特許第6377980号(P6377980)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 帝人株式会社の特許一覧

<>
  • 特許6377980-熱可塑性樹脂組成物およびその成形品 図000012
  • 特許6377980-熱可塑性樹脂組成物およびその成形品 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6377980
(24)【登録日】2018年8月3日
(45)【発行日】2018年8月22日
(54)【発明の名称】熱可塑性樹脂組成物およびその成形品
(51)【国際特許分類】
   C08L 69/00 20060101AFI20180813BHJP
   C08L 33/04 20060101ALI20180813BHJP
   C08K 5/3467 20060101ALI20180813BHJP
   C08K 5/3492 20060101ALI20180813BHJP
   C08K 5/103 20060101ALI20180813BHJP
   C08K 5/13 20060101ALI20180813BHJP
   C08K 5/372 20060101ALI20180813BHJP
   C08K 5/49 20060101ALI20180813BHJP
【FI】
   C08L69/00
   C08L33/04
   C08K5/3467
   C08K5/3492
   C08K5/103
   C08K5/13
   C08K5/372
   C08K5/49
【請求項の数】6
【全頁数】33
(21)【出願番号】特願2014-141449(P2014-141449)
(22)【出願日】2014年7月9日
(65)【公開番号】特開2016-17153(P2016-17153A)
(43)【公開日】2016年2月1日
【審査請求日】2017年5月29日
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】100169085
【弁理士】
【氏名又は名称】為山 太郎
(72)【発明者】
【氏名】馬場 大空
(72)【発明者】
【氏名】古賀 孝志
【審査官】 藤井 勲
(56)【参考文献】
【文献】 特開2005−082712(JP,A)
【文献】 国際公開第2005/116138(WO,A1)
【文献】 国際公開第2005/121247(WO,A1)
【文献】 特開2006−154783(JP,A)
【文献】 国際公開第2008/081791(WO,A1)
【文献】 国際公開第2010/137729(WO,A1)
【文献】 特開2011−052236(JP,A)
【文献】 特開2012−025790(JP,A)
【文献】 特開2012−207164(JP,A)
【文献】 特開2014−113812(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 69/00
C08L 33/00 − 33/26
(57)【特許請求の範囲】
【請求項1】
(A)ポリカーボネート系樹脂(A成分)50〜90重量%および(B)(b−1)芳香族(メタ)アクリレート単量体(b−1成分)10〜59重量%、(b−2)アルキル(メタ)アクリレート単量体(b−2成分)40〜89重量%、および(b−3)変性された芳香族ビニル単量体(b−3成分)1〜30重量%を共重合してなり、重量平均分子量が5,000〜30,000である共重合体である表面硬度改良剤50〜10重量%からなる樹脂成分100重量部に対して、(C)TGA(熱重量解析)における5%重量減少温度が280℃以上である紫外線吸収剤(C成分)0.1〜3重量部および(D)酸価が3〜15の範囲である多価脂肪酸エステル(D成分)0.〜2重量部を含有し、芳香族ビニル単量体、シアン化ビニル単量体、およびアルキル(メタ)アクリレート単量体からなる群より選ばれた1種以上をグラフト重合してなる重量平均分子量が70,000〜120,000である硬質グラフト重合体を含有しない熱可塑性樹脂組成物。
【請求項2】
樹脂成分100重量部に対し、(E)リン系安定剤、ヒンダードフェノール系酸化防止剤およびチオエーテル系安定剤からなる群より選ばれる1種以上の安定剤を0.01〜1重量部含有する請求項1に記載の熱可塑性樹脂組成物。
【請求項3】
C成分が、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤およびベンゾオキサジン系紫外線吸収剤からなる群より選ばれる1種以上の紫外線吸収剤である請求項1または請求項2に記載の熱可塑性樹脂組成物。
【請求項4】
D成分が、グリセリン、ペンタエリスリトールおよびジペンタエリスリトールからなる群より選ばれる多価アルコールと脂肪族カルボン酸とからなる多価脂肪酸エステルである請求項1〜請求項3のいずれかに記載の熱可塑性樹脂組成物。
【請求項5】
請求項1〜請求項4のいずれかに記載の熱可塑性樹脂組成物からなる成形品。
【請求項6】
成形品が、表示ディスプレーカバー、電子機器保護カバー、照明カバー、自動車ヘッドランプカバー、自動車向けの窓部材または建材向けの窓部材である請求項5記載の成形品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明性、耐傷付性、耐候性、流動性および連続成形時の成形品外観に優れた熱可塑性樹脂組成物に関する。さらに詳しくは、ポリカーボネート樹脂と特定のアクリル系共重合体からなる樹脂成分に、特定の紫外線吸収剤および離型剤を配合することで、透明性、耐傷付性、耐候性、流動性さらには連続成形時の成形品外観が改善された熱可塑性樹脂組成物に関する。
【背景技術】
【0002】
ポリカーボネート系樹脂は高い透明性と機械特性のバランスに優れることから各種工業分野で幅広く使用されている。特に耐候性を付与した芳香族ポリカーボネート樹脂は各種照明カバーや表示パネルカバー等の光学用途において長期にわたって優れた特性を保持することができるため、OA機器を含む電気電子分野や自動車などの分野において有効に利用されている。但し、これらの用途の多くは傷付防止を目的として、成形品の表面に各種コーティングを施し製品化されている。近年ではポリカーボネート成形品表面にハードコートを施すことにより、耐傷付性と耐候性を両立させる技術が確立されているが、本技術は耐傷付性を飛躍的に向上させることが可能な反面、コーティング剤が高価であることに加え、成形後に複雑な塗装工程を設ける必要があり、完成後の製品コストが課題となっている。
【0003】
これらを背景として、ポリカーボネート樹脂の優れた透明性を維持したまま、耐傷付性を付与した樹脂組成物の開発が強く望まれており、近年ポリカーボネート樹脂に特定のアクリル系表面硬度改質剤を配合することで高い透明性を維持したまま、耐傷付性を付与する検討が多くなされるようになった。(特許文献1参照)しかし、アクリル系表面硬度改質剤を用いることにより、透明性を維持したまま大幅に耐傷付性が向上する反面、成形品が非常に脆くなる課題があった。この課題を解決するために、各種熱安定剤の配合によって耐衝撃性を改善する試みがなされている。(特許文献2参照)しかし、本技術による耐衝撃性の向上効果は限定的であり、長時間にわたって連続して射出成形を行った際の金型離型時に成形品にクラックを発生させやすいという課題があることや、その他にも成形品に部分的な白化を起こしやすいなど多くの問題があった。
【0004】
その他の技術に関してもポリカーボネート樹脂と特定のアクリル系表面硬度改良剤からなる組成物に、脂肪族アルコールと脂肪族カルボン酸とのエステル化物を配合して耐衝撃性を向上させる試みがなされているが、成形時のクラックに関する開示は見られなかった。(特許文献3参照)
従って、各種パネル用途、窓部材などの透明製品においては外部光源に対する高い耐性が求められることに加え、高い透明性と耐傷付性、製品の軽量化を目的とした更なる高流動化を達成しつつ、成形品に外観不良(部分的な白化やクラック等)の無い材料の開発が強く求められている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2012−251107号公報
【特許文献2】特開2012−36264号公報
【特許文献3】特開2012−25790号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、ポリカーボネート系樹脂と特定のアクリル系共重合体とからなる樹脂組成物において、透明性、耐候性、耐傷付性を維持しながら、耐白化性、クラック耐性等の成形品外観に優れ、更には流動性に優れた熱可塑性樹脂組成物を提供することにある。
【課題を解決するための手段】
【0007】
