【実施例】
【0054】
以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、特に、注記無い限り、強化繊維束(A)やその試料について、繊維束(繊維長)の長さの単位はmm、重量の単位はgである。なお、以下の実施例、比較例で用いた炭素繊維や熱可塑性樹脂の密度は以下のとおりである。
PAN系炭素繊維“テナックス”(登録商標)STS40−24K:1.75g/cm
3
PAN系炭素繊維“テナックス”(登録商標)UTS50−24K :1.79g/cm
3
PAN系炭素繊維“テナックス”(登録商標)HTS40−12K :1.76g/cm
3
ポリカーボネート:1.20g/cm
3
ポリプロピレン:0.91g/cm
3
ポリブチレンテレフタレート:1.31g/cm
3【0055】
[強化繊維マットまたはランダムマットにおける強化繊維束(A)の強化繊維全量に対する割合の求め方]
強化繊維マットまたはランダムマット(以下、ランダムマット等と略)を100mm×100mmに切り出し、強化繊維束をピンセットで全て取り出す。全ての強化繊維束について、個々の強化繊維束の長さ(L
i)と重量(W
i)を測定し、記録する。ピンセットにて取り出す事ができない程度に強化繊維束が小さいものについては、まとめて最後に重量を測定する(W
k)。このとき、1/100mgまで測定可能な天秤を用いる。ランダムマット等に使用している強化繊維の繊維径(D)より、臨界単糸数を計算し、臨界単糸数以上の強化繊維束(A)と、それ以外に分ける。なお、2種類以上の強化繊維が使用されている場合には、繊維の種類毎に分け、各々について測定及び評価を行う。
全ての分類について測定後、強化繊維束(A)のランダムマット等の繊維全体に対する割合(VR)は、強化繊維の繊維比重(ρ(g/cm
3))を用いて次式(4)により求められる。
VR=Σ(W
i/ρ)×100/((W
k+ΣW
i)/ρ) (4)
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0056】
[繊維強化複合材料成形体における強化繊維束(A)の強化繊維全量に対する割合の求め方]
繊維強化複合材料成形体中の強化繊維束(A)の割合は、繊維強化複合材料成形体を100mm×100mmに切り出し、500℃×1時間程度、炉内にて熱可塑性樹脂を除去した後、繊維束を取り出してランダムマット等における手順と同様に測定を行う。
【0057】
[強化繊維マットまたはランダムマットにおける平均繊維長Lの求め方]
強化繊維マットまたはランダムマットより、強化繊維を、ピンセットを用いて無作為に100本取り出し、個々の繊維長L
iを、ノギスを用いて、1mmまで測定し、記録する。取り出す際の大きさは繊維長に対して、十分大きい範囲について、取り出すことが好ましい。
得られた個々の繊維長L
iより、下記式より平均繊維長Lを求める。
L=ΣL
i/100
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0058】
[ランダムマット等中の強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の束数(n)の測定]
ランダムマット等から100mm×100mm程度の試料片を切り出し、該試料片の強化繊維全体の重量(W)を測定する。強化繊維と熱可塑性樹脂とが分離できない場合には、例えばマトリクス樹脂の分解温度以上で数十分〜数時間程度加熱し、熱可塑性樹脂を分解除去した後に測定する。
該試料片より、強化繊維束をピンセットで全て取り出し、ランダムマットに使用している強化繊維の繊維径(D)より、臨界単糸数を計算し、臨界単糸数以上の強化繊維束(A)の該試料片中の繊維長(L
i)と束の数(n
i)を測定し、記録する。
2種類以上の強化繊維が使用されている場合には、強化繊維の種類毎に分け、各々について測定を行う。強化繊維束の数(n
i)と繊維長(L
i(mm))および繊維重量(W(g))より、ランダムマットにおける強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)を次式より求める。
n=Σ(n
i×L
i/L)/W
(ここでLは強化繊維の平均繊維長(mm)である。)
試料片切り出し時に、平均繊維長より短い強化繊維束(A)が生じた場合、上記式では、それら短い強化繊維束(A)の数を、平均繊維長の強化繊維束(A)の数に換算した上で、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が算出される。
【0059】
[繊維強化複合材料成形体における、強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の束数(n’)の測定]
複合材料成形体を100mm×100mmに切り出し、マトリクス樹脂の分解温度以上で数十分〜数時間程度加熱し、熱可塑性樹脂を分解除去した後繊維重量を測定する。その後、ランダムマット等と同様に測定する。
【0060】
[ランダムマット等における強化繊維束の厚み測定]
以下の手順により、ランダムマット等における強化繊維束(A)の平均厚み(t)の測定を行った。
1)ランダムマット等を100mm×100mm程度に切り出し、強化繊維束をピンセットで無作為に20本程度取り出す。ランダムマット等に使用している強化繊維の平均繊維径(D)より臨界単糸数を計算し、取り出した繊維束より、臨界単糸数以上で構成される強化繊維束(A)を20本抽出する。上記の、強化繊維束(A)の強化繊維全量に対する割合を求める手順と同様の手順にて各強化繊維束(A)の重量(W
i)を測定する。
2)1/1000mmまで測定可能なマイクロメーターを用いて、臨界単糸数以上で構成される強化繊維束(A)の繊維束厚み(t
i)を測定する。
3)上記の測定をランダムマット等中で5回以上行い、強化繊維束(A)の厚み(t
i)、強化繊維束(A)の重量(W
i)、強化繊維束(A)の全体重量(W
A=ΣW
i)から以下の式よりその平均値を求める。
平均厚みt=Σ(t
i×W
i/W
A)
なお、2種類以上の強化繊維が使用されている場合には、強化繊維の種類毎に分け、各々について測定を行う。
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0061】
[ランダムマット等における強化繊維マットの厚み斑測定方法]
以下の手順でランダムマット等中の強化繊維マットの厚み変動係数CVを算出し、これより厚み斑を評価した。変動係数CV(%)が大きいほど、強化繊維マットの厚みのばらつきが大きいとする。
なお、ランダムマットから熱可塑性樹脂を分離できず、強化繊維マットの厚み斑を測定できない場合は、下記繊維強化複合材料成形体と同様に熱可塑性樹脂を加熱除去した後に測定を行う。
1)ランダムマット等を100mm×100mmに切り出し、熱可塑性樹脂を分離し、密封可能な袋に入れ、−0.09MPa以下まで減圧する。
2)袋の上から10mm間隔で格子状に印をつけ、マイクロメーターにて厚さを1/1000mmまで測定する。測定は、5行×5列の合計25点を測定する。
3)測定した厚みより、袋の厚みを引き、平均値と標準偏差を計算し、下記式(5)により強化繊維の厚みの変動係数CVを算出する。
変動係数CV(%)=標準偏差/平均値 × 100 (5)
【0062】
[繊維強化複合材料成形体における強化繊維マットの厚み斑測定方法]
繊維強化複合材料成形体の強化繊維マットの厚み斑を評価する場合、平板状の繊維強化複合材料成形体を100mm×100mmに切り出し、500℃×1時間程度、炉内にて熱可塑性樹脂を除去する。その後、同様に寸法及び重量を測定し、平滑な平板上に乗せる。その後、平板毎、密封可能な袋に入れ、測定した厚みより、袋と平板の厚みを引く以外はランダムマット等における手順と同様に、厚みを25点測定し、厚みの変動係数CVを求めた。
【0063】
