(58)【調査した分野】(Int.Cl.,DB名)
前記第3共用流路、前記第4共用流路、前記第2供給流路、及び前記回収流路のうち少なくとも一つの流路の前記熱媒体配管は、前記導電部を含むとともに、前記熱電併給装置で生成された電力が前記導電部を介して前記需要体に供給されるように構成された請求項5に記載の地域熱電併給システム。
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した特許文献1に記載される熱電併給システムでは、エンジン、動力分配機構、交流モーター発電機及びヒートポンプ用圧縮機からなる熱電併給ユニットが各住宅に設置されており、各住宅における熱電併給用の設備構成が複雑である。このため、各住宅において、熱電併給用の設備の設置スペースや騒音が問題となりやすい。
【0007】
上述の事情に鑑みて、本発明の少なくとも一実施形態は、対象地域における複数の需要体へ熱媒体及び電力を供給可能な地域熱電併給システムにおいて、需要側の設備構成の簡素化と地域全体での最適なエネルギーマネジメントを可能とするとともに、熱媒体及び電力を需要体に送るための設備構成の簡素化を可能とする地域熱電併給システムを提供することを目的とする。
【0008】
また、本発明の少なくとも一実施形態は、需要体へ熱媒体及び電力を供給可能な熱電併給システムにおいて、熱媒体及び電力を需要体に送るための設備構成の簡素化を可能とする熱電併給システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
(1)本発明の少なくとも一実施形態に係る熱電併給システムは、需要体へ熱媒体及び電力を供給可能な熱電併給システムであって、前記熱媒体を昇温又は降温するとともに電力を生成する熱電併給装置と、前記熱電併給装置と前記需要体とを接続する熱媒体流路と、を備え、前記熱媒体流路は、前記熱電併給装置で昇温又は降温された熱媒体が流れる熱媒体配管を含み、前記熱媒体配管の少なくとも一部は、導電性材料からなる導電部で構成されるとともに、前記熱電併給装置で生成された電力が前記導電部を介して前記需要体に供給されるように構成されている。
【0010】
上記(1)に記載の熱電併給システムによれば、熱電併給装置で昇温又は降温された熱媒体が流れる熱媒体配管が導電部を有しており、該熱媒体配管は、熱電併給装置で生成された電力が該導電部を介して需要体に供給されるように構成されている。このため、熱電併給装置で昇温又は降温された熱媒体と電力の両方が該熱媒体配管(熱電併給管)によって需要体に供給される。したがって、熱電併給装置で生成された電力を熱媒体配管を介さずに熱媒体配管とは別に設けた電線等によって需要体に供給する場合と比較して、熱媒体及び電力を需要体に送るための設備構成を簡素化することが可能となる。なお、熱媒体配管の導電部は、熱媒体配管の周方向における全体に存していてもよい(すなわち熱媒体配管自体が導電性材料で構成されていてもよい)し、熱媒体配管の周方向における一部に存していてもよい。熱媒体配管の周方向における全体に存している場合には、導電部の断面積が大きくなる分、導電部の電気抵抗が小さくなり、当該システムの送電損失を小さくすることができる。また、導電性材料には、銅や銅合金等を好適に使用することができる。
【0011】
(2)幾つかの実施形態では、上記(1)に記載の熱電併給システムにおいて、前記熱媒体流路は、前記熱媒体配管の前記導電部の周囲に巻かれた断熱材を含み、前記断熱材は、絶縁性材料で構成されている。
【0012】
上記(2)に記載の熱電併給システムによれば、熱媒体配管を流れる熱媒体を断熱材によって保温しつつ、該断熱材によって熱媒体配管の導電部を流れる熱電併給装置からの電力の漏電や感電等の発生も抑制することができるため、簡易な構成で熱媒体の保温と上記漏電や感電等の抑制とを図ることができる。
【0013】
(3)幾つかの実施形態では、上記(1)又は(2)に記載の熱電併給システムにおいて、前記需要体には、前記熱媒体配管を接続可能な熱媒体受入口が設けられ、前記導電部は、前記熱媒体受入口まで延設されている。
【0014】
上記(3)に記載の熱電併給システムによれば、需要体が熱媒体受入口から熱媒体と電力の両方を受け入れることができるため、熱と電気を併用する熱電併用機器(例えばエアコンの室外機や冷蔵庫等)へ熱媒体受入口から熱媒体と電力とを送るためのケーブルを一本化することができる。
【0015】
(4)幾つかの実施形態では、上記(1)又は(2)に記載の熱電併給システムにおいて、前記需要体には、前記熱媒体配管を接続可能な熱媒体受入口と、電気コンセントとが設けられ、前記導電部は、前記熱媒体配管における前記熱媒体受入口との接続部分よりも上流側の位置まで延設され、前記接続部分は、絶縁性材料で構成され、前記熱媒体配管の前記導電部と前記電気コンセントとを電気的に接続する送電ラインを更に備える。
【0016】
上記(4)に記載の熱電併給システムによれば、需要体は、熱媒体配管から供給された熱媒体を熱媒体受入口から受け入れて熱利用機器で利用することが可能になるとともに、熱媒体配管の導電部を介して供給された電力を電気コンセントから受け入れて電気利用機器で利用することが可能となる。
【0017】
(5)幾つかの実施形態では、上記(3)に記載の熱電併給システムにおいて、前記熱媒体配管とは反対側から前記熱媒体受入口に接続されるとともに、前記熱媒配管によって供給された電力の少なくとも一部を分離可能な分離アダプタを更に備える。
【0018】
上記(5)に記載の熱電併給システムによれば、分離アダプタによって分離した熱媒体配管からの電力を例えば通常の電気プラグを介して電気利用機器へ供給することができる。
【0019】
(6)幾つかの実施形態では、上記(4)に記載の地域熱電併給システムにおいて、前記熱媒体配管とは反対側から前記熱媒体受入口に接続される熱媒体受入口接続部と、前記送電ラインとは反対側から前記電気コンセントに接続される電気コンセント接続部とを含み、前記熱媒体受入口接続部から供給された熱媒体及び前記電気コンセント接続部から供給された電力を熱と電力を併用する熱電併用機器へ供給可能に構成された需要体側配管を更に備える
【0020】
上記(6)に記載の熱電併給システムによれば、上記(4)に記載の地域熱電併給システムにおいて、熱媒体受入口接続部と電気コンセント接続部とを含む需要体側配管を更に備えているため、熱電併用機器(例えばエアコンの室外機や冷蔵庫等)に熱媒体と電力を供給するための熱電併給管として需要体側配管を利用することにより、熱電併用機器へ熱媒体と電力を送るための需要体側の設備構成を簡素化することができる。
【0021】
(7)幾つかの実施形態では、上記(1)乃至(6)の何れか1項に記載の熱電併給システムにおいて、前記需要体の壁面に取り付けられたコンセントプレートであって、前記熱媒体配管を接続可能な熱媒体受入口と、電気コンセントとが並設されたコンセントプレートを更に備える。
【0022】
上記(7)に記載の熱電併給システムによれば、熱媒体受入口と電気コンセントとが一箇所に集約されるため、熱媒体受入口から熱利用機器又は熱電併用機器への熱媒体配管や電気コンセントから電気利用機器への送電ケーブル等の取り回し性を向上することができる。
【0023】
(8)本発明の少なくとも一実施形態に係る地域熱電併給システムは、幾つかの実施形態では、対象地域における複数の需要体へ熱媒体及び電力を供給可能な地域熱電併給システムであって、前記熱媒体を昇温するとともに電力を生成する熱電併給装置と、前記熱電併給装置と前記需要体とを接続する熱媒体流路と、を備え、前記熱電併給装置は、第1発電装置と、熱媒体を圧縮するよう構成された圧縮機と、前記圧縮機を駆動するよう構成された駆動装置と、を含み、前記熱媒体流路は、前記圧縮機の吐出側に接続され、前記圧縮機で圧縮された前記熱媒体を流すための第1共用流路と、前記第1共用流路から分岐した第2、第3共用流路と、前記第2共用流路に設けられ、前記第2共用流路を流れる前記熱媒体を冷却するよう構成された放熱装置と、前記放熱装置よりも下流側で前記第2共用流路に接続され、前記第2共用流路を流れる前記熱媒体を前記複数の需要体の各々が備える第1熱交換器に対してそれぞれ供給するための複数の第1供給流路と、前記第2共用流路又は前記複数の第1供給流路の各々に設けられ、前記放熱装置で冷却された前記熱媒体を減圧するよう構成された少なくとも一つの第1膨張装置と、前記第3共用流路に接続され、前記第3共用流路を流れる前記熱媒体を前記複数の需要体の各々が備える第2熱交換器に対してそれぞれ供給するための複数の第2供給流路と、前記複数の需要体から前記熱媒体をそれぞれ回収するための複数の回収流路と、前記複数の回収流路により回収した前記熱媒体を前記圧縮機に供給するための第4共用流路と、を備え、前記第1共用流路、前記第2共用流路、前記第3共用流路、前記第4共用流路、前記第1供給流路、前記第2供給流路、及び前記回収流路の各々は、前記熱電併給装置で昇温された熱媒体が流れる熱媒体配管を含み、前記第1共用流路、前記第2共用流路、前記第3共用流路、前記第4共用流路、前記第1供給流路、前記第2供給流路、及び前記回収流路のうち少なくとも一つの流路の前記熱媒体配管は、導電性材料からなる導電部によって少なくとも一部を構成され、前記少なくとも一つの流路の前記熱媒体配管は、前記熱電併給装置で生成された電力が前記導電部を介して前記需要体に供給されるように構成されている。