本発明者は、上記目的を達成せんとして鋭意検討を重ねた結果、ポリカーボネート樹脂と特定のアクリル系共重合体とからなる樹脂成分に、特定の紫外線吸収剤および離型剤を配合することで、かかる目的を達成できることを見出し、更に鋭意検討を進め、本発明を完成するに至った。
【0008】
本発明によれば、上記課題は、(A)ポリカーボネート系樹脂(A成分)50〜90重量%および(B)(b−1)芳香族(メタ)アクリレート単量体(b−1成分)10〜59重量%、(b−2)アルキル(メタ)アクリレート単量体(b−2成分)40〜89重量%、および(b−3)変性された芳香族ビニル単量体(b−3成分)1〜30重量%を共重合してなり、重量平均分子量が5,000〜30,000である共重合体である表面硬度改良剤50〜10重量%からなる樹脂成分100重量部に対して、(C)TGA(熱重量解析)における5%重量減少温度が280℃以上である紫外線吸収剤(C成分)0.1〜3重量部および(D)酸価が3〜15の範囲である多価脂肪酸エステル(D成分)0.1〜2重量部を含有する熱可塑性樹脂組成物により達成される。
【0009】
以下、更に本発明の詳細について説明する。
(A成分:ポリカーボネート系樹脂)
本発明のA成分として使用するポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
【0010】
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステルなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく汎用されている。
【0011】
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
【0012】
分岐ポリカーボネート樹脂は、本発明のポリカーボネート樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
【0013】
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、0.01〜1モル%、好ましくは0.05〜0.9モル%、特に好ましくは0.05〜0.8モル%である。
また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、0.001〜1モル%、好ましくは0.005〜0.9モル%、特に好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。
【0014】
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
さらにポリオルガノシロキサン単位を共重合した、ポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
【0015】
本発明のポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
ポリカーボネート系樹脂の粘度平均分子量は、特に限定されないが、好ましくは10,000〜50,000であり、より好ましくは14,000〜30,000であり、さらに好ましくは14,000〜26,000である。
粘度平均分子量が10,000未満のポリカーボネート系樹脂では、良好な機械的特性が得られない。一方、粘度平均分子量が50,000を超えるポリカーボネート系樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。
【0016】
なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(50,000)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A−1成分が粘度平均分子量70,000〜300,000のポリカーボネート系樹脂(A−1−1成分)、および粘度平均分子量10,000〜30,000のポリカーボネート系樹脂(A−1−2成分)からなり、その粘度平均分子量が16,000〜35,000であるポリカーボネート系樹脂(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。
【0017】
かかる高分子量成分含有ポリカーボネート系樹脂において、A−1−1成分の分子量は70,000〜200,000が好ましく、より好ましくは80,000〜200,000、さらに好ましくは100,000〜200,000、特に好ましくは100,000〜160,000である。またA−1−2成分の分子量は10,000〜25,000が好ましく、より好ましくは11,000〜24,000、さらに好ましくは12,000〜24,000、特に好ましくは12,000〜23,000である。
【0018】
高分子量成分含有ポリカーボネート系樹脂は前記A−1−1成分とA−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、高分子量成分含有ポリカーボネート系樹脂100重量%中、A−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1成分が4〜20重量%であり、特に好ましくはA−1−1成分が5〜20重量%である。
【0019】
また、高分子量成分含有ポリカーボネート系樹脂の調製方法としては、(1)A−1−1成分とA−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示すポリカーボネート系樹脂を同一系内において製造する方法を用い、かかるポリカーボネート系樹脂を本発明のA−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られたポリカーボネート系樹脂と、別途製造されたA−1−1成分および/またはA−1−2成分とを混合する方法などを挙げることができる。
【0020】
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート系樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
【0021】
尚、本発明の樹脂組成物におけるポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
【0022】
(B成分:表面硬度改良剤)
本発明のB成分として使用する表面硬度改質剤は、芳香族(メタ)アクリレート単量体(b−1成分)10〜59重量%、アルキル(メタ)アクリレート単量体(b−2成分)40〜89重量%、および変性された芳香族ビニル単量体(b−3成分)1〜30重量%を共重合してなり、重量平均分子量が5,000〜30,000である共重合体である。
尚、本発明の表面硬度改良剤は、組成物の表面硬度の向上と、流動性を向上させる作用を有する。
【0023】
芳香族(メタ)アクリレート単量体とは、エステル部分に芳香族基を有するメタクリレート、エステル部分に芳香族基を有するアクリレート、又は双方を含むものであり、具体的には、フェニルメタクリレート、ベンジルメタクリレート、フェニルアクリレート、ベンジルアクリレートが挙げられる。これは1種を単独で用いても、2種以上を併用しても差し支えない。これらの中でも、フェニルメタクリレート、ベンジルメタクリレートが好ましく、フェニルメタクリレートが更に好ましい。
【0024】
アルキル(メタ)アクリレート単量体としては、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシルメタクリレートなどが挙げられ、これらの中でもメチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートが更に好ましい。変性された芳香族ビニル単量体としては、具体的には α−メチルスチレン、o−メチルスチレン、p−メチルスチレンなどが挙げられ、なかでもα−メチルスチレンが特に好ましい。
【0025】
かかる表面硬度改質剤の各成分の共重合に使用される割合については、単量体の合計を100重量%とした場合、芳香族(メタ)アクリレート単量体(b−1成分)は10〜59重量%、好ましくは12〜50重量%、更に好ましくは15〜40重量%、アルキル(メタ)アクリレート単量体(b−2成分)は40〜89重量%、好ましくは45〜85重量%、更に好ましくは50〜80重量%、変性された芳香族ビニル単量体(b−3成分)は1〜30重量%、好ましくは1〜20重量%、更に好ましくは3〜18重量%である。b−1成分が10重量%未満の場合、表面硬度改良剤とA成分であるポリカーボネート系樹脂との相溶性が悪化し、ウエルド外観が悪くなる。b−1成分が59重量%を超えると表面硬度が向上せず、耐候性が悪化する。またb−2成分が40重量%未満の場合、表面硬度が向上せず、89重量%を超える場合はウエルド外観が悪化し、衝撃強度が低下する。さらに、b−3成分が1重量%未満の場合は外観が悪化し、30重量%を越えると表面硬度が低下し、ウェルド外観が悪化する。
