特許第6379035号(P6379035)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 帝人株式会社の特許一覧

特許6379035ランダムマットおよび繊維強化複合材料成形体
<>
  • 特許6379035-ランダムマットおよび繊維強化複合材料成形体 図000002
  • 特許6379035-ランダムマットおよび繊維強化複合材料成形体 図000003
  • 特許6379035-ランダムマットおよび繊維強化複合材料成形体 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6379035
(24)【登録日】2018年8月3日
(45)【発行日】2018年8月22日
(54)【発明の名称】ランダムマットおよび繊維強化複合材料成形体
(51)【国際特許分類】
   C08J 5/04 20060101AFI20180813BHJP
【FI】
   C08J5/04
【請求項の数】8
【全頁数】24
(21)【出願番号】特願2014-527017(P2014-527017)
(86)(22)【出願日】2013年7月25日
(86)【国際出願番号】JP2013070242
(87)【国際公開番号】WO2014017612
(87)【国際公開日】20140130
【審査請求日】2016年6月28日
(31)【優先権主張番号】特願2012-165871(P2012-165871)
(32)【優先日】2012年7月26日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】110002505
【氏名又は名称】特許業務法人航栄特許事務所
(74)【代理人】
【識別番号】100115107
【弁理士】
【氏名又は名称】高松 猛
(74)【代理人】
【識別番号】100151194
【弁理士】
【氏名又は名称】尾澤 俊之
(72)【発明者】
【氏名】薗田 直彬
(72)【発明者】
【氏名】小永井 祐平
(72)【発明者】
【氏名】萩原 克之
【審査官】 平井 裕彰
(56)【参考文献】
【文献】 特開2011−178891(JP,A)
【文献】 特開2009−062648(JP,A)
【文献】 特開2011−178890(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/04〜 5/10
5/24
B29B11/16
15/08〜15/14
B29C70/00〜70/88
(57)【特許請求の範囲】
【請求項1】
平均繊維長3〜100mmの強化繊維と熱可塑性樹脂とを含み、
前記強化繊維は、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)を含み、
前記強化繊維束(A)の平均厚みが100μm以下であり、
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が下記式(I)を満たすことを特徴とするランダムマット。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
0.65×10 /L < n (I)
(Lは強化繊維の平均繊維長(mm)である)
【請求項2】
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が下記式(I−2)を満たすことを特徴とする請求項1に記載のランダムマット。
1.2×10 /L < n < 18.0×10 /L (I−2)
(Lは強化繊維の平均繊維長(mm)である)
【請求項3】
強化繊維全量に対する強化繊維束(A)の含有率が20Vol%以上99Vol%以下である請求項1又は2に記載のランダムマット。
【請求項4】
強化繊維が炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種である請求項1〜3のいずれか1項に記載のランダムマット。
【請求項5】
ランダムマットにおける熱可塑性樹脂の存在量が、強化繊維100重量部に対し、10〜800重量部である請求項1〜4のいずれか1項に記載のランダムマット。
【請求項6】
強化繊維の目付が25〜10000g/mである請求項1〜5のいずれか1項に記載のランダムマット。
【請求項7】
請求項1〜6のいずれか1項に記載のランダムマットを成形して得られる強化繊維複合材料。
【請求項8】
平均繊維長3〜100mmの強化繊維と熱可塑性樹脂とを含み、
前記強化繊維は、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)を含み、
前記強化繊維束(A)の平均厚みが100μm以下であり、
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n’)が下記式(II)を満たし、
熱可塑性樹脂の存在量が、強化繊維100重量部に対し、10〜800重量部である繊維強化複合材料成形体。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
0.65×10 /L < n’ (II)
(Lは強化繊維の平均繊維長(mm)である)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維強化複合材料成形体の中間材料として用いられるランダムマットと、それより得られる強化繊維複合材料に関するものである。本発明は、面内方向において特定の方向に配向しておらず等方性であり、機械強度に優れ、なかでも薄肉であっても強化機能の発現性に優れた繊維強化複合材料成形体、特に炭素繊維強化複合材料成形体を提供しようとするものである。
【背景技術】
【0002】
炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合材料(以下、複合材料と略記することがある)のプリフォームとして、等方性であるランダムマットが、賦形性や工程の簡便さより用いられている。このランダムマットは、カットした強化繊維単体、あるいは熱硬化性の樹脂を成形型に同時に吹き付けるスプレーアップ方式(乾式)や、バインダーを含有させたスラリーに予めカットした強化繊維を添加し、抄紙する方法(湿式)等により得る事ができる。
【0003】
複合材料の機械物性を向上させる手段としては、強化繊維体積含有率(Vf)を高くする事が知られているが、カット繊維を用いたランダムマットの場合、3次元方向の繊維が存在する、繊維の交絡が多いなどの理由により、強化繊維体積含有率を高くする亊が困難であった。またランダムマットを用いた場合は連続繊維を用いた場合と比較して繊維が不連続であるため、強化繊維の強度を十分に発現させる事が困難であり、成形体にした後の強化繊維の強度発現率として、理論値に対し50%以下になってしまうという問題があった。非特許文献1には、熱硬化性樹脂をマトリクスとした炭素繊維のランダムマットから得られる複合材料が挙げられている。かかる複合材料の強度発現率は理論値に対し44%程度である。
【0004】
また、従来の熱硬化性樹脂をマトリクスとした複合材料では、予め、強化繊維基材に熱硬化性樹脂を含浸させたプリプレグと呼ばれる中間材料を、オートクレーブを用いて2時間以上加熱・加圧する事により得られていた。近年、樹脂を含浸させていない強化繊維基材を金型内にセットした後、熱硬化性樹脂を流し入れるRTM成形方法が提案され、成形時間は大幅に短縮されたが、RTM成形方法を用いた場合でも、1つの部品を成形するまでに10分以上必要となる。
そのため、従来の熱硬化性樹脂に代わり、熱可塑性樹脂をマトリクスに用いたコンポジットが注目されている。
【0005】
熱可塑性樹脂をマトリクスとした、熱可塑スタンピング成形(TP−SMC)(特許文献1)では、予め熱可塑性樹脂を含浸させたチョップドファイバーを融点以上に加熱し、これを金型内の一部に投入した後、直ちに型を締め、型内にて繊維と樹脂を流動させる事により製品形状を得、冷却・成型するという成型方法である。この手法では、予め樹脂を含浸させた繊維を用いる事により、約1分程度という短い時間で成形が可能である。これらはSMCやスタンパブルシートと呼ばれるような成形材料とする方法であって、かかる熱可塑スタンピング成形では、型内を繊維と樹脂を流動させるために、薄肉なものが作れない、繊維配向が乱れ、制御が困難である等の問題があった。
【0006】
さらに特許文献2では、強化繊維束の形状を平行四辺形にすることで、チョップド繊維束の受け持つ荷重を、繊維配向方向に最も離れた部位に向かって、強化繊維の端部から少しずつ周囲に開放することができ、応力集中が発生しにくく、機械強度の優れた繊維強化熱可塑性樹脂成形体が、特許文献3では、強化繊維束の収束繊維軸に垂直な断面の縦横比を縦1に対して横4以上とすることで強化繊維束とマトリクス樹脂の界面の濡れ性や接着性を高め、機械強度および成形流動性に優れるスタンパブルシートがそれぞれ提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】日本国特許第4161409号公報
【特許文献2】日本国特開2009−114611号公報