【0024】
上記(8)に記載の地域熱電併給システムによれば、圧縮機、放熱装置、第1膨張装置及び第1熱交換器(又は第2熱交換器)が設けられた熱媒体の循環流路によって、対象地域の複数の需要体を対象とした大規模なヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に対象地域の冷暖房及び給湯需要を満たすことができる。また、少なくとも圧縮機と放熱装置とを複数の需要体に対する共用設備として熱媒体の共用流路に設けることにより、これらの設備を各需要体側に設置する場合と比較して、各需要体側の設備構成を簡素化することができる。これにより、各需要体側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。
【0025】
また、かかる地域熱電併給システムにおいて、第1共用流路、第2共用流路、第3共用流路、第4共用流路、第1供給流路、第2供給流路、及び回収流路のうち少なくとも一つの流路の熱媒体配管は、熱電併給装置で生成された電力が該熱媒体配管の導電部を介して需要体に供給されるように構成されている。このため、熱電併給装置で昇温された熱媒体と電力の両方を該熱媒体配管によって需要体に供給することが可能となる。したがって、熱電併給装置で生成された電力を熱媒体配管を介さずに別に設けた電線等によって需要体に供給する場合と比較して、熱媒体及び電力を需要体に送るための設備構成を簡素化することが可能となる。なお、熱媒体配管の導電部は、熱媒体配管の周方向における全体に存していてもよい(すなわち熱媒体配管自体が導電性材料で構成されていてもよい)し、熱媒体配管の周方向における一部に存していてもよい。熱媒体配管の周方向における全体に存している場合には、導電部の断面積が大きくなる分、導電部の電気抵抗が小さくなり、当該システムの送電損失を小さくすることができる。また、導電性材料には、銅や銅合金等を好適に使用することができる。
【0026】
(9)幾つかの実施形態では、上記(8)に記載の地域熱電併給システムにおいて、前記第3共用流路、前記第4共用流路、前記第2供給流路、及び前記回収流路のうち少なくとも一つの流路の前記熱媒体配管は、前記導電部を含むとともに、前記熱電併給装置で生成された電力が前記導電部を介して前記需要体に供給されるように構成されている。
【0027】
熱電併給装置で生成された電力が導電部を介して需要体に供給される際には、電気抵抗による発熱が生じる。この点、上記(9)に記載の地域熱電併給システムにおける第3共用流路及び第2供給流路には、圧縮機で圧縮されて第2熱交換器(又は第1熱交換器)へ供給される途中のある程度温度及び圧力の高い熱媒体が流れており、これら二つの流路の少なくとも一方の熱媒体配管が上記導電部を有している場合には、上記電気抵抗によって生じた熱を熱媒体の温度低下抑制に利用することができる。したがって、地域熱電併給システム全体でエネルギーを効率的に利用することができる。
【0028】
また、上記(9)に記載の地域熱電併給システムにおける第4共用流路又は回収流路には、需要体で利用されて圧縮機に回収される途中の熱媒体が流れており、これら二つの流路の少なくとも一方の熱媒体配管が上記導電部を有している場合には、上記電気抵抗によって生じた熱を熱媒体の温度低下抑制に利用して圧縮機の効率を向上することができる。したがって、地域熱電併給システム全体でエネルギーを効率的に利用することができる。
【0029】
(10)幾つかの実施形態では、上記(8)又は(9)に記載の地域熱電併給システムにおいて、前記第1発電装置は燃料電池であり、前記駆動装置は、前記燃料電池によって生成される電力によって駆動する電気モーターである。この場合、燃料電池からの排熱を熱媒体の加熱に別途利用してもよい。
【0030】
(11)幾つかの実施形態では、上記(8)又は(9)に記載の地域熱電併給システムにおいて、前記第1発電装置は、再生可能エネルギーを利用して発電を行う再生可能エネルギー型発電装置であり、前記駆動装置は、前記再生エネルギー型発電装置によって生成される電力によって駆動する電気モーターである。この場合、再生可能エネルギー型発電装置は、風力、太陽光、太陽熱、波力、潮力等の再生可能エネルギーの少なくとも一つを利用して発電を行うよう構成されている。
【0031】
(12)幾つかの実施形態では、上記(8)又は(9)に記載の地域熱電併給システムにおいて、前記第1発電装置は、原動機と、前記原動機によって駆動される発電機とを含み、前記駆動装置は、前記発電機によって生成される電力によって駆動する電気モーターである。
【0032】
(13)幾つかの実施形態では、上記(8)乃至(12)の何れか1項に記載の地域熱電併給システムにおいて、前記熱電併給装置は、直流の電力を生成するよう構成され、前記熱媒体配管は、前記熱電併給装置で生成された直流の電力を前記導電部を介して前記需要体に供給するよう構成されている。
【0033】
多くの家電製品や電気自動車等では、直流電力による給電方式が採用されている。また、需要体に交流電力を供給する場合と比べ、需要体側(家庭側等)で交流電力から直流電力へ変換する必要がないため変換ロスが生じず、地域熱電併給システム全体でエネルギーを効率的に利用し得る。
【発明の効果】
【0034】
本発明の少なくとも一実施形態によれば、対象地域における複数の需要体へ熱媒体及び電力を供給可能な地域熱電併給システムにおいて、需要側の設備構成の簡素化と地域全体での最適なエネルギーマネジメントを可能とするとともに、熱媒体及び電力を需要体に送るための設備構成を簡素化可能とする地域熱電併給システムを提供することができる。
【0035】
また、本発明の少なくとも一実施形態によれば、需要体へ熱媒体及び電力を供給可能な熱電併給システムにおいて、熱媒体及び電力を需要体に送るための設備構成を簡素化可能とする熱電併給システムを提供することができる。
【発明を実施するための形態】
【0037】
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」「一致」等の相対的な配置関係を表す表現は、厳密にそのような相対的配置関係を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0038】
図1は、本発明の一実施形態に係る地域熱電併給システムの全体構成を示す模式図ある。
図2は、本発明の一実施形態に係る地域熱電併給システムの全体構成を示す模式図ある。
【0039】
図1及び
図2に示す地域熱電併給システム100(100a,100b)は、対象地域における複数の需要体2へ熱媒体及び電力を供給可能に構築されるシステムである。地域熱電併給システム100は、対象地域における複数の建物に対して熱供給を行うよう構成されている。対象地域の規模は、例えば直径300〜500m程度の地域であってもよいし、それより広くとも狭くともよい。需要体2は、各建物において熱及び電力を利用する主体であり、例えば住居、テナント、事務所、工場、病院の内の少なくとも一種からなる。
【0040】
住居とは、1世帯が生活するマンションの一部屋や戸建て家屋などを指す。テナントは、商業施設の一区画において一般顧客に対してサービスを提供する店舗などを指す。業種としては、例えば、服飾店、雑貨店、ドラッグストア、酒屋、等々の小売業や、レストラン、カフェ、寿司屋、居酒屋、等々の飲食業などを含む。事務所は、オフィスビルの一部分などにおいて、そこで働く勤務者が一定の目的のために事務を行う場所を指す。なお、
図1及び
図2においては、説明を平易なものとするために、建物A、建物Bに対してそれぞれ1つの需要体が対応するよう記載しているが、マンションやオフィスビル等の大規模な建物であれば、一つの建物に対して複数の需要体が存在することは言うまでもない。
【0041】
幾つかの実施形態に係る地域熱電併給システム100(100a,100b)は、例えば