【0026】
さらに本発明における表面硬度改良剤は、重量平均分子量が5,000〜30,000、好ましくは7,000〜28,000、更に好ましくは8,000〜25,000である。重量平均分子量が5,000〜30,000の範囲から外れる場合、表面硬度改良剤とA成分との相溶性が悪くなり、表面硬度やウエルド外観の低下が起こる。かかる重量平均分子量はGPC測定(ゲルパーミエーションクロマトグラフィー測定)により算出される。ここで示す重量平均分子量は、標準ポリスチレン樹脂による較正直線を使用したGPC測定によりポリスチレン換算の値として算出されたものである。
【0027】
本発明の表面硬度改良剤の重合方法としては、公知の乳化重合法、懸濁重合法、塊状重合法、溶液重合法などが挙げられる。これらの中では、変性された芳香族ビニルの重合性が良好になることから乳化重合法が好ましい。乳化重合法で用いられる乳化剤としては、アルキルジフェニルエーテルジスルホン酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の公知の乳化剤を使用できる。乳化重合で使用する重合開始剤としてはt−ブチルハイドロパーオキサイド、過硫酸カリウム等の公知の重合開始剤を使用できる。
B成分の含有量はA成分とB成分との合計100重量%に対し、10〜50重量%であり、好ましくは20〜45重量%、より好ましくは30〜40重量%である。B成分の含有量が10重量%未満の場合流動性および表面硬度の向上効果が十分に得られない。50重量%を超えると耐候性が悪化すると同時に離型時にクラックが発生しやすくなる。
【0028】
(C成分:紫外線吸収剤)
本発明のC成分で使用される紫外線吸収剤は、TGA(熱重量解析)における5%重量減少温度が280℃以上、好ましくは290℃以上、より好ましくは300℃以上の紫外線吸収剤である。TGAにおける5%減少温度が280℃未満の紫外線吸収剤は、成形時に溶融樹脂中から揮発し成形品表面に多く移行するため耐候性改善効果は高いが、その反面離型性を低下させる要因となる。本発明の樹脂組成物では、その離型性の低下が原因で離型時にクラックを誘発し、離型剤を配合した場合でも十分なクラック抑制効果が得られない。さらに、TGAにおける5%減少温度が280℃未満の紫外線吸収剤は、成形中に分解が進行しやすいため、分解物が成形品中に混入し、成形品の一部が白化する要因となる。よって耐候性を付与する紫外線吸収剤は耐熱性が高いことが重要である。なお、5%重量減少温度の上限は特に規定されないが380℃以下が好ましい。
【0029】
本発明のC成分として使用する紫外線吸収剤としては例えば、ベンゾトリアゾール系では、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、6−(2−ベンゾトリアゾリル)−4−t−オクチル−6’−t−ブチル−4’−メチル−2,2’−メチレンビスフェノール、2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−t−オクチルフェノール]、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(2−ヒドロキシエチル)フェノールなどが挙げられる。
【0030】
トリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]フェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。
【0031】
環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
【0032】
また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
【0033】
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
【0034】
C成分の含有量は、樹脂成分100重量部に対して、0.1〜3重量部、好ましくは0.2〜2重量部、より好ましくは0.3〜1重量部である。C成分の含有量が0.1重量部未満では成形品の耐候性が不十分であり、3重量部を超えると離型時にクラックが発生しやすくなる。
【0035】
(D成分:多価脂肪酸エステル)
本発明のD成分として使用する多価脂肪酸エステルは、多価アルコールと脂肪族カルボン酸とのエステル(脂肪酸エステル)であって、酸価が3〜15であることを特徴とするものである。酸価が上記範囲を満足することにより、離型性が向上しクラック耐性の大幅な改善が可能となる。また酸価は、試料1g中に含まれる遊離脂肪酸などを中和するのに必要とする水酸化カリウムのmg数であり、JIS K 0070に規定された方法により求めることができるものであり、脂肪酸エステル中の遊離脂肪酸の割合を示すときに使用される。脂肪酸エステル中に含まれる遊離酸は、離型性の向上に寄与するだけでなく、ポリカーボネート樹脂に対して可塑性を付与し溶融粘度を低減する効果がある。樹脂組成物の更なる高流動化を発現できることに加え、B成分として使用する表面硬度改良剤との溶融粘度差が縮まることによって、成形時にポリカーボネート系樹脂と表面硬度改良剤が相分離を起こすことによる白化を抑制することが可能であると考えられる。
【0036】
従って、かかる酸価が3未満ではこれら離型力の低減などが困難となるため離形時にクラックが発生し、また白化が発生する。一方、酸価が15を超えると遊離脂肪酸自体の揮発による金型汚染が発生することにより白化が発生する。かかる酸価は4〜12の範囲がより好ましく、5〜10の範囲が更に好ましい。なお、多価脂肪酸エステルは酸価が上記範囲であるものが重要であるが、酸価が低い多価脂肪酸エステルに脂肪酸を添加することで上記範囲に調整された多価脂肪酸エステルを用いることも可能である。
【0037】
本発明の脂肪酸エステルは、そのエステル化率は特に制限されないものの、エステル化率は80%以上が好ましく、85%以上がより好ましい。よって本発明のD成分は、多価アルコールと脂肪族カルボン酸とのフルエステルが好ましい。但し、本発明においてフルエステルとは、そのエステル化率が必ずしも100%である必要はなく、80%以上であればよく、好ましくは85%以上である。
【0038】
上記条件を満足する脂肪酸エステルが、離型力の低減(離型性の向上)、およびクラック耐性の改善を可能とする理由は明らかではないが次のように考えられる。酸価によって測定される対象は主として未反応の遊離カルボン酸であり、これは比較的低い分子量であるため成形加工時に成形品表面に移行し易く、上記と同様成形品表面への偏斥が生じ、離型性の向上に寄与すると考えられる。したがって酸価が上記範囲である脂肪酸エステルはポリカーボネート樹脂の可塑化と成形品表面への移行の割合が適度であり、分解物によるものではないため樹脂流動の乱れによる歪みも低減効果が見受けられる。
【0039】
上記の特定の脂肪酸エステルの製造方法は、特に限定されるものではなく、アルコールと脂肪族カルボン酸とを従来公知の各種方法を利用することができる。
使用されるアルコールは、その炭素原子数が3〜32であるものが好ましい。アルコールとしては二価以上の多価アルコールであり、多価アルコールの具体例としては、グリセリン、ジグリセリン、ポリグリセリン(例えばデカグリセリンなど)、ペンタエリスリトール、ジペンタエリスリトール、ジエチレングリコール、およびプロピレングリコールなどが挙げられ、中でもペンタエリスリトールが好ましい。
【0040】
使用される脂肪族カルボン酸は、その炭素原子数が3〜32であるものが好ましい。かかる炭素原子数3〜32の脂肪族カルボン酸としては、例えばヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、ドコサン酸、およびヘキサコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は炭素原子数10〜22であるものが好ましく、炭素原子数14〜20であるものがより好ましい。更に好ましくはかかる飽和脂肪族カルボン酸である。特にステアリン酸およびパルミチン酸が好ましい。ステアリン酸やパルミチン酸などの脂肪族カルボン酸は通常、動物性油脂(牛脂および豚脂など)や植物性油脂(パーム油など)などの天然油脂類から製造される。したがってステアリン酸などの脂肪族カルボン酸は通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。本発明のD成分の製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなるステアリン酸やパルミチン酸が好ましく使用される。これらの混合比率は単独の脂肪族カルボン酸で満足する必要はなく、2種以上の脂肪族カルボン酸を混合することにより満足するものであってもよい。また上記の混合比率を満足する脂肪族カルボン酸の原料となる油脂としては、例えば牛脂および豚脂などの動物性油脂、並びにアマニ油、サフラワー油、ヒマワリ油、大豆油、トウモロコシ油、落花生油、綿実油、ゴマ油、およびオリーブ油などの植物性油脂を挙げることができる。上記の中でもステアリン酸をより多く含む点で動物性油脂が好ましく、更に牛脂がより好ましい。更に牛脂の中でもステアリン酸およびパルミチン酸などの飽和成分を多く含むオレオステアリンが好ましい。
