成判断部403は、無線基地局から通知される特別サブフレーム構成に関する情報に基づいて、ユーザ端末が適用する特別サブフレーム構成を判断する。また、特別サブフレーム構成判断部403は、適用するUL/DL構成に関する情報を制御部405等に出力する。なお、UpPTSに配置するDMRSに関する情報が特別サブフレーム構成に関する情報に含まれていてもよい。
【0109】
上記
図7に示すように、拡張UpPTSを含む特別サブフレーム構成が規定されたテーブルを利用する場合、特別サブフレーム構成判断部403は、報知情報又はRRCシグナリング等で通知される情報に基づいて特別サブフレーム構成を特定することができる。例えば、特別サブフレーム構成判断部403は、上記
図7における特別サブフレーム構成10を適用することを判断した場合には、その旨を制御部405に出力する。
【0110】
また、上記
図8に示すように、UpPTSの長さを無線基地局からの指示に基づいて変更する場合、特別サブフレーム構成判断部403は、下りリンク信号(例えば、ULグラント)に含まれる情報に基づいて適用する特別サブフレーム構成を判断し、制御部405に出力する。
【0111】
制御部405は、無線基地局から送信された下り制御信号(PDCCH信号)や、受信したPDSCH信号に対する再送制御判定結果に基づいて、上り制御信号(フィードバック信号)、上りデータ信号及び上り参照信号の生成を制御する。下り制御信号はDL信号復号部401から出力され、再送制御判定結果は、判定部404から出力される。
【0112】
また、制御部405は、UL/DL構成判断部402から出力されるUL/DL構成に関する情報や、特別サブフレーム構成判断部403から出力される特別サブフレームに関する情報に基づいて、上り制御信号、上りデータ信号及び上り参照信号の送信を制御する。例えば、制御部405は、特別サブフレームに関する情報に基づいて、特別サブフレームを構成するUpPTSを既存のUpPTSより拡張して、上りリンク信号の割当てを制御する。
【0113】
UpPTSを拡張する場合、制御部405は、UpPTSの長さに基づいて上りDMRSの配置(位置、配置数等)を制御することができる。例えば、制御部405は、UpPTSのシンボル数が所定値以上の場合に、2つ(2シンボル分)の上りDMRSを設定する。上記
図11に示す場合には、制御部405は、UpPTSのシンボル数が6以上の場合に2つのDMRSを設定し、5以下の場合に1つのDMRSを設定する。また、上記
図12に示す場合には、制御部405は、UpPTSのシンボル数が5以上の場合に2つのDMRSを設定し、4以下の場合に1つのDMRSを設定する。
【0114】
また、制御部405は、UpPTSのシンボル数が増加するにつれて、2つのDMRSの距離を大きく配置することができる。また、制御部405は、UpPTSの長さに応じて第1のDMRSの割当て位置を変更し、且つUpPTSの長さに関わらず、第2のDMRSの割当て位置を固定的(例えば、第10OFDMシンボル)に設定することができる。
【0115】
制御部405は、チャネル状態情報(CSI)や送達確認信号(A/N)等のフィードバックを制御するフィードバック制御部としても機能する。この場合、制御部405は、拡張UpPTSのシンボル数に応じて設定されるDMRSを考慮して、上り制御情報(CQI、PMI、RI等のCSIや、A/N等)の割当てを制御することができる。例えば、制御部405は、拡張UpPTSに配置されるDMRSに隣接するOFDMシンボルに上り制御情報を割当てるように制御する。
【0116】
また、制御部405は、拡張したUpPTSに対してDMRSと、チャネル品質測定用参照信号(SRS)の割当てを制御することも可能である(上記
図13参照)。
【0117】
UL信号生成部406は、制御部405からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。また、UL信号生成部406は、制御部405からの指示に基づいて上りデータ信号(ユーザデータ)を生成する。また、UL参照信号生成部408は、上りリンクで送信する参照信号(DMRS、SRS等)の生成を制御する。
【0118】
マッピング部407(割当て部)は、制御部405からの指示に基づいて、上り制御信号、上りデータ信号及び上り参照信号の無線リソースへの割当てを制御する。例えば、マッピング部407は、制御部405からの指示に基づいて、拡張UpPTSに対して上記
図11〜
図13で示したように、上り制御信号、上りデータ信号及び上り参照信号のマッピングを行う。
【0119】
以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。