【特許文献3】日本国特開平6−320538号公報
【非特許文献】
【0008】
【非特許文献1】Composites PartA 38 (2007) P.755〜770
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、上記の従来技術では、等方性で、引張強度に優れ、かつ強度の発現率が高い繊維強化複合材料については検討されていない。
本発明の課題は、等方性で、機械強度に優れ、かつ強度の発現率が高い繊維強化複合材料成形体とその中間材料として用いられるランダムマットを提供することにある。なかでも、該ランダムマットから得られる繊維強化複合材料成形体であって、含有する強化繊維マットの厚み斑が小さく、薄肉であっても強化機能の発現性に優れる繊維強化複合材料成形体を提供しようとするものである。
【課題を解決するための手段】
【0010】
本発明者らは、熱可塑性樹脂と特定の開繊状態を満たす強化繊維とを含むランダムマットより、機械強度およびその等方性に優れる繊維強化複合材料成形体を提供できることを見出し、本発明を完成させた。より詳細には、細かい強化繊維束を多数本含有させることで、細かい強化繊維束の本数が少ない場合に比べ、強化繊維(束)をより緻密に含有し、目隙が小さく、均質なランダムマットとすることができ、該ランダムマットにより、欠陥による物性低下が無く、機械強度が均一で、引張強度に優れ、かつ強度の発現率が高い繊維強化複合材料成形体を提供できることを見出した。更に、本発明者らは、該ランダムマットや繊維強化複合材料成形体において、含有されている強化繊維の長さと、該強化繊維のうち特定の強化繊維束であるものの数(該強化繊維の単位重量当たりの数)とが特定の関係にあると、繊維強化複合材料成形体が上記の好ましい特性を有することも見出した。
即ち、本発明は平均繊維長3mm〜100mmの強化繊維と熱可塑性樹脂とを含み、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)の厚みが100μm以下であり、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が下記式(I)を満たすことを特徴とするランダムマットおよび、それを成形して得られる繊維強化複合材料成形体である。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
0.65×10 /L < n (I)
(Lは強化繊維の平均繊維長(mm)である)
【発明の効果】
【0011】
本発明により、高い機械強度を発現し、その等方性に優れ、かつ強度の発現率が高い繊維強化複合材料成形体を得ることができる。また本発明で得られる繊維強化複合材料成形体は、薄肉化も可能であるので、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。
【図面の簡単な説明】
【0012】
図1】ロータリーカッターを用いたカット工程の一例の模式図である。
図2】好ましいロータリー分繊カッターの一例について、正面と断面の概略を示す模式図である。
図3】好ましいロータリー分繊カッターの一例について、ナイフ角度を示す模式図である。
【発明を実施するための形態】
【0013】
以下に、本発明の実施の形態について順次説明する。本発明において、重量との語は質量を意味する。
[ランダムマット]
本発明のランダムマットは、平均繊維長3〜100mmの強化繊維と熱可塑性樹脂とを含み、式(1)で定義される臨界単糸数以上で構成される強化繊維束(A)の平均厚みが100μm以下であり、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が下記式(I)を満たす。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
0.65×10 /L < n (I)
(Lは強化繊維の平均繊維長(mm)である)
【0014】
本発明のランダムマットは、前記強化繊維と熱可塑性樹脂を含むものであるが、前記強化繊維から構成される強化繊維マットと熱可塑性樹脂とを含んで構成されることが好ましい。本発明でいう強化繊維マットは、マトリクスとしての熱可塑性樹脂を含まず不連続な強化繊維から構成される面状体(マット状物)である。本発明に関する強化繊維マットは、強化繊維がサイジング剤や、マットとする時に少量のバインダーを含んだものでもよく、また、面内において強化繊維がランダムな方向に配向しており、実質的に面内の縦横方向の物性がほぼ等しいマットであると好ましい。
強化繊維の種類としては特に制限はなく、単一であっても、2種類以上の混合であっても構わない。
本発明のランダムマットは、強化繊維の束(強化繊維束)を含むが、強化繊維束と強化繊維の単糸とが混合された強化繊維マットが熱可塑性樹脂を含んだ形態を持っていてもよい。本発明のランダムマットは、強化繊維束の厚みが薄く、かつ強化繊維の単位重量(g)当たりに細かい束が多く存在することでランダムマットを構成している強化繊維マットの厚み斑を小さくできるため、成形することで薄肉でも機械物性に優れた繊維強化複合材料を得ることが可能である。上記の強化繊維束や、強化繊維の単糸は、後述のとおり、強化繊維ストランドを開繊やカットすることにより当該形態となったものであると好ましい。ここで、強化繊維ストランドとは、強化繊維フィラメント(単糸)が、例えば単糸数1000本程度以上にて集合している長い強化繊維の束である。
【0015】
ランダムマットの面内において、強化繊維は特定の方向に配向しておらず、無作為な方向に分散して配置されている。本発明のランダムマットは面内等方性の材料である。ランダムマットを加工して成形体を得た場合に、ランダムマット中の強化繊維の等方性は、成形体においても維持されている。ランダムマットより成形体を得て、互いに直交する二方向の引張弾性率の比を求めることで、ランダムマットおよびそれからの成形体の等方性を定量的に評価できる。ランダムマットから得られた成形体における2方向の弾性率の値のうち大きいものを小さいもので割った比が2を超えないときに等方性であるとする。比が1.3を超えないときは等方性に優れているとする。
【0016】
本発明のランダムマットは、上記のとおり、平均繊維長3〜100mmの強化繊維と熱可塑性樹脂とを含むが、該強化繊維がマット状物、つまり強化繊維マットとなり、熱可塑性樹脂を含んでいるものであると好ましい。本発明のランダムマットにおいて、強化繊維マットが熱可塑性樹脂を含む形態としては、強化繊維マットに、粉状、繊維状、または塊状などの熱可塑性樹脂が含まれるものであってもよく、強化繊維マットを熱可塑性樹脂がマトリクスとして保持しているものでもよく、また、強化繊維マットにシート状やフィルム状などの熱可塑性樹脂が搭載または積層されたものであっても良い。ランダムマット中の熱可塑性樹脂は溶融状態であっても良い。なお、本発明のランダムマットを構成する強化繊維マットについて、臨界単糸数以上で構成される強化繊維束(A)の平均厚みや、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)などを求めれば、それらの値を該ランダムマットのものと見なすことができることは言うまでもない。
ランダムマットは、プリフォームとしてそのまま最終形態の繊維強化材料成形体(以下、単に成形体と称することがある)を得るのに用いられてもよく、加熱などにより熱可塑性樹脂を含浸させプリプレグとされてから最終形態の成形体を得るのに用いられてもよい。本発明のランダムマットは、熱可塑性樹脂の含浸された、上記プリプレグも包含する。
ここでいう最終形態の成形体は、ランダムマットやその成形板を加圧・加熱して得られたものに対して、さらなる加熱や加圧により(さらなる成形により)、マトリクスである熱可塑性樹脂を溶融させて、他の形状や厚みにしない形態の成形体のことをいう。
従って、ランダムマット等を加圧・加熱して得られたものを、切断して他の形状の形態にしたものや、研磨して薄くしたり、樹脂等を塗布して厚くしたりしたものは、加熱・加圧をしていないため、最終形態の成形体である。なお、切断や加工の手段として熱を利用する場合は、ここでの加熱に該当しない。
また、溶融状態の熱可塑性樹脂が供給されたランダムマットを成形する際に、供給された熱可塑性樹脂が溶融状態のままで成形する場合は、例えば、加圧だけの成形で成形体が得られる。
【0017】
[強化繊維]
ランダムマットに含まれる強化繊維は不連続であり、ある程度長い強化繊維を含んで強化機能が発現できることを特徴とする。本発明において用いられる強化繊維の繊維長は、得られたランダムマットにおける強化繊維の繊維長を測定して求めた平均繊維長で表現される。平均繊維長の測定方法としては無作為に抽出した100本の繊維の繊維長を、ノギス等を用いて1mm単位まで測定し、その平均を求める方法が挙げられる。
【0018】
本発明のランダムマットにおける強化繊維の平均繊維長は3mm以上100mm以下であり、好ましくは平均繊維長5mm以上100mm以下であり、より好ましくは5mm以上80mm以下であり、より一層好ましくは8mm以上60mm以下であり、さらに好ましくは10mm以上30mm以下である。繊維長の分布としては、単一であっても構わないし、2種類以上の混合であっても構わない。