【0041】
D成分の含有量は、樹脂成分100重量部に対して、0.1〜2重量部、好ましくは0.2〜1重量部、より好ましくは0.3〜0.5重量部である。D成分の含有量が0.1重量部未満では白化の抑制が不十分であるとともに、離型性が不十分であるためクラックが発生し、2重量部を超えると透明性が悪化する。
【0042】
(その他の添加剤について)
本発明の樹脂組成物には、特性を大きく損なわない範囲で各種安定剤、衝撃改質剤、色剤、充填剤及び難燃剤等を使用することができる。
【0043】
(i)安定剤
本発明の樹脂組成物には公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤、チオエーテル系安定剤などが挙げられる。
【0044】
(i−1)リン系安定剤
リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびD成分以外のこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
【0045】
トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。
【0046】
アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。
【0047】
ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイトなどが挙げられる。
【0048】
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。
【0049】
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
【0050】
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
【0051】
上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。これらリン系安定剤の中でも好ましいものは、ホスホナイト化合物であるが、リン系安定剤2種以上を併用することも可能である。
【0052】
(i−2)ヒンダードフェノール系酸化防止剤
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。
【0053】
上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。
リン系安定剤およびヒンダードフェノール系酸化防止剤はいずれかが配合されることが好ましい。リン系安定剤およびヒンダードフェノール系酸化防止剤の含有量は、それぞれ樹脂成分100重量部を基準として、好ましくは0.01〜1重量部、より好ましくは0.02〜0.3重量部である。
【0054】
(i−3)チオエーテル系安定剤
またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのチオエーテル系安定剤が例示される。かかるチオエーテル系安定剤の配合量は、樹脂成分100重量部を基準として好ましくは0.01〜1重量部、より好ましくは0.02〜0.3重量部である。
【0055】
(ii)衝撃改質剤
衝撃改質剤としてはブタジエン系衝撃改質剤、シリコーン系衝撃改質剤、アクリル系衝撃改質剤、その他各種熱可塑性エラストマーを配合することができ、中でも高いレベルで透明性を維持したまま衝撃特性の向上が可能なポリエステル系エラストマーが好適である。衝撃改質剤の含有量は、樹脂成分100重量部に対し、好ましくは1〜10重量部、より好ましくは2〜5重量部である。
【0056】
(iii)色材(染顔料)
本発明の樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好で樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。上記の染顔料の含有量は、樹脂成分100重量部を基準として、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
【0057】
(iv)難燃剤
本発明の樹脂組成物には、難燃剤として知られる各種の化合物が配合される。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
かかる難燃剤としては、(1)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(2)有機リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物、ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、およびホスホン酸アミド化合物など)、(3)シリコーン化合物からなるシリコーン系難燃剤、並びに(4)ハロゲン系難燃剤(例えば、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート(オリゴマーを含む)、臭素化ポリアクリレート、および塩素化ポリエチレンなど)等が挙げられる。
【0058】
(1)有機金属塩系難燃剤
有機金属塩系難燃剤は、耐熱性がほぼ維持されると共に少なからず帯電防止性を付与できる点で有利である。本発明において最も有利に使用される有機金属塩系難燃剤は、含フッ素有機金属塩化合物である。本発明の含フッ素有機金属塩化合物とは、フッ素置換された炭化水素基を有する有機酸からなるアニオン成分と金属イオンからなるカチオン成分からなる金属塩化合物をいう。より好適な具体例としては、フッ素置換有機スルホン酸の金属塩、フッ素置換有機硫酸エステルの金属塩、およびフッ素置換有機リン酸エステルの金属塩が例示される。含フッ素有機金属塩化合物は1種もしくは2種以上を混合して使用することができる。その中でも好ましいのはフッ素置換有機スルホン酸の金属塩であり、とくに好ましいのはパーフルオロアルキル基を有するスルホン酸の金属塩である。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。
【0059】
有機金属塩系難燃剤の金属イオンを構成する金属は、アルカリ金属あるいはアルカリ土類金属であり、アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。したがって好適な有機金属塩系難燃剤は、パーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストや難燃性の点で有利であるがリチウムおよびナトリウムは逆に透明性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。
【0060】
かかるパーフルオロアルキルスルホン酸アルカリ金属塩としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロブタンジスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。
【0061】
上記の含フッ素有機金属塩はイオンクロマトグラフィー法により測定した弗化物イオンの含有量が好ましくは50ppm以下、より好ましくは20ppm以下、更に好ましくは10ppm以下である。弗化物イオンの含有量が低いほど、難燃性や耐光性が良好となる。弗化物イオンの含有量の下限は実質的に0とすることも可能であるが、精製工数と効果との兼ね合いから実用的には0.2ppm程度が好ましい。かかる弗化物イオンの含有量のパーフルオロアルキルスルホン酸アルカリ金属塩は例えば次のように精製される。パーフルオロアルキルスルホン酸アルカリ金属塩を、該金属塩の2〜10重量倍のイオン交換水に、40〜90℃(より好適には60〜85℃)の範囲において溶解させる。該パーフルオロアルキルスルホン酸アルカリ金属塩は、パーフルオロアルキルスルホン酸をアルカリ金属の炭酸塩または水酸化物で中和する方法、もしくはパーフルオロアルキルスルホニルフルオライドをアルカリ金属の炭酸塩または水酸化物で中和する方法により(より好適には後者の方法により)生成される。また該イオン交換水は、特に好適には電気抵抗値が18MΩ・cm以上である水である。金属塩を溶解した液を上記温度下で0.1〜3時間、より好適には0.5〜2.5時間撹拌する。その後該液を0〜40℃、より好適に10〜35℃の範囲に冷却する。冷却により結晶が析出する。析出した結晶をろ過によって取り出す。これにより好適な精製されたパーフルオロアルキルスルホン酸アルカリ金属塩が製造される。