[繊維強化複合材料成形体(成形板)の熱可塑性樹脂の含浸程度の評価]
繊維強化複合材料成形体(成形板)の含浸程度は、超音波探傷試験により評価する。超音波探傷映像化装置(日本クラウトクレーマー(株) SDS−WIN)にて探傷機周波数5MHz、走査ピッチ2.0mm×2.0mmで探傷試験を行うことで評価した。評価を行うに当って、反射波強度90%以上の部分の断面において顕微鏡観察を行い、欠陥や空隙が存在しないことを確認した。探傷試験において反射波強度が高い(本実施例では70%以上)部分の面積割合が多いほど、成形板の内部が緻密であり、成形板において熱可塑性樹脂の含浸程度が高いとする。一方反射波強度が低い(本実施例では50%以下)部分の面積割合が多いほど、成形板の内部に微細な空隙部があり、成形板において未含浸部分が多いとする。
【0064】
[引張試験]
ウォータージェットを用いて繊維強化複合材料成形体(成形板)から試験片を切出し、JIS K 7164を参考として、インストロン社製の万能試験機を用いて、引張強度および引張弾性率を測定した。試験片の形状は1B系B形試験片とした。チャック間距離は115mm、試験速度は10mm/分とした。なお、試験片については、成形体の任意の方向(0度方向)、およびこれと直交する方向(90度方向)についてそれぞれ切出し、両方向の引張強度および引張弾性率を測定した。また、引張弾性率については、大きい方の値を小さい方の値で割った比(Eδ)を算出した。
【0065】
[理論強度に対する物性発現率の算出]
上記手順にて得られた成形板の引張強度と、当該成形板に含まれる強化繊維(炭素繊維)の引張強度から以下の計算によって、理論強度に対する物性発現率(%)を求めた。
物性発現率(%)=成形体の引張強度/成形体の理論強度×100
ここで、成形体の理論強度は、成形体に含まれる強化繊維の引張強度(F
f)、破断時のマトリクス樹脂の応力(σ
m)、強化繊維体積含有率(Vf)、繊維の配向係数(η
θ)から、複合材料の強さの複合則によって以下の式で求めた。
成形体の理論強度(MPa)=(η
θ×F
f×Vf)+σ
m(1−Vf)
(ここで配向係数η
θは、面内ランダム配向におけるη
θ=3/8を用いた。)
【0066】
[実施例1]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を80m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネートパウダー(帝人化成社製 “パンライト”(登録商標)L−1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/m
2のランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0067】
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは38μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、1120本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
得られたランダムマットを300℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1150本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは5.1%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は460MPaであり、理論強度に対する物性発現率は76%であった。また、0度方向と90度方向の引張弾性率比は1.06であった。
【0068】
[実施例2]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、60mm間隔に形成された刃を有する超硬合金製ロータリーカッターを使用して繊維長が60mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネートパウダー(帝人化成社製“パンライト”(登録商標)L−1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1230g/m
2のランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0069】
得られたランダムマットの強化繊維の平均繊維長は60mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは45μmであった。さらにランダムマットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は300本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は95vol%であった。
得られたランダムマットを300℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ1.4mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、330本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。得られた成形板の強化繊維体積含有率は50Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは7.8%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は680MPaであり、理論強度に対する物性発現率は72%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0070】
[実施例3]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を200m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1320g/m
2の強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは35μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1500本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は72vol%であった。
【0071】
得られた強化繊維マットにポリプロピレンフィルム(プライムポリプロ社製 F−704NP 厚み25μm)を上下で90枚積層し、本発明のランダムマットとした後、220℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1520本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は25Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは6.1%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は280MPaであり、理論強度に対する物性発現率は74%であった。また、0度方向と90度方向の引張弾性率比は1.06であった。
【0072】
[実施例4]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を80m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/m