後述する好ましい強化繊維のカット方法において、強化繊維を固定長にカットしてランダムマットを製造した場合、その固定長を平均繊維長とみなすことができる。
【0019】
本発明のランダムマットにおいて、強化繊維束(A)の平均厚みは100μm以下である。平均厚みが100μmを超える場合、ランダムマットに含まれる強化繊維マットの厚み斑が大きくなり、かつ繊維束内部への樹脂の含浸が困難となるために、機械物性に優れた繊維強化複合材料を得ることが難しい。
本発明における強化繊維束(A)の平均厚みとしては、ランダムマットから複数の強化繊維束(A)試料を採取し、各強化繊維束(A)の厚み(t)、各強化繊維束(A)の重量(W)、強化繊維束(A)の全体重量(W=ΣW)から以下の式よりその平均値を求めたものが好ましい。
平均厚みt=Σ(t×W/W
強化繊維束(A)の平均厚みの範囲としては20〜75μmが好ましく、さらに好ましくは20〜60μmであり、特に好ましくは30〜50μmである。
【0020】
ランダムマット中の強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)は、下記式(I)を満たす。
0.65×10 /L < n (I)
(Lは強化繊維の平均繊維長(mm)である。)
具体的には強化繊維の平均繊維長が30mmの場合、強化繊維1グラムあたりの強化繊維束(A)の数(n)は216本より大きくなる。
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が下記式(I−2)を満たすことが好ましい。
1.2×10 /L < n < 18.0×10 /L (I−2)
(Lは強化繊維の平均繊維長(mm)である)
強化繊維束(A)の数(n)が式(I−2)を満たす場合は、具体的には強化繊維の平均繊維長が30mmの場合、強化繊維1グラムあたりの強化繊維束(A)の数(n)は6000本未満であり、かつ、400本より大きくなる。
より好ましくはランダムマット中の強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)は下記式(I−3)を満たす。
1.5×10 /L < n < 12.0×10 /L (I−3)
(Lは強化繊維の平均繊維長(mm)である)
【0021】
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)は、例えば100×100mm程度のランダムマット試料片を切り出し、これに含まれる強化繊維束(A)の数(ni)を求め、強化繊維全体の重量(W(g))、および該試料片中の強化繊維束の繊維長(Li(mm))より下記式より算出することができる。
n=Σ(n×L/L)/W
(ここでLは強化繊維の平均繊維長(mm)である。)
【0022】
なお、ランダムマットから上記試料片を切り出すときに、幾つかの強化繊維束(A)も切断されることにより生じる、ランダムマット中での本来の長さ(平均繊維長)より短い強化繊維束(A)が該試料片中には存在する。上記式では、短い強化繊維束(A)の数を、その長さと元の平均繊維長に対する長さとの比を用いて、平均繊維長の長さのものの数に換算したうえで、強化繊維束(A)の数(n)が算出されている。例えば、強化繊維束(A)の平均繊維長(L)が20mmのランダムマットから切り出された試料片において、繊維長5mmの強化繊維束(A)が100本、繊維長10mmの強化繊維束(A)が50本、繊維長15mmの強化繊維束(A)が30本、そして繊維長20mmの強化繊維束(A)が20本観察され、強化繊維全体の重量がW(g)だった場合、強化繊維束(A)の数(n)を算出する式は
n={(100×5/20)+(50×10/20)+(30×15/20)+(20×20/20)}/W
となる。
【0023】
強化繊維は、炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。ランダムマットを構成する強化繊維は、軽量でありながら強度に優れた複合材料が提供できる点で炭素繊維が好ましい。上記炭素繊維としては、一般的にポリアクリロニトリル系炭素繊維(以下、PAN系炭素繊維と略称することがある)、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができ、特にPAN系炭素繊維が好ましく、これらの炭素繊維は1種類単独で用いられてもよく、複数の種類の混合物として用いられても良い。本発明のランダムマットに用いられる強化繊維としては、炭素繊維単独であっても、炭素繊維に加え、耐衝撃性を付与する等のためにガラス繊維やアラミド繊維などを含むものでも構わない。炭素繊維の場合、平均繊維径は好ましくは1〜50μmであり、より好ましくは3〜12μmであり、より一層好ましくは5〜9μm、極めて好ましくは5〜7μmである。
【0024】
ランダムマットは中間材料として有用であり、所望の成形に合わせて各種目付けが選択でき、ランダムマットにおける強化繊維の目付けはとくに限定はないが、好ましくは25〜10000g/m、より好ましくは25〜4000g/mが、より一層好ましくは600g/m〜3000g/mである。炭素繊維はサイジング剤が付着されたものを用いることが好ましく、サイジング剤は炭素繊維100重量部に対し、0超〜10重量部であることが好ましい。
【0025】
[開繊程度]
本発明のランダムマットは、下記式(1)
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
で定義する臨界単糸数以上で構成される強化繊維束(A)について、マットの繊維全量に対する割合が20Vol%以上であることが好ましく、30Vol%以上であることがより好ましく、更に好ましくは40Vol%以上であり、特に好ましくは50Vol%以上である。マット中には、強化繊維束(A)以外の強化繊維として、単糸の状態または臨界単糸数未満で構成される繊維束が存在してもよい。本発明のランダムマットは、特定の単糸数以上で構成される強化繊維束(A)の厚みを低減させ、かつ強化繊維単位重量(g)当たりの強化繊維束(A)の束数を特定の範囲とすることでランダムマットを構成する強化繊維マットの厚み斑を小さくできるため、成形することで薄肉でも機械物性に優れた繊維強化複合材料を得ることが可能である。
【0026】
繊維全量に対する強化繊維束(A)の割合が20Vol%以上であれば、本発明のランダムマットを成形した際に、強化繊維体積含有率の高い繊維強化複合材料を得ることができ好ましい。一方、強化繊維束(A)の割合の上限は99Vol%であることが好ましい。繊維全量に対する強化繊維束(A)の割合が99Vol%以下であれば、繊維の目隙が大きくならず、機械強度に優れる複合材料を得ることができる。強化繊維束(A)の割合はより好ましくは50Vol%以上99Vol%未満である。繊維全量に対する強化繊維束(A)の割合の上限は、95Vol%以下がより好ましく、90Vol%以下が更に好ましい。
【0027】
強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)、強化繊維束(A)の平均厚み、強化繊維束(A)の割合を上記範囲とする好ましい具体的な方法としては、後述する好ましい製法において、カット工程に供する繊維束の大きさ、例えば束の幅や幅当たりの繊維数を調整することでコントロールする方法が挙げられる。具体的には拡幅するなどして繊維束の幅を広げ、薄肉にしてカット工程に供すること、カット工程の前にスリット工程を設ける方法が挙げられる。また繊維束をカットと同時に、スリットしても良い。好ましい方法についてはカット工程の項に記載する。使用する強化繊維に拡幅した繊維を用いる方法が挙げられ、好ましい条件についてはカット工程の項に記載する。また、適切なサイジング剤、適切なサイジング量が付与された強化繊維束を用いることで、上記工程における強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)の調整をより精密に行うこともできる。
【0028】
[マトリクス樹脂]
本発明のランダムマットに含まれるマトリクス樹脂は熱可塑性樹脂である。熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。
【0029】
これらの熱可塑性樹脂は、単独で用いることも、2種以上を併用することもでき、複数種を混合して使用してもよく、共重合体として使用してもよい。
熱可塑性樹脂の存在量としては、強化繊維100重量部に対し、10〜800重量部であることが好ましい。より好ましくは、強化繊維100重量部に対し、熱可塑性樹脂が30〜800重量部であり、より一層好ましくは50〜600重量部であり、特に好ましくは、熱可塑性樹脂50〜300重量部である。
【0030】
なお、強化繊維と熱可塑性樹脂との量の関係については、下記式で定義される強化繊維体積含有率(以下Vfと略記することがある)でも定義することができる。