【0062】
含フッ素有機金属塩化合物の含有量は、樹脂成分100重量部を基準として好ましくは0.005〜0.6重量部、より好ましくは0.005〜0.2重量部、更に好ましくは0.008〜0.13重量部である。かかる好ましい範囲であるほど含フッ素有機金属塩の配合により期待される効果(例えば難燃性や帯電防止性など)が発揮されると共に、樹脂組成物の耐光性に与える悪影響も少なくなる。
その他上記含フッ素有機金属塩化合物以外の有機金属塩系難燃剤としては、フッ素原子を含有しない有機スルホン酸の金属塩が好適である。該金属塩としては、例えば脂肪族スルホン酸のアルカリ金属塩、脂肪族スルホン酸のアルカリ土類金属塩、芳香族スルホン酸のアルカリ金属塩、および芳香族スルホン酸のアルカリ土類金属塩等(いずれもフッ素原子を含有しない)が挙げられる。
【0063】
脂肪族スルホン酸金属塩の好ましい例としては、アルキルスルホン酸アルカリ(土類)金属塩を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する)。かかるアルキルスルホン酸アルカリ(土類)金属塩に使用するアルカンスルホン酸の好ましい例としては、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、メチルブタンスルホン酸、ヘキサンスルホン酸、へプタンスルホン酸、オクタンスルホン酸等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。
【0064】
芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。
【0065】
芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムな、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
【0066】
一方、硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩を挙げることができる。
【0067】
また他のアルカリ(土類)金属塩としては、芳香族スルホンアミドのアルカリ(土類)金属塩を挙げることができ、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
上記の中でも好ましいフッ素原子を含有しない有機スルホン酸の金属塩は、芳香族スルホン酸アルカリ(土類)金属塩であり、特にカリウム塩が好適である。かかる芳香族スルホン酸アルカリ(土類)金属塩を配合する場合その含有量は、樹脂成分100重量部を基準として好ましくは0.001〜1重量部であり、より好ましくは0.005〜0.5重量部、更に好ましくは0.01〜0.1重量部である。
【0068】
(2)有機リン系難燃剤
本発明の有機リン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れ、光高反射性に悪影響を与えることが少ないためである。またホスフェート化合物は可塑化効果があるため本発明の樹脂組成物の成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式(1)で表される1種または2種以上のホスフェート化合物を挙げることができる。
【0069】
【化1】
【0070】
(但し上記式中のXは、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシジフェニル)メタン、ビスフェノールA、ジヒドロキシジフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)サルファイドから誘導される二価の基が挙げられ、j、k、l、mはそれぞれ独立して0または1であり、nは0〜5の整数であり、またはn数の異なるリン酸エステルの混合物の場合は0〜5の平均値であり、R、R、R、およびRはそれぞれ独立して1個以上のハロゲン原子を置換したもしくは置換していないフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、p−クミルフェノールから誘導される一価フェノール残基である。)
【0071】
前記式のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5〜1.5、より好ましくは0.8〜1.2、更に好ましくは0.95〜1.15、特に好ましくは1〜1.14の範囲である。
上記Xを誘導する二価フェノールの好適な具体例はレゾルシノール、ビスフェノールA、およびジヒドロキシジフェニルである。
上記R、R、R、およびRを誘導する一価フェノールの好適な具体例はフェノール、および2,6−ジメチルフェノールである。
尚、かかる一価フェノールはハロゲン原子で置換されてもよく、該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6−トリブロモフェニル)ホスフェートおよびトリス(2,4−ジブロモフェニル)ホスフェート、トリス(4−ブロモフェニル)ホスフェートなどが例示される。
【0072】
一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6−キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6−キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4−ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である(ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式(1)におけるn=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。)。
有機リン系難燃剤の含有量は、樹脂成分100重量部を基準として好ましくは1〜20重量部であり、より好ましくは2〜10重量部、更に好ましくは2〜7重量部である。
【0073】
(3)シリコーン系難燃剤
本発明のシリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来熱可塑性樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、熱可塑性樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
【0074】
一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、
Q単位:SiOで示される4官能性シロキサン単位である。
シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。
【0075】
ここで、上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。
またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
【0076】
シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。
さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。より好適には下記一般式(2)で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)である。
【0077】
【化2】
【0078】
(式(2)中、Xはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。nは0〜5の整数を表わす。さらに式(2)中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。)
【0079】
シリコーン系難燃剤として使用されるシリコーン化合物は、上記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
Si−H基を有するシリコーン化合物としては、下記一般式(3)および(4)で示される構成単位の少なくとも一種以上を含むシリコーン化合物が好適に例示される。
【0080】
【化3】
【化4】
【0081】