図1及び
図2に示すように、熱媒体を昇温するとともに直流の電力を生成する熱電併給装置102と、熱電併給装置102と需要体2とを接続する熱媒体流路104と、を備えている。熱電併給装置102は、第1発電装置4、再生可能エネルギー型発電装置5、圧縮機6、駆動装置8及び蓄電池11を備えている。熱媒体流路104は、蓄圧断熱貯槽10、放熱装置12、第1膨張装置14、第1共用流路16、第2共用流路18、第3共用流路20、第4共用流路22、複数の第1供給流路24、複数の第2供給流路26、複数の第3供給流路28、複数の回収流路29等を備えている。第1共用流路16、第2共用流路18、第3共用流路20、第4共用流路22、第1供給流路24、第2供給流路26、第3供給流路28、及び回収流路29の各々は、熱電併給装置102で昇温された熱媒体が流れる熱媒体配管106(
図18参照)を含む。なお、
図1及び
図2では、熱、電力及び動力の伝達経路がそれぞれ実線、破線及び点線で記載されている。
【0042】
圧縮機6は、駆動装置8によって駆動されて熱媒体を圧縮するよう構成されている。熱媒体は、ヒートポンプサイクルに使用可能な熱媒体であれば特に限定されず、例えばCO
2、アンモニア、プロパン、ブタン、代替フロン等を用いることができる。なお、CO
2は、地域熱電併給システム100における熱媒体として用いる場合、低圧力下でも流動性が失われにくく長距離移送が可能であり、各需要体2に供給しても無害であるというメリットを有する。
【0043】
第1共用流路16は、圧縮機6の吐出側に接続され、圧縮機6で圧縮された高温高圧の熱媒体を流すよう構成されている。第1共用流路16には、高温高圧の熱媒体を貯めるための蓄圧断熱貯槽10が設けられている。第2共用流路18及び第3共用流路20は、蓄圧断熱貯槽10よりも下流側において第1共用流路16から分岐しており、熱媒体を流すよう構成されている。一実施形態では、蓄圧断熱貯槽10が満杯である場合には、バルブ49を開放して第1共用流路16から地中へ捨熱してもよい。或いは、地中へ捨熱するのではなく、余剰となった熱媒体のエネルギーを利用して、後述する第2発電装置57で発電してもよい。このように、蓄圧断熱貯槽10よりも下流側にバルブ49を設け、蓄圧断熱貯槽10の満杯時に該バルブ49を開放することで、蓄圧断熱貯槽10には常時、圧縮機6で圧縮されたばかりの高温高圧の熱媒体が貯槽される。つまり、蓄圧断熱貯槽10の断熱性(放熱性)の影響を軽減可能となる。なお、通常は、バルブ49は閉鎖しており、蓄圧断熱貯槽10から放出された高温高圧の熱媒体は分配器52により第2共用流路18及び第3共用流路20へ分配される。
【0044】
放熱装置12は、第2共用流路18に設けられており、第2共用流路18を流れる高温高圧の熱媒体を冷却してその一部を凝縮させる凝縮器として構成されている。
【0045】
第1膨張装置14は、放熱装置12で冷却された熱媒体を減圧して低温低圧状態(後述する第1熱交換器34によって蒸発させることが可能な状態)とするよう構成されている。
【0046】
複数の第1供給流路24は、放熱装置12よりも下流側で第2共用流路18に接続され、第2共用流路18を流れる低温低圧の熱媒体を複数の需要体2の各々が備える第1熱交換器34(空調装置)に対してそれぞれ供給可能に構成されている。また、第1供給流路24の各々には第1熱交換器34への熱媒体の供給量を調節可能なバルブ54が設けられている。
【0047】
複数の第2供給流路26は、第3共用流路20に接続され、第3共用流路20を流れる高温高圧の熱媒体を複数の需要体2の各々が備える第2熱交換器36(給湯装置)に対してそれぞれ供給可能に構成されている。第2熱交換器36は、給湯装置として使用され、例えば
図3に示すように、貯湯槽37に貯められた水を第2供給流路26から供給された熱媒体により加熱するよう構成されている。給湯装置の用途としては、例えば風呂、洗面台及び厨房設備等が含まれる。
【0048】
複数の第3供給流路28の各々は、複数の第2供給流路26の各々から分岐し、第2供給流路26の各々を流れる高温高圧の熱媒体を複数の需要体2の各々が備える第1熱交換器34に対してそれぞれ供給可能に構成されている。
【0049】
第2供給流路26と第3供給流路28との分岐位置には分配器56が設けられており、第2供給流路26を流れる熱媒体は、分配器56によって第1熱交換器34及び第2熱交換器36へ分配可能となっている。したがって、第1熱交換器34に対して供給する熱媒体をバルブ54及び分配器56によって切り替えることにより、第1熱交換器34を冷房機器として使用するか暖房機器として使用するかを切り替えることができる。例えば、夏期においては、第3供給流路28から第1熱交換器34への高温高圧の熱媒体の供給を分配器56によって止めつつ、バルブ54を開放して第1供給流路24から第1熱交換器34に低温低圧の熱媒体を供給することにより、第1熱交換器34を冷房機器として使用することができる。また、冬期においては、バルブ54を閉鎖して第1供給流路24から第1熱交換器34への低温低圧の熱媒体の供給を止めつつ、第3供給流路28から第1熱交換器34へ分配器56を介して高温高圧の熱媒体を供給することにより、第1熱交換器34を暖房機器として使用することができる。
【0050】
複数の回収流路29は、複数の需要体2から熱媒体をそれぞれ回収するよう構成されている。複数の回収流路29の各々は、少なくとも第1回収流路30及び第2回収流路32を含む。複数の第1回収流路30の各々は、複数の需要体2の各々が備える第1熱交換器34に接続し、第1熱交換器34から熱媒体を回収するよう構成されている。複数の第2回収流路32の各々は、複数の需要体2の各々が備える第2熱交換器36に接続し、第2熱交換器36から熱媒体を回収するよう構成されている。
【0051】
第4共用流路22は、複数の回収流路29に接続し、第1回収流路30又は第2回収流路32を介して複数の需要体2から回収した熱媒体を圧縮機6に供給するよう構成されている。
【0052】
第1発電装置4は、後述するように発電機又は燃料電池である。再生可能エネルギー型発電装置5は、風力、太陽光、太陽熱、波力、潮力等の再生可能エネルギーの少なくとも一つを利用して発電を行うよう構成されている。第1発電装置4及び再生可能エネルギー型発電装置5で得られた電力は、電力ライン15を介して複数の需要体2へ供給してもよいし、受・送電設備17を介して電力系統へ供給して売電を行ってもよい。
【0053】
蓄電池11は、第1発電装置4、再生可能エネルギー型発電装置5、電力系統のうち少なくとも一つからの電力により充電可能に構成されている。
【0054】
このように、圧縮機6、放熱装置12、第1膨張装置14及び第1熱交換器34(又は第2熱交換器36)が設けられた熱媒体の循環流路によって、対象地域の複数の需要体2を対象とした大規模なヒートポンプサイクルを構築することができるため、少ない投入エネルギーで効率的に対象地域の冷暖房及び給湯需要を満たすことができる。また、少なくとも圧縮機6と放熱装置12とを地域熱電併給システム100における共用設備として熱媒体の共用流路に設けることにより、これらの設備を各需要体2毎に設置する場合と比較して、各需要体2側の設備構成を簡素化することができる。これにより、各需要体2側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。
【0055】
幾つかの実施形態では、
図1及び
図2に示す放熱装置12は、地中に埋設され、第2共用流路18を流れる熱媒体を地中熱により冷却するよう構成されてもよい。地中の温度は年間を通して比較的安定しているため、特に夏期において、地中熱を利用することにより熱媒体を効率的に冷却することが可能である。
【0056】
幾つかの実施形態では、
図1及び
図2に示す第1膨張装置14は、例えば
図4Aに示すように、第2共用流路18における放熱装置12の下流側に設けられた第1膨張タービン14aと、第1膨張タービン14aに連結された発電機14bと、を備えていてもよい。これにより、熱媒体の減圧とともに発電機14bから電力を得ることが可能となり、地域熱電併給システム100全体の発電量を増加させることができる。また、第1膨張タービン14aが地域熱電併給システム100の共用設備として第2共用流路18に設けられているため、第1膨張タービン14aを需要体2毎に設置する場合と比較して、各需要体2側の設備構成を簡素化することができる。これにより、各需要体2側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。
【0057】