強化繊維体積含有率(Vol%)=100×[強化繊維の体積/(強化繊維の体積+熱可塑性樹脂の体積)]
この強化繊維体積含有率(Vf)と、上記の強化繊維100重量部に対する重量部で表した熱可塑性樹脂の存在量とは、強化繊維の密度と熱可塑性樹脂の密度を用いて換算される。
【0031】
また、本発明のランダムマット中には、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
【0032】
[繊維強化複合材料成形体]
本発明のランダムマットは、含まれる強化繊維が平均繊維長3mm以上と長く、特に単糸と繊維束が混合された形態を持つ場合には、賦型性が高いという特徴も併せ持っている。そのため本発明のランダムマットを、繊維強化複合材料成形体を得るための中間材料として好ましく用いることができる。
【0033】
すなわち本発明のランダムマットを成形して、繊維強化複合材料成形体を得ることができ、本発明は繊維強化複合材料成形体を包含するものである。
本発明の繊維強化複合材料成形体は、平均繊維長3〜100mmの強化繊維と熱可塑性樹脂とを含み、前記強化繊維は、下記式(1)で定義される臨界単糸数以上で構成される、すなわち、該臨界単糸数以上の本数の単糸から構成される、強化繊維束(A)の平均厚みが100μm以下であり、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n’)が下記式(II)を満たし、熱可塑性樹脂の存在量が、強化繊維100重量部に対し、10〜800重量部であることが好ましい。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
0.65×10 /L < n’ (II)
(Lは強化繊維の平均繊維長(mm)である)
【0034】
本発明の繊維強化複合材料成形体について、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n’)が下記式(II−2)を満たすことが好ましく、下記式(II−3)を満たすことがより好ましい。
1.2×10 /L < n’ < 18.0×10 /L (II−2)
1.5×10 /L < n’ < 12.0×10 /L (II−3)
(Lは強化繊維の平均繊維長(mm)である)
【0035】
繊維強化複合材料成形体中の強化繊維の開繊程度は、ランダムマットにおける状態がほぼ維持される。繊維強化複合材料成形体中の強化繊維について、強化繊維束(A)の割合、ならびに強化繊維単位重量(g)当たりの強化繊維束(A)の数(n’)を上記の範囲とするには、ランダムマットにおける強化繊維束(A)の割合、ならびに強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)を制御することで、好ましく調整できる。
【0036】
繊維強化複合材料成形体の厚みは、ランダムマットにおける繊維目付および熱可塑性樹脂量に依存し、繊維強化複合材料成形体中の厚みを適正な範囲とするには、繊維目付および熱可塑性樹脂量を制御することで、好ましく調整できる。
【0037】
繊維強化複合材料成形体に含まれる強化繊維の種類としてはとくに限定はなく、ランダムマットの強化繊維の項に述べたものが好ましく挙げられる。
繊維強化複合材料成形体に含まれる熱可塑性樹脂の種類としてはとくに限定はなく、ランダムマットのマトリクス樹脂の項に述べたものが好ましく挙げられる。
【0038】
繊維強化複合材料成形体における熱可塑性樹脂の存在量は、強化繊維100重量部に対し、10〜800重量部であると好ましく、30〜800重量部であるとより好ましく、50〜600重量部であるとより一層好ましく、50〜300重量部であると特に好ましい。
【0039】
本発明における繊維強化複合材料成形体の形状は特に限定されない。当該形状としては、例えば、シート状、板状でもよく、曲面部を有していてもよく、断面がT字型、L字型、コの字型、ハット型といった立ち面部などを有するものでもよく、これらを含む三次元形状のものであってもよい。
本発明の繊維強化複合材料成形体は、種々の肉厚、例えば0.2〜100mmの肉厚のものとすることができるが、より薄肉の成形体でも物性や外観が極めて良好なものとすることが可能であり、具体的には成形体としての肉厚が0.2mm〜2.0mm(極めて厳密に定める必要があるならば25℃での肉厚)とすることができる。
【0040】
繊維強化複合材料成形体における強化繊維の目付はとくに限定はなく、適宜選択できるが、薄肉の成形体を得ようとする観点から25〜10000g/mが好ましく、25〜4000g/mがより好ましく、600g/m〜3000g/mであるとより一層好ましい。
【0041】
本発明は、少なくとも1種の本発明の繊維強化複合材料成形体をコア材やスキン層に用いた積層体も包含する。本発明の積層体は、更に、連続強化繊維が一方向に揃えて配置された、少なくとも1種の一方向繊維強化複合材料をコア材やスキン層として含んでいても良い。本発明の積層体は、更に、本発明の繊維強化複合材料成形体や一方向繊維強化複合材料以外の繊維強化複合材料成形体の少なくとも1種を、コア材やスキン層として含んでいても良い。
【0042】
[ランダムマットの製造方法]
本発明のランダムマットは、強化繊維マットにシート状やフィルム状の熱可塑性樹脂を積層させて得ることができ、また、以下の工程1〜3により、好ましく製造することもできる。
1.強化繊維をカットする工程
2.カットされた強化繊維を管内に導入し、空気により搬送する散布工程
3.散布された強化繊維を定着させ、ランダムマットを得る工程
【0043】
[カット工程]
強化繊維をカットする工程について述べる。カットされる強化繊維としては、長繊維の単糸が束ねられた形状の、いわゆるストランドが入手や扱いがし易く好ましい。強化繊維のカット方法は、好ましくはロータリーカッター等のナイフを用いて強化繊維をカットする工程である。ロータリーカッターを用いたカット工程の一例を図1に示す。ロータリーカッターとしては、繊維束を1/2〜1/20程度に分繊してカットする、分繊カッターを用いる事がより好ましい。ロータリー分繊カッターの好ましい例について、正面と断面の概略図を図2に、およびナイフ角度の説明図を図3に示す。ロータリー分繊カッターは本体に沿って複数の刃が等間隔かつ螺旋状に配置されているものである。
【0044】
従来のカッターのように、繊維束をそのままカットし、散布する手法では、繊維の目付斑、および繊維の厚み斑が大きく、薄く、物性に優れる中間材料を得る事が難しい。繊維束をより細い束に分けながらカットする事により、均質性が向上し、本発明のランダムマット及び繊維強化複合材料成形体を好適に得ることができる。強化繊維を連続的にカットするためのナイフ角度は特に限定されるものではなく、一般的な、繊維に対し、90度の刃を用いても、角度を持たせたものでも構わない。
【0045】
本発明のランダムマットは上述のように繊維束の厚みが薄く、かつ、強化繊維単位重量(g)当たり細かい束が多く存在することを特徴とするので、予め拡幅した強化繊維を用いるか、強化繊維を拡幅することで繊維束厚みの薄いストランドを用いてカット工程に供給することが好ましい。本発明ではこのように繊維束の幅を広げ、薄くすることを拡幅という。
【0046】
繊維の拡幅の方法についてはとくに限定はなく、拡張スプレッダー、例えば凸型のピンなどを繊維に押し当てる方法や、繊維の進行方向に対し、交差方向に気流を通過させて繊維を風下方向へ弓なりに撓ませる方法、振動を与える方法などが挙げられる。
【0047】
拡幅し、さらにはフィラメント数のより少ない繊維束群に分繊することが好ましい。繊維分繊の方法としては、とくに限定はなく、例えばスリッターでストランドを細い束にする方法などが挙げられる。また、強化繊維の収束剤を選択し、分繊することで強化繊維束中の平均繊維数が目的の数量のものを得易くすることも出来る。
【0048】
このように繊維拡幅に次いで繊維分繊を行うことで、強化繊維束を薄く、小型化し、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)を多くすることができる。そのためランダムマットに含まれる強化繊維の均質性を向上させ、繊維の厚み斑が小さく機械物性に優れたランダムマットが得られる。
【0049】
[散布工程]
次いでカットされた強化繊維をカッター下流の管内に導入し、空気により搬送、散布する工程を行う。ここで、圧縮空気を強化繊維束に直接吹き付けることにより、繊維束をさらに細かい繊維束と単糸に開繊する事もできる。開繊の度合いについては、圧縮空気の圧力等により適宜コントロールする事が出来る。搬送した強化繊維は散布装置下部に設けた通気性シート上に散布することが好ましい。また下記の定着工程のためにも、吸引機構を持つ可動式の通気性シート上に散布することが好ましい。
また散布工程において、繊維状又はパウダー状の熱可塑性樹脂を同時に、シート上に散布することで、強化繊維と熱可塑性樹脂とを含むランダムマットを好適に得ることができる。
【0050】
[ランダムマットを形成する工程]