(式(3)および式(4)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式(5)で示される化合物を示す。α〜αはそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式(3)中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
【0082】
【化5】
【0083】
(式(5)中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α〜αはそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式(5)中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
【0084】
シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式(6)および一般式(7)に示される化合物から選択される少なくとも1種の化合物があげられる。
【0085】
【化6】
【0086】
(式(6)中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
【0087】
【化7】
【0088】
(式(7)中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
【0089】
上記成分の含有量は、樹脂成分100重量部を基準として、0.01〜10重量部が好ましく、より好ましくは0.05〜5重量部、さらに好ましくは0.1〜5重量部である。
【0090】
(4)ハロゲン系難燃剤
本発明のハロゲン系難燃剤としては、臭素化ポリカーボネート(オリゴマーを含む)が特に好適である。臭素化ポリカーボネートは耐熱性に優れ、かつ大幅に難燃性を向上できる。本発明で使用する臭素化ポリカーボネートは、下記一般式(8)で表される構成単位が全構成単位の少なくとも60モル%、好ましくは少なくとも80モル%であり、特に好ましくは実質的に下記一般式(8)で表される構成単位からなる臭素化ポリカーボネート化合物である。
【0091】
【化8】
【0092】
(式(8)中、Xは臭素原子、Rは炭素数1〜4のアルキレン基、炭素数1〜4のアルキリデン基または−SO−である。)
【0093】
また、かかる式(8)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、−SO−、特に好ましくはイソプロピリデン基を示す。
臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4−(p−ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U−3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、樹脂組成物の熱安定性がより良好となり、更に高温の成形が可能となり、その結果成形加工性により優れた樹脂組成物が提供される。
【0094】
また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H−NMR法により測定して求めることができる。かかる末端水酸基量であると、樹脂組成物の熱安定性が更に向上し好ましい。
【0095】
臭素化ポリカーボネートの比粘度は、好ましくは0.015〜0.1の範囲、より好ましくは0.015〜0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。
上記成分の含有量は、樹脂成分100重量部を基準として、0.01〜10重量部が好ましく、より好ましくは0.01〜8重量部、さらに好ましくは0.05〜7重量部である。
【0096】
(v)含フッ素滴下防止剤
本発明の樹脂組成物には、含フッ素滴下防止剤を含むことができる。かかる含フッ素滴下防止剤を上記難燃剤と併用することにより、より良好な難燃性を得ることができる。かかる含フッ素滴下防止剤としては、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることかできるが、好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
【0097】
フィブリル形成能を有するポリテトラフルオロエチレン(フィブリル化PTFE)は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、フィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。
【0098】
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。
【0099】
フィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。
【0100】
混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3800」(商品名)、GEスペシャリティーケミカルズ社製「BLENDEX B449」(商品名)およびPacific Interchem Corporation社製「POLY TS AD001」(商品名)などが例示される。
【0101】
上記フィブリル化PTFEは機械的強度を低下させないため、できる限り微分散されることが好ましい。かかる微分散を達成する手段として、上記混合形態のフィブリル化PTFEは有利である。また水性分散液形態のものを溶融混練機に直接供給する方法も微分散には有利である。但し水性分散液形態のものはやや色相が悪化する点に配慮を要する。混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが10〜80重量%が好ましく、より好ましくは15〜75重量%である。フィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。
上記成分の含有量は、樹脂成分100重量部を基準として、0.01〜3重量部が好ましく、より好ましくは0.01〜2重量部、さらに好ましくは0.05〜1.5重量部である。
【0102】
(vi)熱線吸収能を有する化合物
本発明の樹脂組成物は熱線吸収能を有する化合物を含有することができる。かかる化合物としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウム、酸化イモニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系や酸化タングステン系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、A成分、B成分の合計100重量部を基準として0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明の樹脂組成物中、0.1〜200ppm(重量割合)の範囲が好ましく、0.5〜100ppmの範囲がより好ましい。
【0103】
(vii)光拡散剤
本発明の樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物等が例示される。かかる高分子微粒子は、既に熱可塑性樹脂の光拡散剤として公知の微粒子である。より好適には粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、樹脂成分100重量部を基準として好ましくは0.005〜20重量部、より好ましくは0.01〜10重量部、更に好ましくは0.01〜3重量部である。尚、光拡散剤は2種以上を併用することができる。
【0104】
(viii)光高反射用白色顔料
本発明の樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が特に好ましい。かかる光高反射用白色顔料の含有量は、樹脂成分100重量部を基準として3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
【0105】
(ix)帯電防止剤
本発明の樹脂組成物には、帯電防止性能が求められる場合があり、かかる場合帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量は樹脂成分100重量部を基準として、5重量部以下が適切であり、好ましくは0.05〜5重量部、より好ましくは1〜3.5重量部、更に好ましくは1.5〜3重量部の範囲である。
【0106】
帯電防止剤としては例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量はA成分、B成分とC成分の合計100重量部を基準として、0.5重量部以下が適切であり、好ましくは0.001〜0.3重量部、より好ましくは0.005〜0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。