幾つかの実施形態では、
図1及び
図2に示す第1膨張装置14は、例えば
図4Bに示すように、第2共用流路18における放熱装置12の下流側に設けられた膨張弁14cであってもよい。これにより、第1膨張タービン弁14cを需要体2毎に設置する場合と比較して、各需要体2側の設備構成を簡素化することができる。これにより、各需要体2側における熱電併給用の設備の設置スペース及び騒音の問題を軽減又は解消することが可能となる。
【0058】
幾つかの実施形態では、
図1に示す地域熱電併給システム100aにおいて、第1膨張装置14の位置を変更してもよい。例えば、
図4Cに示すように、第1膨張装置14としての膨張弁14cを第1供給流路24における第1熱交換器34の上流側に設けてもよい。ただし、需要側の設備構成の簡素化の観点からは、第1膨張装置14の位置は、
図1及び
図2に示すように第2共用流路18における放熱装置12の下流側に設けた方が望ましい。
【0059】
幾つかの実施形態では、例えば
図1に示すように、地域熱電併給システム100aは、第4共用流路22に設けられた第2膨張タービン38と、第2膨張タービン38に連結された発電機40とを備えていてもよい。これにより、第1熱交換器34及び第2熱交換器36から回収された熱媒体に残存する圧力エネルギーを利用して電力を得ることが可能となる。したがって、地域熱電併給システム100a全体の発電量を増加させることができる。
【0060】
幾つかの実施形態では、例えば
図1に示すように、地域熱電併給システム100aは、第1回収流路30と第2回収流路32との合流部に設けられた逆流防止用のエジェクタ42を備えていてもよい。エジェクタ42は、例えば
図5に示すように、第2回収流路32に接続されるノズル44と、第1回収流路30に接続される吸込部46と、第3回収流路41に接続されるディフューザ48とを含む。エジェクタ42は、ノズル44から流入する高圧の熱媒体Jを駆動流体として吸込部46から低圧の熱媒体Kを吸い込むことにより、該熱媒体J及びKを混合可能に構成されている。したがって、第1熱交換器34を冷房機器として使用すると同時に第2熱交換器36を給湯装置として使用する場合(第1供給流路24から第1熱交換器34に低温低圧の熱媒体を供給するとともに第2供給流路26から第2熱交換器36に高温高圧の熱媒体を供給する場合)であっても、第2回収流路32から第1回収流路30への逆流を抑制することができる。
【0061】
幾つかの実施形態では、
図1及び
図2に示す地域熱電併給システム100(100a,100b)は、例えば
図6A及び
図6Bに示すように、第5共用流路50及び第2発電装置57を備えていてもよい。第5共用流路50は、第1共用流路16(
図1及び
図2参照)における蓄圧断熱貯槽10の下流側から分岐して設けられ、第1共用流路16を流れる熱媒体の一部を第4共用流路22に供給可能に構成される。第2発電装置57は、第5共用流路50を流れる熱媒体のエネルギーを利用して発電を行うよう構成される。
【0062】
一実施形態では、
図6Aに示すように、第2発電装置57は、蒸発器58、膨張タービン59、発電機61及び凝縮器63を備えるバイナリー発電装置であってもよい。この場合、蒸発器58は、水の標準沸点よりも低い標準沸点を有する熱媒体(例えばノルマルペンタン、イソペンタン、アンモニア又は代替フロン等)を第5共用流路50を流れる熱媒体との熱交換により蒸発させるよう構成される。また、膨張タービン59は、蒸発器58で蒸発した熱媒体により駆動し、該膨張タービン59に連結された発電機61を駆動する。凝縮器63は、膨張タービン59から排出された熱媒体を地中熱により冷却して凝縮させるよう構成される。
【0063】
一実施形態では、
図6Bに示すように、第2発電装置57は、第5共用流路50を流れる熱媒体を利用して駆動するよう構成されたスターリングエンジン65(または膨張タービン)と、それに連結された発電機61と、を備えていてもよい。
【0064】
図6A及び
図6Bに示すように、第5共用流路50及び第2発電装置57を設けることにより、地域熱電併給システム100(100a,100b)の発電量を増加させることができる。また、蓄圧断熱貯槽10に貯めた高温高圧の熱媒体を利用して発電を行うことができるため、停電等が発生をした場合であっても、一定期間電力を確保することができる。
【0065】
幾つかの実施形態では、例えば
図2に示すように、地域熱電併給システム100bは、第6共用流路55を備えていてもよい。第6共用流路55は、第2共用流路18における放熱装置12と第1膨張装置14との間に接続され、複数の需要体2の各々における少なくとも第2熱交換器36から第2回収流路32及び第3回収流路41を介して回収した熱媒体を第1膨張装置14に供給するよう構成されている。これにより、第2熱交換器36から回収した比較的温度及び圧力の高い熱媒体を再利用することができる。例えば、回収した熱媒体を第1膨張装置14で減圧してから第1供給流路24を介して第1熱交換器34に供給することもできるし、
図4Aを用いて上述したように第1膨張装置14が第1膨張タービン14aと第1膨張タービン14aに連結された発電機14bとを含む場合には、回収した熱媒体を利用して第1膨張タービン14aを回転させて、発電機14bから電力を得ることも可能である。
【0066】
幾つかの実施形態では、例えば
図2に示すように、地域熱電併給システム100bにおける第4共用流路22は、第1供給流路24を介して第1熱交換器34に供給された熱媒体を回収して圧縮機6に供給するための第1流路部22aと、第1膨張装置14の下流側で第2共用流路18に接続され、第1膨張装置14で減圧された熱媒体を圧縮機6に供給するための第2流路部22bと、を備えていてもよい。
【0067】
図2に示す地域熱電併給システム100bにおいて、第1熱交換器34を冷房機器として使用する場合(第1供給流路24を介して第1熱交換器34へ低温低圧の熱媒体を供給する場合)には、第2共用流路18に設けられた切換弁53によって矢印p方向へ熱媒体が流れるよう流路調節が行われる。この場合、第1熱交換器34に供給された熱媒体はすでに第1膨張装置14で減圧されているため、第1回収流路30から回収される熱媒体のエネルギーをそれ以上利用することは困難である。したがって、第1熱交換器34を冷房機器として使用する場合には、第1回収流路30から回収される熱媒体が、第6共用流路55へ流れずに第4回収流路47を介して第4共用流路22の第1流路部22aへ流れて圧縮機6へ供給されるように、切換弁51によって矢印q方向へ熱媒体が流れるよう流路調節が行われる。
【0068】
一方、第1熱交換器34を暖房機器として使用する場合(第3供給流路28を介して第1熱交換器34へ高温高圧の熱媒体を供給する場合)には、第1膨張装置14を通った熱媒体が第1供給流路24へ流れずに第4共用流路22の第2流路部22bへ流れるように(矢印r方向へ熱媒体が流れるように)、切換弁53による流路調節が行われる。この場合、第1回収流路30から回収される熱媒体は比較的温度も圧力も高いため、そのエネルギーを再利用することができる。例えば、
図2に示す地域熱電併給システム100bにおける第1膨張装置14を、
図4Aを用いて上述したように第1膨張タービン14aと第1膨張タービン14aに連結された発電機14bとを含むよう構成すれば、第1熱交換器34を暖房機器として使用した場合に第1回収流路30から回収される熱媒体の残存エネルギーを利用して電力を得ることができる。この場合、第1回収流路30から回収される熱媒体が、第1流路部22aへ流れずに第3回収流路41及び第6共用流路55を介して第1膨張装置14の第1膨張タービン14aに流れるように、切換弁51によって矢印s方向へ熱媒体が流れるよう流路調節が行われる。なお、
図2に示すように、第2流路部22bに、該第2流路部22bを流れる熱媒体を地中熱により昇温するよう構成された第3熱交換器39を設けてもよい。このように、第1流路部22aと第2流路部22bのうち、流れる熱媒体の温度が比較的低い第2流路部22bに第3熱交換器39を設けることにより、第2流路部22bの熱媒体が地中熱によって昇温され、地域熱電併給システム100bのCOPを効果的に上げることができる。
【0069】
幾つかの実施形態では、例えば
図28に示すように、地域熱電併給システム100bの第6共用流路55は、流路切替装置144と、流路切替装置144から延設され第2共用流路18における放熱装置12と膨張装置14との間に接続する第1戻し流路146と、流路切替装置144から延設され第2共用流路18における分配器52と放熱装置12との間に接続する第2戻し流路148とを備えていてもよい。