次いで散布された強化繊維を定着させ、ランダムマットを得る。具体的には、散布された強化繊維を通気性シート下部よりエアを吸引して、強化繊維を定着させてランダムマットを得る方法が好ましい。強化繊維と同時に繊維状または、パウダー状の熱可塑性樹脂を散布する場合であっても、強化繊維に伴って定着される。
【0051】
[繊維強化複合材料成形体の製造]
さらにランダムマットを成形して、繊維強化複合材料成形体を得ることができる。繊維強化複合材料成形体を得る方法としては、強化繊維を散布し、ランダムマットを得た後、フィルム状や、溶融させた状態の熱可塑性樹脂とあわせ、プレス等により加熱・加圧して得る方法が挙げられる。また、繊維状および/または粒子状の熱可塑性樹脂を強化繊維と同時に散布して、熱可塑性樹脂と強化繊維とを含むランダムマットを作製し、同様にプレス等により加熱・加圧して得ることも可能である。繊維強化複合材料成形体を得る方法に特に限定はないが、例えば真空成形や液圧成形、ホットプレス、コールドプレス等により成形することが好適である。なかでも本発明の繊維強化複合材料成形体は、熱可塑性樹脂を融点あるいはガラス転移温度以上まで加熱した後、樹脂の融点あるいはガラス転移温度以下の温度に保った型で挟み込んで形状を得る、コールドプレス成形において好適に得られる。
【0052】
ランダムマットを成形する場合、予めマトリクスである熱可塑性樹脂が結晶性の場合は融点以上、または熱可塑性樹脂が非晶性の場合はガラス転移点以上に加熱しておくことが好ましい。加圧媒体は、マトリクスである熱可塑性樹脂の融点またはガラス転移点以上に調整されていても、融点またはガラス転移点以下に調整されていてもよい。また成形する際に、適宜熱可塑性樹脂を加えることで目的に応じて厚みの異なる成形体を得ることが出来る。加える熱可塑性樹脂は特に指定は無く、具体例としてはマトリクス樹脂の項で述べたものと同じものが挙げられる。さらに樹脂の形態も、溶融樹脂や繊維状、パウダー状やフィルム状などを用いることができる。
【0053】
更に、ランダムマットを直接成形するのではなく、加熱、更には合わせて加圧も行うなどして板状などの中間材料としたあと、上記のような方法で成形し、繊維強化複合材料成形体としても良い。
なお、上記の製造方法などによりランダムマットから繊維強化複合材料成形体を得た場合、ランダムマットにおける強化繊維全量に対する強化繊維束(A)の割合、強化繊維束(A)の平均繊維数(N)や平均厚み、強化繊維マットの厚み斑などは、繊維強化複合材料成形体中の強化繊維においても維持される。組成や強化繊維体積含有率(Vf)についても、成形において強化繊維や熱可塑性樹脂の追加などが行われない限り、ランダムマットと繊維強化複合材料成形体いずれか一方の値を他方の値と見なすことができる。
【実施例】
【0054】
以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、特に、注記無い限り、強化繊維束(A)やその試料について、繊維束(繊維長)の長さの単位はmm、重量の単位はgである。なお、以下の実施例、比較例で用いた炭素繊維や熱可塑性樹脂の密度は以下のとおりである。
PAN系炭素繊維“テナックス”(登録商標)STS40−24K:1.75g/cm
PAN系炭素繊維“テナックス”(登録商標)UTS50−24K :1.79g/cm
PAN系炭素繊維“テナックス”(登録商標)HTS40−12K :1.76g/cm
ポリカーボネート:1.20g/cm
ポリプロピレン:0.91g/cm
ポリブチレンテレフタレート:1.31g/cm
【0055】
[強化繊維マットまたはランダムマットにおける強化繊維束(A)の強化繊維全量に対する割合の求め方]
強化繊維マットまたはランダムマット(以下、ランダムマット等と略)を100mm×100mmに切り出し、強化繊維束をピンセットで全て取り出す。全ての強化繊維束について、個々の強化繊維束の長さ(L)と重量(W)を測定し、記録する。ピンセットにて取り出す事ができない程度に強化繊維束が小さいものについては、まとめて最後に重量を測定する(W)。このとき、1/100mgまで測定可能な天秤を用いる。ランダムマット等に使用している強化繊維の繊維径(D)より、臨界単糸数を計算し、臨界単糸数以上の強化繊維束(A)と、それ以外に分ける。なお、2種類以上の強化繊維が使用されている場合には、繊維の種類毎に分け、各々について測定及び評価を行う。
全ての分類について測定後、強化繊維束(A)のランダムマット等の繊維全体に対する割合(VR)は、強化繊維の繊維比重(ρ(g/cm))を用いて次式(4)により求められる。
VR=Σ(W/ρ)×100/((W+ΣW)/ρ) (4)
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0056】
[繊維強化複合材料成形体における強化繊維束(A)の強化繊維全量に対する割合の求め方]
繊維強化複合材料成形体中の強化繊維束(A)の割合は、繊維強化複合材料成形体を100mm×100mmに切り出し、500℃×1時間程度、炉内にて熱可塑性樹脂を除去した後、繊維束を取り出してランダムマット等における手順と同様に測定を行う。
【0057】
[強化繊維マットまたはランダムマットにおける平均繊維長Lの求め方]
強化繊維マットまたはランダムマットより、強化繊維を、ピンセットを用いて無作為に100本取り出し、個々の繊維長Lを、ノギスを用いて、1mmまで測定し、記録する。取り出す際の大きさは繊維長に対して、十分大きい範囲について、取り出すことが好ましい。
得られた個々の繊維長Lより、下記式より平均繊維長Lを求める。
L=ΣL/100
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0058】
[ランダムマット等中の強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の束数(n)の測定]
ランダムマット等から100mm×100mm程度の試料片を切り出し、該試料片の強化繊維全体の重量(W)を測定する。強化繊維と熱可塑性樹脂とが分離できない場合には、例えばマトリクス樹脂の分解温度以上で数十分〜数時間程度加熱し、熱可塑性樹脂を分解除去した後に測定する。
該試料片より、強化繊維束をピンセットで全て取り出し、ランダムマットに使用している強化繊維の繊維径(D)より、臨界単糸数を計算し、臨界単糸数以上の強化繊維束(A)の該試料片中の繊維長(L)と束の数(n)を測定し、記録する。
2種類以上の強化繊維が使用されている場合には、強化繊維の種類毎に分け、各々について測定を行う。強化繊維束の数(n)と繊維長(L(mm))および繊維重量(W(g))より、ランダムマットにおける強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)を次式より求める。
n=Σ(n×L/L)/W
(ここでLは強化繊維の平均繊維長(mm)である。)
試料片切り出し時に、平均繊維長より短い強化繊維束(A)が生じた場合、上記式では、それら短い強化繊維束(A)の数を、平均繊維長の強化繊維束(A)の数に換算した上で、強化繊維単位重量(g)当たりの強化繊維束(A)の数(n)が算出される。
【0059】
[繊維強化複合材料成形体における、強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の束数(n’)の測定]
複合材料成形体を100mm×100mmに切り出し、マトリクス樹脂の分解温度以上で数十分〜数時間程度加熱し、熱可塑性樹脂を分解除去した後繊維重量を測定する。その後、ランダムマット等と同様に測定する。
【0060】
[ランダムマット等における強化繊維束の厚み測定]
以下の手順により、ランダムマット等における強化繊維束(A)の平均厚み(t)の測定を行った。
1)ランダムマット等を100mm×100mm程度に切り出し、強化繊維束をピンセットで無作為に20本程度取り出す。ランダムマット等に使用している強化繊維の平均繊維径(D)より臨界単糸数を計算し、取り出した繊維束より、臨界単糸数以上で構成される強化繊維束(A)を20本抽出する。上記の、強化繊維束(A)の強化繊維全量に対する割合を求める手順と同様の手順にて各強化繊維束(A)の重量(W)を測定する。
2)1/1000mmまで測定可能なマイクロメーターを用いて、臨界単糸数以上で構成される強化繊維束(A)の繊維束厚み(t)を測定する。
3)上記の測定をランダムマット等中で5回以上行い、強化繊維束(A)の厚み(t)、強化繊維束(A)の重量(W)、強化繊維束(A)の全体重量(W=ΣW)から以下の式よりその平均値を求める。
平均厚みt=Σ(t×W/W
なお、2種類以上の強化繊維が使用されている場合には、強化繊維の種類毎に分け、各々について測定を行う。
なお、強化繊維と熱可塑性樹脂とを分離できず上記測定に支障がある場合は、例えば500℃で1時間程度加熱する等して、熱可塑性樹脂を除去した後に上記測定を行う。
【0061】
[ランダムマット等における強化繊維マットの厚み斑測定方法]
以下の手順でランダムマット等中の強化繊維マットの厚み変動係数CVを算出し、これより厚み斑を評価した。変動係数CV(%)が大きいほど、強化繊維マットの厚みのばらつきが大きいとする。