【0107】
帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩はA成分、B成分とC成分の合計100重量部を基準として、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーは樹脂成分100重量部を基準として5重量部以下が適切である。
【0108】
(x)充填材
本発明の樹脂組成物には、強化フィラーとして公知の各種充填材を配合することができる。かかる充填材としては、各種の繊維状充填材、板状充填材、および粒状充填材が利用できる。ここで、繊維状充填材はその形状が繊維状(棒状、針状、扁平状、またはその軸が複数の方向に伸びた形状をいずれも含む)であり、板状充填材はその形状が板状(表面に凹凸を有するものや、板が湾曲を有するものを含む)である充填材である。粒状充填材は、不定形状を含むこれら以外の形状の充填材である。
上記繊維状や板状の形状は充填材の形状観察より明らかな場合が多いが、例えばいわゆる不定形との差異としては、そのアスペクト比が3以上であるものは繊維状や板状といえる。
【0109】
板状充填材としては、ガラスフレーク、タルク、マイカ、カオリン、メタルフレーク、カーボンフレーク、およびグラファイト、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した板状充填材などが好ましく例示される。その粒径は0.1〜300μmの範囲が好ましい。かかる粒径は、10μm程度までの領域は液相沈降法の1つであるX線透過法で測定された粒子径分布のメジアン径(D50)による値をいい、10〜50μmの領域ではレーザー回折・散乱法で測定された粒子径分布のメジアン径(D50)による値をいい、50〜300μmの領域では振動式篩分け法による値である。かかる粒径は樹脂組成物中での粒径である。板状充填材は、各種のシラン系、チタネート系、アルミネート系、およびジルコネート系などのカップリング剤で表面処理されてもよく、またオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂などの各種樹脂や高級脂肪酸エステルなどにより集束処理されるか、または圧縮処理された造粒物であってもよい。
【0110】
繊維状充填材は、その繊維径が0.1〜20μmの範囲が好ましい。繊維径の上限は13μmが好ましく、10μmが更に好ましい。一方繊維径の下限は1μmが好ましい。
ここでいう繊維径とは数平均繊維径を指す。尚、かかる数平均繊維径は、成形品を溶剤に溶解するかもくしは樹脂を塩基性化合物で分解した後に採取される残渣、およびるつぼで灰化を行った後に採取される灰化残渣を走査電子顕微鏡観察した画像から算出される値である。
【0111】
かかる繊維状充填材としては、例えば、ガラスファイバー、扁平断面ガラス繊維、ガラスミルドファイバー、ガラスフレーク、カーボンファイバー、扁平断面カーボンファイバー、カーボンミルドファイバー、メタルファイバー、バサルト繊維、アスベスト、ロックウール、セラミックファイバー、スラグファイバー、チタン酸カリウムウィスカー、ボロンウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、ワラストナイト、ゾノトライト、パリゴルスカイト(アタパルジャイト)、およびセピオライトなどの繊維状無機充填材、アラミド繊維、ポリイミド繊維およびポリベンズチアゾール繊維などの耐熱有機繊維に代表される繊維状耐熱有機充填材、ヘンプ麻や竹などの植物性繊維、並びにこれらの充填剤に対して例えば金属や金属酸化物などの異種材料を表面被覆した繊維状充填材などが例示される。異種材料を表面被覆した充填材としては、例えば金属コートガラスファイバー、金属コートガラスフレーク、酸化チタンコートガラスフレーク、および金属コートカーボンファイバーなどが例示される。異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。
【0112】
ここで繊維状充填材とは、アスペクト比が3以上、好ましくは5以上、より好ましくは10以上である繊維状の充填材をいう。アスペクト比の上限は10,000程度であり、好ましくは200である。かかる充填材のアスペクト比は樹脂組成物中での値である。また扁平断面ガラス繊維とは、繊維断面の長径の平均値が10〜50μm、好ましくは15〜40μm、より好ましくは20〜35μmで長径と短径の比(長径/短径)の平均値が1.5〜8、好ましくは2〜6、更に好ましくは2.5〜5であるガラス繊維である。繊維状充填材も上記板状充填材と同様に各種のカップリング剤で表面処理されてもよく、各種の樹脂などにより集束処理され、また圧縮処理により造粒されてもよい。
かかる充填材の含有量は、樹脂成分100重量部を基準として200重量部以下が好ましく、より好ましくは100重量部以下、更に好ましくは50重量部以下、特に好ましくは30重量部以下である。
【0113】
(xi)その他の添加剤
本発明の樹脂組成物には、A成分、B成分以外の熱可塑性樹脂、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。
かかる他の樹脂としては、例えばポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、MS樹脂(メチルメタクリートとスチレンから主としてなる共重合体樹脂)、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂、環状ポリオレフィン樹脂、ポリ乳酸樹脂、ポリカプロラクトン樹脂、並びに熱可塑性フッ素樹脂(例えばポリフッ化ビニリデン樹脂に代表される)等の樹脂が挙げられる。
【0114】
(樹脂組成物の製造)
本発明の樹脂組成物の調製には任意の方法が採用される。例えばA成分、B成分、C成分、D成分および任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。他の方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式二軸押出機が好ましい。
【0115】
他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることができる。また一部の成分を予備混合した後、残りの成分と独立に溶融混練機に供給する方法が挙げられる。特に無機充填材が配合される場合には、無機充填材は押出機途中の供給口から溶融樹脂中にサイドフィーダーの如き供給装置を用いて供給されることが好ましい。予備混合の手段や造粒に関しては、前記と同様である。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
【0116】
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
【0117】
さらに溶融混練前にA成分、およびB成分に含まれる水分が少ないことが好ましい。したがって各種熱風乾燥、電磁波乾燥、真空乾燥などの方法により、A成分またはB成分のいずれかまたは両者を乾燥した後に溶融混練することがより好ましい。溶融混練中のベント吸引度は、1〜60kPa、好ましくは2〜30kPaの範囲が好ましい。作成された樹脂組成物は触媒由来のチタン元素を0.001〜50ppm含むことが好ましく、0.001〜45ppm含むことがより好ましい。含有するTi残量が50ppmより多いと熱安定性や色相の低下に伴う外観の悪化や耐湿熱性の低下を生じる場合があり好ましくない。
【0118】
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
【0119】
本発明の樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、多色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
【0120】
また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。更に特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
【0121】
これにより透明性、耐傷付性、耐候性、流動性および成形品外観に優れた成形品が提供される。即ち、本発明によれば、(A)ポリカーボネート系樹脂(A成分)50〜90重量%および(B)(b−1)芳香族(メタ)アクリレート単量体(b−1成分)10〜59重量%、(b−2)アルキル(メタ)アクリレート単量体(b−2成分)40〜89重量%、および(b−3)変性された芳香族ビニル単量体(b−3成分)1〜30重量%を共重合してなり、重量平均分子量が5,000〜30,000である共重合体である表面硬度改良剤50〜10重量%からなる樹脂成分100重量部に対して、(C)TGA(熱重量解析)における5%重量減少温度が280℃以上である紫外線吸収剤(C成分)0.1〜3重量部および(D)酸価が3〜15の範囲である多価脂肪酸エステル(D成分)0.1〜2重量部を含有する熱可塑性樹脂組成物によりなる成形品が提供される。