【0070】
かかる構成では、第1熱交換器34を冷房機器として使用する場合に、第6共用流路55を流れる熱媒体が第2戻し流路148を介して第2共用流路18における分配器52と放熱装置12との間に戻るように、流路切替装置144の流路切替が行われる。これにより、第6共用流路55から第2共用流路18へ流入した熱媒体が放熱装置12を通過するため、第1戻し流路146を通過させる場合よりも、第1熱交換器34へ供給する熱媒体の温度を低くしやすくなる。
【0071】
また、第1熱交換器34を暖房機器として使用する場合に、第6共用流路55を流れる熱媒体が第1戻し流路146を介して第2共用流路18における放熱装置12と膨張装置14との間に戻るように、流路切替装置144の流路切替が行われる。これにより、温度(及び圧力)が高い熱媒体を第1膨張装置14に供給できるため、回収できるエネルギー量を増大させることができる。
【0072】
このように、
図28に示す構成によれば、冷房効果やエネルギー回収の観点で優れたシステムを提供することができる。
【0073】
幾つかの実施形態では、
図1及び
図2に示す駆動装置8は、例えば
図7Aに示すように、原動機60と、原動機60によって得られる動力を圧縮機6及び第1発電装置4に分配する動力分配装置62とを含んでもよい。この場合、第1発電装置4は、後述するように発電機又は電気モーターとして作動する。原動機60としては、例えばマイクロガスタービンやディーゼルエンジン等の種々の原動機を利用することができる。
【0074】
幾つかの実施形態では、
図1及び
図2に示す第1発電装置4は、例えば
図7B〜
図7Dに示すように燃料電池であってもよい。この場合、駆動装置8は、
図7Bに示すように、燃料電池によって得られる電力によって駆動する電気モーターであってもよいし、
図7C又は
図7Dに示すように、燃料電池の排ガスのエネルギーを利用して駆動するよう構成され圧縮機6に連結されたタービンであってもよい。
図7Cに示す駆動装置8は、燃料電池の排ガス自体によって駆動するタービンであり、排ガスに含まれる未燃分を図示しない燃焼器で燃焼し駆動するガスタービンであってもよい。また、
図7Dに示す駆動装置8は、燃料電池の排ガスを利用して蒸気を生成する排熱回収ボイラ8aと該蒸気によって駆動する蒸気タービン8bとから構成される。なお、燃料電池としては、例えば固体酸化物形燃料電池(SOFC, Solid Oxide Fuel Cell)、溶融炭酸塩形燃料電池(MCFC, Molten Carbonate Fuel Cell)、りん酸形燃料電池(PAFC, Phosphoric Acid Fuel Cell)、固体高分子形燃料電池(PEFC, Polymer Electrolyte Fuel Cell)等の種々の燃料電池を利用することができる。
【0075】
幾つかの実施形態では、
図1及び
図2に示す第1発電装置4は、例えば
図26に示すように、再生可能エネルギーを利用して発電を行う再生可能エネルギー型発電装置であってもよい。この場合、該再生可能エネルギー型発電装置は、風力、太陽光、太陽熱、波力、潮力等の再生可能エネルギーの少なくとも一つを利用して発電を行うよう構成される。また、この場合の駆動装置8は、
図20に示すように、該再生エネルギー型発電装置によって生成される電力によって駆動する電気モーターであってもよい。
【0076】
幾つかの実施形態では、
図1及び
図2に示す第1発電装置4は、例えば
図27に示すように、原動機140と、該原動機によって駆動される発電機142とを含んでいてもよい。この場合、駆動装置8は、該発電機によって生成される電力によって駆動する電気モーターであってもよい。
【0077】
幾つかの実施形態では、
図1及び
図2に示す地域熱電併給システム100(100a,100b)において、
図8Aに示すように、上述した原動機60又は燃料電池の排熱を利用して第4共用流路22を流れる熱媒体を昇温するよう構成された第4熱交換器64を更に備えていてもよい。これにより、該システム100(100a,100b)のCOPを上げるとともに、地域熱電併給システム100全体におけるエネルギーの利用効率を高めることができる。
【0078】
幾つかの実施形態では、
図1及び
図2に示す地域熱電併給システム100(100a,100b)において、
図8Bに示すように、原動機60又は燃料電池の排熱の温度と第4共用流路22を流れる熱媒体の温度との温度差を利用して熱電発電を行うよう構成された熱電発電装置66を更に備えていてもよい。熱電発電装置66としては、例えばペルチェ素子等の熱電素子を用いることができる。これにより、地域熱電併給システム100全体における発電量を増加させ、エネルギーの利用効率を高めることができる。
【0079】
図9A及び
図9Bは、
図7Aに示した動力分配装置62の構成例としての無段変速機を示す模式図である。
図9Aは、第1発電装置4の回転数よりも圧縮機6の回転数が大きい状態を示しており、
図9Bは、第1発電装置4の回転数よりも圧縮機6の回転数が小さい状態を示している。
【0080】
図9A及び
図9Bに示すように、動力分配装置62は、プーリー67〜74、ベルト75,76及びクラッチ77を備えている。第1発電装置4を発電機として使用する場合にはクラッチ77が接続され、第1発電装置4を後述するように電気モーターとして使用する場合にはクラッチ77が切り離される。プーリー67〜70は軸方向位置が固定されている。プーリー71は軸方向における可動範囲Aを有し、プーリー72及び73からなるプーリー対は軸方向における可動範囲Bを有し、プーリー74は軸方向における可動範囲Cを有する。
図9A及び
図9Bにおいて、プーリー71〜74が各可動範囲を軸方向に移動することにより、ベルト75,76を支持する各プーリーのプーリー径が変化し、原動機60から第1発電装置4及び圧縮機6への動力の分配比が調節される。
【0081】
なお、
図9A及び
図9Bでは、プーリー67〜70とプーリー71〜74をそれぞれ直列に配置した構成を例示したが、
図10に示すように、それぞれ並列に配置してもよい。この場合も同様に、プーリー71〜74がそれぞれ可動範囲D〜Gにおいて軸方向に移動することにより、ベルト75,76を支持するプーリーのプーリー径が変化し、原動機60から第1発電装置4及び圧縮機6への動力の分配比が調節される。
【0082】
幾つかの実施形態では、
図1又は
図2に示す地域熱電併給システム100(100a,100b)は、例えば
図11に示すように、動力分配装置62から第1発電装置4及び圧縮機6への動力の分配比X,Yを決定するための情報を取得する情報取得部79と、動力分配装置62を制御する動力分配装置制御部78と、第1発電装置4を制御する第1発電装置制御部80と、原動機を制御する原動機制御部98とを備えていてもよい。情報取得部79、動力分配装置制御部78、第1発電装置制御部80及び原動機制御部98は、中央処理装置(CPU)、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、およびI/Oインターフェイスなどからなるマイクロコンピュータとして構成されている。
【0083】
一実施形態では、
図11に示すように、情報取得部79は、過去の実測データ(例えば時間別、日別、季節別等の熱と電力の少なくとも一方の使用量データ)と天気予報情報の少なくとも一方に基づいて予測した熱需要予測情報と電力需要予測情報の少なくとも一方を取得する需要予測情報取得部82を備えていてもよい。この場合、動力分配装置制御部78は、需要予測情報取得部82によって取得された熱需要予測情報と電力需要予測情報の少なくとも一方に基づいて、圧縮機6及び第1発電装置4への動力の分配比X,Yを調節するよう動力分配装置62を制御可能に構成される。また、原動機制御部98は、需要予測情報取得部82によって取得された熱需要予測情報と電力需要予測情報の少なくとも一方に基づいて、原動機60の出力を調整するよう原動機60を制御可能に構成される。なお、ここでの熱需要予測情報は、冷房需要、暖房需要及び給湯需要についての予測情報が含まれる。例えば、夏期は冷房需要が大きく、冬期は暖房需要が大きいため、夏期と冬期にはX=0.25、Y=0.75とし、春期と秋期にはX=0.75、Y=0.25に設定してもよい。これにより、動力の分配比X,Y及び原動機の出力を、過去の傾向や天気予報を考慮した最適な分配比及び出力に調節することができる。
【0084】
一実施形態では、
図11に示すように、情報取得部79は、再生可能エネルギー型発電装置5の出力予測情報を取得する出力予測情報取得部84を備えていてもよい。この場合、動力分配装置制御部78は、例えば