なお、ランダムマットから熱可塑性樹脂を分離できず、強化繊維マットの厚み斑を測定できない場合は、下記繊維強化複合材料成形体と同様に熱可塑性樹脂を加熱除去した後に測定を行う。
1)ランダムマット等を100mm×100mmに切り出し、熱可塑性樹脂を分離し、密封可能な袋に入れ、−0.09MPa以下まで減圧する。
2)袋の上から10mm間隔で格子状に印をつけ、マイクロメーターにて厚さを1/1000mmまで測定する。測定は、5行×5列の合計25点を測定する。
3)測定した厚みより、袋の厚みを引き、平均値と標準偏差を計算し、下記式(5)により強化繊維の厚みの変動係数CVを算出する。
変動係数CV(%)=標準偏差/平均値 × 100 (5)
【0062】
[繊維強化複合材料成形体における強化繊維マットの厚み斑測定方法]
繊維強化複合材料成形体の強化繊維マットの厚み斑を評価する場合、平板状の繊維強化複合材料成形体を100mm×100mmに切り出し、500℃×1時間程度、炉内にて熱可塑性樹脂を除去する。その後、同様に寸法及び重量を測定し、平滑な平板上に乗せる。その後、平板毎、密封可能な袋に入れ、測定した厚みより、袋と平板の厚みを引く以外はランダムマット等における手順と同様に、厚みを25点測定し、厚みの変動係数CVを求めた。
【0063】
[繊維強化複合材料成形体(成形板)の熱可塑性樹脂の含浸程度の評価]
繊維強化複合材料成形体(成形板)の含浸程度は、超音波探傷試験により評価する。超音波探傷映像化装置(日本クラウトクレーマー(株) SDS−WIN)にて探傷機周波数5MHz、走査ピッチ2.0mm×2.0mmで探傷試験を行うことで評価した。評価を行うに当って、反射波強度90%以上の部分の断面において顕微鏡観察を行い、欠陥や空隙が存在しないことを確認した。探傷試験において反射波強度が高い(本実施例では70%以上)部分の面積割合が多いほど、成形板の内部が緻密であり、成形板において熱可塑性樹脂の含浸程度が高いとする。一方反射波強度が低い(本実施例では50%以下)部分の面積割合が多いほど、成形板の内部に微細な空隙部があり、成形板において未含浸部分が多いとする。
【0064】
[引張試験]
ウォータージェットを用いて繊維強化複合材料成形体(成形板)から試験片を切出し、JIS K 7164を参考として、インストロン社製の万能試験機を用いて、引張強度および引張弾性率を測定した。試験片の形状は1B系B形試験片とした。チャック間距離は115mm、試験速度は10mm/分とした。なお、試験片については、成形体の任意の方向(0度方向)、およびこれと直交する方向(90度方向)についてそれぞれ切出し、両方向の引張強度および引張弾性率を測定した。また、引張弾性率については、大きい方の値を小さい方の値で割った比(Eδ)を算出した。
【0065】
[理論強度に対する物性発現率の算出]
上記手順にて得られた成形板の引張強度と、当該成形板に含まれる強化繊維(炭素繊維)の引張強度から以下の計算によって、理論強度に対する物性発現率(%)を求めた。
物性発現率(%)=成形体の引張強度/成形体の理論強度×100
ここで、成形体の理論強度は、成形体に含まれる強化繊維の引張強度(F)、破断時のマトリクス樹脂の応力(σ)、強化繊維体積含有率(Vf)、繊維の配向係数(ηθ)から、複合材料の強さの複合則によって以下の式で求めた。
成形体の理論強度(MPa)=(ηθ×F×Vf)+σ(1−Vf)
(ここで配向係数ηθは、面内ランダム配向におけるηθ=3/8を用いた。)
【0066】
[実施例1]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を80m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネートパウダー(帝人化成社製 “パンライト”(登録商標)L−1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0067】
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは38μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、1120本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
得られたランダムマットを300℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1150本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは5.1%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は460MPaであり、理論強度に対する物性発現率は76%であった。また、0度方向と90度方向の引張弾性率比は1.06であった。
【0068】
[実施例2]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、60mm間隔に形成された刃を有する超硬合金製ロータリーカッターを使用して繊維長が60mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μmに粉砕、分級したポリカーボネートパウダー(帝人化成社製“パンライト”(登録商標)L−1225Y)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1230g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0069】
得られたランダムマットの強化繊維の平均繊維長は60mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは45μmであった。さらにランダムマットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は300本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は95vol%であった。
得られたランダムマットを300℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ1.4mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、330本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。得られた成形板の強化繊維体積含有率は50Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは7.8%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は680MPaであり、理論強度に対する物性発現率は72%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0070】
[実施例3]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を200m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1320g/mの強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは35μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1500本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は72vol%であった。
【0071】
得られた強化繊維マットにポリプロピレンフィルム(プライムポリプロ社製 F−704NP 厚み25μm)を上下で90枚積層し、本発明のランダムマットとした後、220℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1520本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は25Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは6.1%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は280MPaであり、理論強度に対する物性発現率は74%であった。また、0度方向と90度方向の引張弾性率比は1.06であった。
【0072】
[実施例4]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を80m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは37μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1100本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