2の強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは37μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1100本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
【0073】
得られた強化繊維マットに、ポリブチレンテレフタレート(ウィンテックポリマー社製“ジュラナックス”(登録商標) 500FP)を成膜し厚み30μmとしたフィルムを上下で80枚積層し本発明のランダムマットとした後、260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1070本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは5.3%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は460MPaであり、理論強度に対する物性発現率は75%であった。また、0度方向と90度方向の引張弾性率比は1.03であった。
【0074】
[比較例1]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドをスリットすることなく、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を250m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1320g/m
2の強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは47μmであった。さらに強化繊維マットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は420本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は70vol%であった。
【0075】
得られた強化繊維マットにポリプロピレンフィルム(プライムポリプロ社製 F−704NP 厚み25μm)を上下で90枚積層した後、220℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、400本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は25Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは18.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は230MPaであり、理論強度に対する物性発現率は62%であった。また、0度方向と90度方向の引張弾性率比は1.10であった。
【0076】
[比較例2]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を使用した。強化繊維ストランドを、超硬合金製の分繊装置を用いて0.7mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を50m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/m
2の強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは116μmであった。さらに強化繊維マットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は580本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は86vol%であった。
【0077】
得られた強化繊維マットにポリブチレンテレフタレート(ウィンテックポリマー社製“ジュラナックス”(登録商標)500FP)を成形し、厚み30μmとしたフィルムを上下で80枚積層した後、260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、620本であった。得られた成形板について超音波探傷試験を行ったところ、成形板内部に反射波強度が70%以上の部分が58%観察され、未含浸部分が確認された。
得られた成形板の強化繊維体積含有率は39Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは13.6%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は360MPaであり、理論強度に対する物性発現率は60%であった。また、0度方向と90度方向の引張弾性率比は1.07であった。
【0078】
[実施例5]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24Kストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して20mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、10mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が10mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カット強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2640g/m
2の強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0079】
得られた強化繊維マットの強化繊維の平均繊維長は10mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは58μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1350本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
実施例4と同様の操作にて、ポリブチレンテレフタレートフィルムを上下で50枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1390本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は50Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは8.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は530MPaであり、理論強度に対する物性発現率は71%であった。また、0度方向と90度方向の引張弾性率比は1.07であった。
【0080】
[実施例6]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、0.7mm間隔にスリットし、更に、カット装置として、10mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が10mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/m
2の強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は10mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは37μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は2400本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は80vol%であった。