図12に示すように、出力予測情報取得部84によって取得された出力予測情報における出力予測が小さいほど、第1発電装置4への動力の分配比Xを大きくするよう動力分配装置62を制御可能に構成される。これにより、動力の分配比X,Yを、再生可能エネルギー型発電装置5の出力を考慮した最適な分配比に調節することができる。
【0085】
一実施形態では、
図11に示すように、情報取得部79は、電気料金情報を取得する電気料金情報取得部86と、原動機60で使用する燃料価格情報を取得する燃料価格情報取得部88とを備えていてもよい。この場合、
図11に示す第1発電装置制御部80は、燃料価格情報取得部88によって取得した燃料価格が電気料金情報取得部86によって取得した電気料金と比較して割高である場合に、蓄電池11又は電力系統からの電力によって第1発電装置4を電気モーターとして駆動するよう構成される。また、動力分配装置62は、第1発電装置4が電気モーターとして駆動された場合には、
図9を用いて説明したようにクラッチ77を切り離すことにより、電気モーターからの動力を圧縮機6に伝達する。これにより、地域熱電併給システム100の運転コストを低減することができる。
【0086】
一実施形態では、
図11に示すように、情報取得部79は、蓄電池11に蓄電されている電気の残量情報を取得する第1残量情報取得部90と、蓄圧断熱貯槽10に蓄熱されている熱の残量情報を取得する第2残量情報取得部92と、を備えていてもよい。この場合、動力分配装置制御部78は、蓄電池11の残量と蓄圧断熱貯槽10の残量の何れか一方が基準蓄電量又は基準蓄熱量に対して不足している場合に、蓄電池11と蓄圧断熱貯槽10のうち残量が不足している方へのエネルギー充填を優先するように圧縮機6及び第1発電装置4への動力の分配比X,Yを調節する。また、動力分配装置制御部78は、蓄電池11の残量と蓄圧断熱貯槽10の残量の両方が基準蓄電量と基準蓄熱量に対してそれぞれ不足している場合に、蓄電池11と蓄圧断熱貯槽10のうち残量の不足レベルが大きい方へのエネルギー充填を優先するように圧縮機6及び第1発電装置4への動力の分配比X,Yを調節する。これにより、蓄電池11と蓄圧断熱貯槽10の残量がそれぞれ一定レベル以上に維持されるため、非常時(例えば系統電力が停電し、原動機60が故障するような状況)においても、蓄電池11及び蓄圧断熱貯槽10に貯めた電気及び熱によって一定期間は安定した熱電併給を行うことができる。
【0087】
一実施形態では、
図1又は
図2に示す地域熱電併給システム100(100a,100b)において、停電時において原動機60が故障中である場合に、再生可能エネルギー型発電装置5によって蓄電池11を充電してもよい。再生可能エネルギー型発電装置5によって蓄電池11を充電しても、蓄電池11の電気の残量が基準蓄電量に満たない場合には、蓄圧断熱貯槽10から熱媒体を放出して、
図6に示した第2発電装置57に熱媒体を供給して発電を行い、得られた電力により蓄電池11を充電し、基準蓄電量に対する不足分を補ってもよい。これにより、速やかに効率的に蓄電池11を充電し、電気を確保することができる。
【0088】
一実施形態では、
図1に示す地域熱電併給システム100aの第4共用流路22は、
図13に示すように、複数の需要体2から回収した熱媒体を第2膨張タービン38を迂回して圧縮機6に供給するための迂回流路94と、複数の需要体2から回収した熱媒が迂回流路94を通るか第2膨張タービン38を通るかを切り替える切り替え装置96と、を備えていてもよい。この場合、切り替え装置96は、通常時には熱媒体に残存する圧力エネルギーを利用して発電を行うため、熱媒体が第2膨張タービン38を通るように、停電時において原動機60が故障中である場合には圧縮機6に圧力を保持したままの熱媒体を供給するため、熱媒体が迂回流路94を通るように上記切り替えを行う。また、停電時において原動機60が故障中である場合には、第1発電装置制御部80(
図11参照)は、再生可能エネルギー型発電装置5と蓄電池11の少なくとも一方からの電力によって第1発電装置4を電気モーターとして駆動する。動力分配装置62(
図11参照)は、第1発電装置4が電気モーターとして駆動された場合に、上述したように電気モーターからの動力を圧縮機6に伝達する。これにより、停電時において原動機60が故障中である場合であっても、圧縮機6を駆動して高温高圧の熱媒体を確保することができ、圧縮機6の駆動に要する動力を低減することができる。
【0089】
以上に説明した地域熱電併給システム100(100a,100b)における熱媒体の流れの典型例を
図14〜
図17を用いて説明する。
図14は、地域熱電併給システム100aにおいて第1熱交換器34を冷房機器として使用する場合の熱媒体の流れを示す図である。
図14に示す地域熱電併給システム100aにおいて、まず、圧縮機6で圧縮された高温高圧の熱媒体が第1共用流路16を通って蓄圧断熱貯槽10に供給される。蓄圧断熱貯槽10から放出された高温高圧の熱媒体は分配器52により第2共用流路18及び第3共用流路20へ分配される。
【0090】
第2共用流路18へ分配された熱媒体は、放熱装置12によって冷却されてその一部が凝縮する。放熱装置12によって冷却された熱媒体は、第1膨張装置14へ供給され減圧されて低温低圧の熱媒体となり、複数の第1供給流路24へ流入する。
【0091】
第1供給流路24へ流入した熱媒体は、各需要体2が有する第1熱交換器34へ供給されて冷房のために使用される。
【0092】
一方、第3共用流路20へ分配された高温高圧の熱媒体は、複数の第2供給流路26へ流入する。第2供給流路26に流入した熱媒体は、分配器56を介して第2熱交換器36へ供給されて給湯のために使用される。
【0093】
第1熱交換器34及び第2熱交換器36から第1回収流路30及び第2回収流路32を介して回収した熱媒体は、エジェクタ42によって合流した後、第3回収流路41を介して第4共用流路22に流入する。
【0094】
第4共用流路22に流入した熱媒体は、第4共用流路22に設けられた第2膨張タービン38を駆動し、これにより第2膨張タービン38に連結された発電機40から電力が得られる。
【0095】
第2膨張タービン38から排出された熱媒体は、第4共用流路22を通って圧縮機6に供給され、再び圧縮されて上述の流れを繰り返す。
【0096】
図15は、地域熱電併給システム100aにおいて第1熱交換器34を暖房機器として使用する場合の熱媒体の流れを示す図である。
図15に示す地域熱電併給システム100aにおいて、まず、圧縮機6で圧縮された高温高圧の熱媒体が第1共用流路16を通って蓄圧断熱貯槽10に供給される。蓄圧断熱貯槽10から放出された高温高圧の熱媒体は分配器52を介して第3共用流路20へのみ供給される(第2共用流路18へは分配されない)。
【0097】
第3共用流路20へ供給された高温高圧の熱媒体は、複数の第2供給流路26へ流入する。第2供給流路26に流入した熱媒体は分配器56を介して第1熱交換器34と第2熱交換器36とに分配される。すなわち、第2供給流路26を流れる熱媒体は、第3供給流路28を介して第1熱交換器34へ供給されて暖房のために使用されるか、第2熱交換器36へ供給されて給湯のために使用される。
【0098】
第1熱交換器34及び第2熱交換器36から第1回収流路30及び第2回収流路32を介して回収した熱媒体は、エジェクタ42によって合流した後、第3回収流路41を介して第4共用流路22に流入する。
【0099】
第4共用流路22に流入した熱媒体は、第4共用流路22に設けられた第2膨張タービン38を駆動し、これにより第2膨張タービン38に連結された発電機40から電力が得られる。
【0100】
第2膨張タービン38から排出された熱媒体は、第4共用流路22を通って圧縮機6に供給され、再び圧縮されて上述の流れを繰り返す。
【0101】
一実施形態では、上記地域熱電併給システム100aにおいて、例えば
図30及び
図31に示すように、バルブ54よりも上流側で第1供給流路24から分岐し、低温状態を維持する必要のある冷蔵庫等の常時冷却機器150(熱電併用機器)に接続され、年間を通じて低温の熱媒体と電力を供給する低温熱媒体供給流路152を設けても良い。かかる構成では、第1熱交換器34を冷房機器として使用する場合(
図30参照)においても、第1熱交換器34を暖房機器として使用する場合(
図31参照)においても、蓄圧断熱貯槽10から放出された高温高圧の熱媒体を分配器52を介して第2共用流路18に分配することで、常時冷却機器150へ低温の熱媒体を供給することができる。