【0073】
得られた強化繊維マットに、ポリブチレンテレフタレート(ウィンテックポリマー社製“ジュラナックス”(登録商標) 500FP)を成膜し厚み30μmとしたフィルムを上下で80枚積層し本発明のランダムマットとした後、260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1070本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは5.3%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は460MPaであり、理論強度に対する物性発現率は75%であった。また、0度方向と90度方向の引張弾性率比は1.03であった。
【0074】
[比較例1]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して24mm幅として使用した。拡幅された強化繊維ストランドをスリットすることなく、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を250m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付1320g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは47μmであった。さらに強化繊維マットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は420本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は70vol%であった。
【0075】
得られた強化繊維マットにポリプロピレンフィルム(プライムポリプロ社製 F−704NP 厚み25μm)を上下で90枚積層した後、220℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、400本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は25Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは18.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は230MPaであり、理論強度に対する物性発現率は62%であった。また、0度方向と90度方向の引張弾性率比は1.10であった。
【0076】
[比較例2]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24KSストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を使用した。強化繊維ストランドを、超硬合金製の分繊装置を用いて0.7mm間隔にスリットし、更に、カット装置として、30mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を50m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2800g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは116μmであった。さらに強化繊維マットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は580本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は86vol%であった。
【0077】
得られた強化繊維マットにポリブチレンテレフタレート(ウィンテックポリマー社製“ジュラナックス”(登録商標)500FP)を成形し、厚み30μmとしたフィルムを上下で80枚積層した後、260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ4.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、620本であった。得られた成形板について超音波探傷試験を行ったところ、成形板内部に反射波強度が70%以上の部分が58%観察され、未含浸部分が確認された。
得られた成形板の強化繊維体積含有率は39Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは13.6%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は360MPaであり、理論強度に対する物性発現率は60%であった。また、0度方向と90度方向の引張弾性率比は1.07であった。
【0078】
[実施例5]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24Kストランド(繊維径7μm 繊維幅10mm 引張強度4000MPa)を繊維拡幅して20mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置として、10mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が10mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カット強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2640g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
【0079】
得られた強化繊維マットの強化繊維の平均繊維長は10mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは58μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は1350本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は90vol%であった。
実施例4と同様の操作にて、ポリブチレンテレフタレートフィルムを上下で50枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、1390本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は50Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは8.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は530MPaであり、理論強度に対する物性発現率は71%であった。また、0度方向と90度方向の引張弾性率比は1.07であった。
【0080】
[実施例6]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、0.7mm間隔にスリットし、更に、カット装置として、10mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が10mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を40m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/mの強化繊維マットを得た。強化繊維マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は10mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは37μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は2400本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は80vol%であった。
実施例4と同様の操作にて、ポリブチレンテレフタレートフィルムを上下で55枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、2440本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は45Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは4.3%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は630MPaであり、理論強度に対する物性発現率は75%であった。また、0度方向と90度方向の引張弾性率比は1.04であった。
【0081】