【0122】
本発明の成形品は、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品(特に車両用内外装部品)、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、その中でも表示ディスプレーカバー、電子機器保護カバー、照明カバー、自動車ヘッドランプカバー、自動車向けの窓部材または建材向けの窓部材などの各種用途に特に有用であり、その奏する産業上の効果は格別である。更に本発明の成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常の熱可塑性樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。ハードコートは特に好ましくかつ必要とされる表面処理である。
【発明の効果】
【0123】
本発明の樹脂組成物は、耐傷付性、流動性、成形品外観に優れ、さらに良好な透明性と耐候性を併せ持つことから、上記の如く、各種電子・電気機器部品、カメラ部品、OA機器部品、精密機械部品、機械部品、車両部品(特に車両用内外装部品)、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用である。したがって本発明の奏する産業上の効果は極めて大である。
【図面の簡単な説明】
【0124】
図1】実施例において成形した箱型の成形品の概略図である。
図2図1に示した成形品の正面図および側面図である。
【発明を実施するための形態】
【0125】
本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
【実施例】
【0126】
(I)樹脂組成物の評価
(i)成形性(外観評価)
実施例および比較例に示す各種ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、図1に示す、横幅100mm、縦幅150mm×高さ30mmで、厚さ2mmの箱型成形品を連続300ショット成形し、下記の外観評価を実施した。
[外観評価A]
成形品を目視で確認し、全ての成形品の全体が透明であったものを○、成形品中の一部または全体に白化が発生し、不透明部分が確認されたものを×とした。
[外観評価B]
成形品を目視で確認し、全ての成形品にクラックが無いものは○、成形品にクラックが発生したものは、クラックが発生するまでのショット数を確認した。
【0127】
(ii)MVR(メルトボリュームレイト)
ISO 1133に準拠し、ペレットを120℃にて約5時間乾燥させ、ペレット中の水分率を200ppm以下にしたものを東洋精機(株)製セミオートメルトインデクサー2A型により、250℃、荷重2.16kgfの条件にて測定した。MVR値が高いほど溶融粘度は低いことを示す。
【0128】
(iii)鉛筆硬度 JIS K5600に則して鉛筆硬度を測定した。
【0129】
(iv)耐候性
ペレットを120℃で5時間乾燥した後に射出成形機(住友重機械工業(株)製 SG−150U)によりシリンダー温度280℃、金型温度70℃で、算術平均粗さ(Ra)が0.03μmとしたキャビティ面を持つ金型を使用し、幅50mm、長さ90mm、厚みがゲート側から3mm(長さ20mm)、2mm(長さ45mm)、1mm(長さ25mm)である3段型プレートを成形した。この成形品の色相および該成形品をサンシャイン・ウェザー・メーター(スガ試験機(株)製:S80HB)を使用しブラックパネル温度83℃、湿度50%で400時間処理した後の色相を測定し、試験前後の差をΔEとして記載した。なお、色相は日本電色(株)製SE−2000を用いてC光源反射法により3段型プレートの厚みが2mmの部分を測定した。
【0130】
[実施例1〜12、比較例1〜13]
ポリカーボネート系樹脂、表面硬度改良剤、紫外線吸収剤、多価脂肪酸エステル並びに表1および表2記載の各種添加剤を各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機((株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー))を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで270℃とした。得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片を成形した。各評価結果を表1および表2に示した。
【0131】
表1および表2中の記号表記の各成分は下記の通りである。
(A成分)
A−1:粘度平均分子量20,000の直鎖状芳香族ポリカーボネート樹脂パウダー
(B成分)
B−1:重量平均分子量16,700のフェニルメタクリレート/メチルメタクリレート/α−メチルスチレンの重量比が30:62:8である共重合体からなる表面硬度改質剤(三菱レイヨン(株)製:H−880(商品名))
B−2:重量平均分子量11,800のフェニルメタクリレート/メチルメタクリレート/α−メチルスチレンの重量比が5:92:3である共重合体からなるアクリル樹脂
B−3:重量平均分子量11,600のフェニルメタクリレート/メチルメタクリレート/α−メチルスチレンの重量比が65:25:10である共重合体からなるアクリル樹脂
B−4:重量平均分子量11,500のフェニルメタクリレート/メチルメタクリレート/α−メチルスチレンの重量比が25:35:40である共重合体からなるアクリル樹脂
B−5:重量平均分子量10,000のフェニルメタクリレート/メチルメタクリレートの重量比が34:66である共重合体からなるアクリル樹脂
(C成分)
C−1:2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(BASF社製:Tinuvin234(商品名))[5%重量減少温度295℃]
C−2:2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール(BASF社製:Tinuvin1577FF(商品名))[5%重量減少温度318℃]
C−3:2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール](旭電化工業(株)製:アデカスタブLA−31(商品名))[5%重量減少温度360℃]
C−4:2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール(ケミプロ化成(株)製:ケミソーブ79(商品名))[5%重量減少温度215℃]
(D成分)多価脂肪酸エステル
D−1:ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(理研ビタミン(株)製:リケスターEW−400(商品名))[酸価9]
D−2:ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(理研ビタミン(株)製:リケスターEW−440AW(商品名))[酸価4]
D−3:ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(理研ビタミン(株)製:リケスターEW−250(商品名))[酸価14]
D−4:ペンタエリスリトールと脂肪族カルボン酸とのフルエステル(コグニス・シャパン製:ロキシオールVPG−861(商品名))[酸価1]
D−5:ジペンタエリスリトールと脂肪族カルボン酸とのフルエステル(理研ビタミン(株)製:リケスターSL−02(商品名))[酸価28]
(その他の成分)
(安定剤)
EPQ:テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイトを主成分とし、テトラキス(2,4−ジ−tert−ブチルフェニル)ビフェニレンジホスホナイトを約70重量%、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトを約20重量%およびトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトを約10重量%含有する安定剤混合物(クラリアントジャパン(株)製:サンドスタブP−EPQ(商品名))0.05重量部
HP:ヒンダードフェノール系酸化防止剤(Ciba Specialty Chemicals K.K.製:Irganox1076(商品名))0.05重量部
【0132】
【表1】
【0133】
【表2】
図1
図2