【0102】
図16は、地域熱電併給システム100bにおいて第1熱交換器34を冷房機器として使用する場合の熱媒体の流れを示す図である。
図16に示す地域熱電併給システム100bにおいて、まず、圧縮機6で圧縮された高温高圧の熱媒体が第1共用流路16を通って蓄圧断熱貯槽10に供給される。蓄圧断熱貯槽10から放出された高温高圧の熱媒体は分配器52により第2共用流路18及び第3共用流路20へ分配される。
【0103】
第2共用流路18へ分配された熱媒体は、放熱装置12によって冷却されてその一部が凝縮する。放熱装置12によって冷却された熱媒体は、第1膨張装置14へ供給され減圧されて低温低圧の熱媒体となり、複数の第1供給流路24へ流入する。
【0104】
第1供給流路24へ流入した熱媒体は、各需要体2が有する第1熱交換器34へ供給されて冷房のために使用される。
【0105】
第1熱交換器34から第1回収流路30を介して回収した熱媒体は、第4回収流路47を介して第4共用流路22の第1流路部22aに流入する。第1流路部22aに流入した熱媒体は、そのまま圧縮機6へ供給され、再び圧縮されて上述の流れを繰り返す。
【0106】
一方、第3共用流路20へ分配された高温高圧の熱媒体は、複数の第2供給流路26へ流入する。第2供給流路26に流入した熱媒体は、分配器56を介して第2熱交換器36へ供給されて給湯のために使用される。
【0107】
第2熱交換器36から第2回収流路32を介して回収した熱媒体は、第3回収流路41を介して第6共用流路55に流入する。
【0108】
第6共用流路55に流入した熱媒体は、第2共用流路18における放熱装置12と第1膨張装置14との間で第2共用流路18を流れる熱媒体と合流し、第1膨張装置14で減圧されて上述したように冷房のために使用される。
【0109】
図17は、地域熱電併給システム100bにおいて第1熱交換器34を暖房機器として使用する場合の熱媒体の流れを示す図である。
図17に示す地域熱電併給システム100bにおいて、まず、圧縮機6で圧縮された高温高圧の熱媒体が第1共用流路16を通って蓄圧断熱貯槽10に供給される。蓄圧断熱貯槽10から放出された高温高圧の熱媒体は分配器52を介して第3共用流路20へのみ供給される(第2共用流路18へは分配されない)。
【0110】
第3共用流路20へ流入した高温高圧の熱媒体は、複数の第2供給流路26へ流入する。第2供給流路26に流入した熱媒体は分配器56を介して第1熱交換器34と第2熱交換器36とに分配される。すなわち、第2供給流路26を流れる熱媒体は、第3供給流路28を介して第1熱交換器34へ供給されて暖房のために使用されるか、第2熱交換器36へ供給されて給湯のために使用される。
【0111】
第1熱交換器34及び第2熱交換器36から第1回収流路30及び第2回収流路32を介して回収した熱媒体は、第3回収流路41を介して第6共用流路55に流入する。
【0112】
第6共用流路55に流入した熱媒体は、第2共用流路18における放熱装置12と第1膨張装置14との間で第2共用流路18へ流入し、第1膨張装置14で減圧された後、第4共用流路22の第2流路部22bへ流入する。第2流路部22bに流入した熱媒体は、第3熱交換器39で例えば地中熱を利用して昇温されてから圧縮機6へ供給され、再び圧縮されて上述の流れを繰り返す。
【0113】
一実施形態では、上記地域熱電併給システム100bにおいて、例えば
図32及び
図33に示すように、バルブ54よりも上流側で第1供給流路24から分岐し、低温状態を維持する必要のある冷蔵庫等の常時冷却機器150(熱電併用機器)に接続され、年間を通じて低温の熱媒体と電力を供給する低温熱媒体供給流路152を設けても良い。かかる構成では、第1熱交換器34を冷房機器として使用する場合(
図32参照)においても、第1熱交換器34を暖房機器として使用する場合(
図33参照)においても、蓄圧断熱貯槽10から放出された高温高圧の熱媒体を分配器52を介して第2共用流路18に分配することで、常時冷却機器150へ低温の熱媒体を供給することができる。なお、
図32及び
図33に示す形態では、切換弁53は、第2流路部22bにおける第2共用流路18との接続位置より下流側かつ第3熱交換器39より上流側の位置に設けられている。かかる構成では、第2共用流路18のうち第1膨張装置14より下流側の部分には、常時、低温低圧の熱媒体が供給される。また、切換弁53を開放すれば第2流路部22bにも熱媒体を供給することができる。
【0114】
なお、
図1及び
図2に示した地域熱電併給システム100では、第1発電装置4、圧縮機6、駆動装置8等の共用設備は1つずつ設けているが、これらの共用設備の数はこれに限らない。すなわち、対象地域の熱需要量や電力需要量に応じて適切な数を設ければよい。例えば第1発電装置4や第2発電装置57を多数設けて地域熱電併給システム100における発電設備の設備容量を増加させることで、系統電力への依存度の低い分散型のエネルギーシステムを構築することができる。
【0115】
幾つかの実施形態では、
図1、
図2及び
図19に示すように、地域熱電併給システム100(100a、100b)において、第1共用流路16、第2共用流路18、第3共用流路20、第4共用流路22、第1供給流路24、第2供給流路26及び回収流路29、のうち少なくとも一つの流路の熱媒体配管106(106A)は、導電性材料で構成された導電部108(図示する形態では導電性材料で構成された管体)を含む。また、該導電部108を含む上記熱媒体配管106(106A)は、熱電併給装置102で生成された電力(図示する形態では第1発電装置4又は再生可能エネルギー型発電装置5で生成された電力)が該導電部108を介して需要体2に供給されるように構成されている。
【0116】
かかる構成によれば、熱電併給装置102で昇温された熱媒体及び生成された電力の両方を該熱媒体配管106(106A)によって需要体2に供給することが可能となる。したがって、熱電併給装置102で生成された電力を熱媒体配管を介さずに別に設けた電線等によって需要体2に供給する場合と比較して、熱媒体及び電力を需要体に送るための設備構成を簡素化することが可能となる。
【0117】
幾つかの実施形態では、
図1、
図2及び
図19に示すように、第3共用流路20、第4共用流路22、第2供給流路26、及び回収流路29のうち少なくとも一つの流路の熱媒体配管106(106A)は、導電性材料で構成された導電部108(図示する形態では導電性材料で構成された管体)を含む。図示する例示的な形態では、第1共用流路16、第3共用流路20、第4共用流路22、第2供給流路26、及び回収流路29の熱媒体配管106(106A)は、導電性材料で構成された導電部108を含む。また、該導電部108を含む上記熱媒体配管106(106A)は、熱電併給装置102で生成された電力が該導電部108を介して需要体2に供給されるように構成されている。
【0118】
熱電併給装置102で生成された電力が導電部108を介して需要体2に供給される際には、電気抵抗による発熱が生じる。この点、地域熱電併給システム100(100a,100b)における第3共用流路20及び第2供給流路26には、圧縮機6で圧縮されて第2熱交換器36(又は第1熱交換器34)へ供給される途中のある程度温度及び圧力の高い熱媒体が流れており、これら二つの流路20,26の少なくとも一方の熱媒体配管106(106A)が上記導電部108を有している場合には、上記電気抵抗によって生じた熱を熱媒体の温度低下抑制に利用することができる。したがって、地域熱電併給システム100(100a,100b)全体でエネルギーを効率的に利用することができる。
【0119】
また、上記地域熱電併給システム100(100a,100b)における第4共用流路22又は回収流路29には、需要体2で利用されて圧縮機6に回収される途中の熱媒体が流れており、これら二つの流路22,29の少なくとも一方の熱媒体配管106(106A)が上記導電部108を有している場合には、上記電気抵抗によって生じた熱を熱媒体の温度低下抑制に利用して圧縮機6の効率を向上することができる。したがって、地域熱電併給システム100(100a,100b)全体でエネルギーを効率的に利用することができる。
【0120】
幾つかの実施形態では、
図1、
図2及び
図19に示すように、地域熱電併給システム100の熱媒体流路104は、熱媒体配管106(106A)の上記導電部108の周囲に巻かれた断熱材110を含み、断熱材110は絶縁性材料で構成されている。図示する例示的な形態では、第1共用流路16、第3共用流路20、第4共用流路22、第2供給流路26、及び回収流路29の各々は、熱媒体配管106(106A)の上記導電部108の周囲に巻かれた断熱材110を含み、断熱材110は絶縁性材料で構成されている。