[実施例7]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)HTS40−12Kストランド(繊維径7μm 繊維幅10mm 引張強度4200MPa)を使用した。強化繊維ストランドを、超硬合金製の分繊装置を用いて1.2mm間隔にスリットし、更に、カット装置として、15mm間隔に形成された刃を有する超硬合金製のロータリーカッターを使用して繊維長が15mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を160m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/mの強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは56μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は580本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は75vol%であった。
実施例3と同様に、ポリプロピレンフィルムを上下で65枚積層し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、590本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は45Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは10.6%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は470MPaであり、理論強度に対する物性発現率は66%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0082】
[実施例8]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して30mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、1mm間隔にスリットし、更に、カット装置には、超硬合金を用いて30mm間隔に刃を有するロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を250m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管の側面よりマトリクス樹脂として、平均粒径500μm粉砕したポリアミド6樹脂(ユニチカ社製ポリアミド6:A1030)を供給した。次に、テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2110g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは34μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、600本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は60vol%であった。
得られたランダムマットを260℃に加熱したプレス装置にて、2.0MPaにて10分間加熱し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、630本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは7.4%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は550MPaであり、理論強度に対する物性発現率は73%であった。また、0度方向と90度方向の引張弾性率比は1.08であった。
【0083】
[比較例3]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)STS40−24Kストランド(繊維径7μm繊維幅10mm 引張強度4000MPa)を使用した。カット装置として、ナイフの角度が周方向に90°に配置され、刃幅1mmのナイフを周方向に15mmピッチで、かつ隣り合うナイフは周方向に互いに1mmオフセットさせるように配置されたロータリーカッターを用いて強化繊維ストランドを繊維長15mmになるようにカットした。
このロータリーカッターの直下にテーパ管を配置し、圧縮空気を300m/sで送気して、カットされた強化繊維をテーパ管に搬送した。テーパ管出口の下部に、移動可能なコンベアネットを設置し、ネット下部のブロワにより吸引を行いながら強化繊維を供給し、繊維目付2380g/mの強化繊維マットを得た。該マットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られた強化繊維マットの強化繊維の平均繊維長は15mmであった。式(1)で定義される臨界単糸数は86であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは108μmであった。強化繊維マットにおいて強化繊維1g当たりの強化繊維束(A)の数(n)は280本であった。また、この強化繊維マットにおいて、強化繊維束(A)の強化繊維全量に対する割合は52vol%であった。
実施例3と同様の操作にて、ポリプロピレンフィルムを上下で65枚積層し、厚さ3.1mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、290本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が54%観察され、未含浸部分が確認された。
得られた成形板の強化繊維体積含有率は44Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは19.2%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は370MPaであり、理論強度に対する物性発現率は56%であった。また、0度方向と90度方向の引張弾性率比は1.12であった。
【0084】
[比較例4]
強化繊維として、東邦テナックス社製のPAN系炭素繊維“テナックス”(登録商標)UTS50−24Kストランド(繊維径6.9μm 繊維幅10mm 引張強度5000MPa)を繊維拡幅して20mm幅として使用した。拡幅された強化繊維ストランドを、超硬合金製の分繊装置を用いて、2mm間隔にスリットし、更に、カット装置として、30mm間隔に配置された刃を有する超硬合金製のロータリーカッターを使用して繊維長が30mmになるようにカットした。このロータリーカッターの直下にテーパ管を配置し、圧縮空気を160m/sで送気して、カットされた強化繊維をテーパ管に搬送した。実施例8と同様に、テーパ管の側面よりポリアミド6樹脂を供給し、強化繊維目付2110g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。
得られたランダムマットの強化繊維の平均繊維長は30mmであった。式(1)で定義される臨界単糸数は87であり、臨界単糸数以上で構成される強化繊維束(A)の平均厚みは60μmであった。さらにランダムマットにおいて強化繊維1g当たりの臨界単糸数以上で構成される強化繊維束(A)の数(n)は、200本であった。また、このランダムマットにおいて、強化繊維束(A)の強化繊維全量に対する割合は70vol%であった。
得られたランダムマットを実施例8と同様に成形し、厚さ3.0mmの成形板を得た。さらに成形板において強化繊維1g当たりの、臨界単糸数以上で構成される強化繊維束(A)の数(n’)は、190本であった。得られた成形板について超音波探傷試験を行ったところ、反射波強度が70%以上の部分が80%以上観察された。
得られた成形板の強化繊維体積含有率は40Vol%であり、該成形板中の強化繊維マットについて厚み斑の評価を行ったところ、厚みの変動係数のCVは21.0%であった。さらにJIS7164に準拠し引張特性の評価を行った結果、引張強度は440MPaであり、理論強度に対する物性発現率は59%であった。また、0度方向と90度方向の引張弾性率比は1.14であった。
【産業上の利用可能性】
【0085】
本発明により、高い機械強度を発現し、その等方性に優れ、かつ強度の発現率が高い繊維強化複合材料成形体を得ることができる。また本発明で得られる繊維強化複合材料成形体は、薄肉化も可能であるので、各種構成部材、例えば自動車の内板、外板、構成部材、また各種電気製品、機械のフレームや筐体等に用いることができる。
【0086】
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2012年7月26日出願の日本特許出願(特願2012−165871)に基づくものであり、その内容はここに参照として取り込まれる。
【符号の説明】
【0087】
1.炭素繊維
2.ピンチローラー
3.ゴムローラー
4.ロータリーカッター本体
5.刃
6.カットされた炭素繊維
7.周方向と刃の配列のなす角
図1
図2
図3