実施例4と同様の操作にて、ポリブチレンテレフタレートフィルムを上下で55枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、2440本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は45Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは4.3%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は630MPaであり、理論強度に対する物性発現率は75%であった。また、0度方向と90度方向の引張弾性率比は1.04であった。
【0081】
[実施例7]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)HTS40−12Kストランド(繊維径7μm 繊維幅10mm 引張強度4200MPa)を使用した。強化繊維ストランドを、超硬合金製の分繊装置を用いて1.2mm間隔にスリットし、更に、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を160m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/m
2の強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは56μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は580本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は75vol%であった。
実施例3と同様に、ポリプロピレンフィルムを上下で65枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、590本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は45Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは10.6%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は470MPaであり、理論強度に対する物性発現率は66%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0082】
[実施例8]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置には、超硬合金を用いて30mm間隔に刃を有するロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を250m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μm粉砕したポリアミド6樹脂(ユニチカ社製ポリアミド6:A1030)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2110g/m
2のランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは34μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、600本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は60vol%であった。
得られたランダムマットを260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、630本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは7.4%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は550MPaであり、理論強度に対する物性発現率は73%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0083】
[比較例3]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24Kストランド(繊維径7μm繊維幅10mm 引張強度4000MPa)を使用した。カット装置として、ナイフの角度が周方向に90°に配置され、刃幅1mmのナイフを周方向に15mmピッチで、かつ隣り合うナイフは周方向に互いに1mmオフセットさせるように配置されたロータリーカッターを用いて強化繊維ストランドを繊維長15mmになるようにカットした。
このロータリーカッターの直下にテーパ管を配置し、圧縮空気を300m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/m
2の強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは108μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は280本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は52vol%であった。
実施例3と同様の操作にて、ポリプロピレンフィルムを上下で65枚積層し、厚さ3.1mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、290本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が54%観察され、未含浸部分が確認された。
得られた成形板の強化繊維体積含有率は44Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは19.2%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は370MPaであり、理論強度に対する物性発現率は56%であった。また、0度方向と90度方向の引張弾性率比は1.12であった。
【0084】
[比較例4]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して20mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、2mm間隔にスリットし、更に、カット装置として、30mm間隔に配置された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を160m/sで送気して、カットされた強化繊維をテーパ管に搬送した。実施例8と同様に、テーパ管の側面よりポリアミド6樹脂を供給し、強化繊維目付2110g/m
2のランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは60μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、200本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は70vol%であった。
得られたランダムマットを実施例8と同様に成形し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、190本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは21.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は440MPaであり、理論強度に対する物性発現率は59%であった。また、0度方向と90度方向の引張弾性率比は1.14であった。