【0121】
かかる構成によれば、熱媒体配管106(106A)を流れる熱媒体を断熱材110によって保温しつつ、該断熱材110によって熱媒体配管106(106A)の導電部108を流れる熱電併給装置102からの電力の漏電や感電等の発生も抑制することができるため、簡易な構成で熱媒体の保温と上記漏電や感電等の抑制とを図ることができる。
【0122】
幾つかの実施形態では、
図1、
図2、
図20〜23に示すように、需要体2の各々には、熱媒体配管106(106A)を接続可能な熱媒体受入口112が設けられ、導電部108は、熱媒体受入口112まで延設されていてもよい。図示する形態では、需要体2の各々には、例えば第2供給流路26の熱媒体配管106(106A)を接続可能な熱媒体受入口112が設けられ、第2供給流路26の熱媒体配管106(106A)の導電部108は、熱媒体受入口112まで延設されていてもよい。
【0123】
かかる構成によれば、需要体2が熱媒体受入口112から熱媒体と電力の両方を受け入れることができる。このため、例えば
図20及び
図21に示すように、導電性材料で構成された導電部117(図示する形態では導電性材料で構成された管体)を有する導電性配管116によって、熱媒体受入口112から受け入れた熱媒体及び電力を、熱と電気を併用する熱電併用機器114(例えばエアコンの室外機や冷蔵庫等)へ供給することが可能となる。すなわち、熱媒体受入口112から熱媒体と電力とを供給するためのケーブル類を一本化することが可能となる。なお、導電性の熱媒体配管116の周囲には、
図19に示した上述の熱媒体配管106(106A)と同様に、絶縁性の断熱材が巻かれていてもよい。
【0124】
一実施形態では、例えば
図21に示すように、需要体2には、熱媒体受入口112とは別に、熱電併給装置102から通常の電線119を介して供給された電力を電気利用機器120に供給するための電気コンセント122が設けられていてもよい。この場合、電気コンセント122に通常の電気プラグ124を差し込んで、熱電併給装置102からの電力を電気利用機器120へ供給することが可能となる。
【0125】
幾つかの実施形態では、
図22及び
図23に示すように、熱媒体配管106(106A)とは反対側から熱媒体受入口112に接続されるとともに、熱媒体配管106(106A)によって供給された電力の少なくとも一部を分離可能な分離アダプタ126を更に備えていてもよい。
【0126】
かかる構成によれば、分離アダプタ126によって分離した熱媒体配管106(106A)からの電力を例えば通常の電気プラグ124を介して電気利用機器120へ供給することができる。また、この場合、分離アダプタ126には、電気プラグ124とは別に、
図22に示すように熱利用機器128に熱媒体のみを供給するための熱媒体配管130が接続されてもよい。また、分離アダプタ126には、
図23に示すように、熱及び電力を併用する熱電併用機器114へ熱媒体及び電力を供給するための熱媒体配管116が接続されてもよい。
図23に示す形態では、導電性配管116は、導電性材料で構成された導電部117(図示する形態では導電性材料で構成された導電性の管体)を含むとともに、熱電併用機器114へ該導電部117を介して電力を供給するよう構成される。
【0127】
幾つかの実施形態では、
図1、
図2、
図24及び
図25に示すように、熱媒体配管106(106A)の導電部108は、該熱媒体配管106(106A)における熱媒体受入口112との接続部分109よりも上流側の位置Pまで延設され、接続部分109は、絶縁性材料で構成されていてもよい。図示する形態では、例えば第2供給流路26の熱媒体配管106(106A)の導電部108が、該熱媒体配管106(106A)における熱媒体受入口112との接続部分109よりも上流側の位置Pまで延設され、接続部分109は、絶縁性材料で構成されていてもよい。この場合、該熱媒体配管106(106A)の導電部108と電気コンセント122とを電気的に接続する送電ライン132が更に設けられていてもよい。これにより、
図24及び
図25に示すように、熱媒体配管106(106A)を流れる熱媒体を熱媒体受入口112に供給し、熱媒体配管106(106A)の導電部108を流れる電力を通常の電気コンセントに供給することができる。
【0128】
図24に示す形態では、熱媒体配管106(106A)から熱媒体受入口112を介して供給された熱媒体は、熱媒体受入口112に接続された熱媒体配管130を介して熱利用機器128に供給され、熱媒体配管106(106A)の導電部108から送電ライン132及び電気コンセント122を介して供給された電力は、電気コンセント122に接続された電気プラグ124を介して電気利用機器120に供給される。
【0129】
図25に示す形態では、需要体2には、熱媒体配管106(106A)とは反対側から熱媒体受入口112に接続される熱媒体受入口接続部134と、送電ライン132とは反対側から電気コンセント122に接続される電気コンセント接続部136とを含む需要体側配管138が設けられている。需要体側配管138は、熱媒体受入口接続部134から供給された熱媒体を、熱と電力を併用する熱電併用機器114へ供給するように構成されている。また、需要体側配管138は、導電性材料で構成された導電部139(図示する形態では導電性材料で構成された管体)を含み、電気コンセント接続部136から供給された電力の少なくとも一部を導電部139を介して熱電併用機器114へ供給可能に構成されている。
【0130】
幾つかの実施形態では、例えば
図20〜
図25に示すように、熱媒体受入口112は、需要体2の壁面に取り付けられたコンセントプレート118に設けられてもよい。また、コンセントプレート118には、
図20、
図22及び
図23に示すように、熱媒体受入口112のみが設けられていてもよいし、
図21、
図24及び
図25に示すように、熱媒体受入口112と電気コンセント122とが並設されていてもよい。
【0131】
図21、
図24、
図25に示す形態によれば、熱媒体受入口112と電気コンセント122とが一箇所に集約されるため、熱媒体受入口112から熱利用機器128又は熱電併用機器114への熱媒体配管や電気コンセント122から電気利用機器120への送電ケーブル等の取り回し性を向上することができる。
【0132】
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0133】
図1及び
図2に示した形態では、電力の生成を第1発電装置4によって行うとともに熱媒体の昇温を圧縮機6によって行うよう構成された熱電併給装置102を例示したが、熱電併給装置102の構成はこれに限らず、熱電併給のための一般的な構成を適用可能である。例えば、エンジン、タービン、又は燃料電池等の方式により電力を生成し、その際に生じる廃熱を利用して熱媒体を昇温するよう構成された熱電併給装置を利用することができる。また、
【0134】
また、
図1及び
図2に示した形態では、対象地域の複数の需要体2を対象とした地域熱電併給システム100を例示したが、一つの需要体を対象とした熱電併給システムにも適用可能である。例えば工場等に設置された自家発電用の熱電併給装置によって生成された電力及び昇温された熱媒体を当該工場内で使用する場合は、当該工場が需要体に相当する。
【0135】
なお、
図20〜
図25に示した形態では、コンセントプレート118に熱媒体受入口112のみ設ける形態を例示したが、
図29に示すように、熱電併用機器114(例えば
図20、
図21、
図23、
図25)又は熱利用機器128(例えば
図22及び
図24)で使用した熱媒体を回収するための熱媒体回収口150を熱媒体受入口112とともに一つのコンセントプレート118に並設してもよい。
【0136】
また、上述した各実施形態では、熱電併給装置102は、圧縮機6で圧縮した高温高圧の熱媒体を熱媒体配管106に直接供給し、熱媒体配管106から熱媒体を圧縮機6に直接回収するように構成されていた。しかしながら、本発明はかかる形態に限定されず、熱電併給装置は、例えば、需要体から熱媒体配管によって回収した低温低圧の熱媒体を、圧縮機で圧縮された他の高温高圧の熱媒体と熱交換器を介して熱交換させることにより昇温するように構成されてもよい。この場合、熱電併給装置は、需要体から熱媒体配管によって回収した低温低圧の熱媒体と、圧縮機で圧縮された他の高温高圧の熱媒体との熱交換を行うため熱交換器を含む。