【実施例】
【0029】
下記の実施例は本発明をさらに説明するが、当然ながら、いかなる方法においてもその範囲を制限するものと解釈してはならない。例えば、実施形態がチタン酸アルミニウムおよび菫青石の壁流フィルタを備えられる一方で、炭化ケイ素フィルタが本明細書に記載されている実施形態に従って同様の結果を示すだろうことが予想される。
【0030】
試料調製
下記試料のためのフィルタ基板は、14〜15μmの間の平均粒径の51%の空隙率、300cpsi、および、13ミルの壁厚を有するチタン酸アルミニウムでできている。当該基板は周囲2インチ×6インチの寸法を有する。
【0031】
比較実施例A
当該参照例触媒は下記の組成を有する:33.3g/ft
3のPt、16.7g/ft
3のPd、0.5g/in
3のSiralox1.5/100(Al
2O
3上に1.5%のSi)、および0.1g/in
3のβ沸石。当該組成は当該フィルタの全長にわたって同一である。
【0032】
当該触媒被覆スラリーを調製するために、テトラモノエタノールアミン水酸化白金溶液を、遊星混合器中で初期湿潤法によってSiralox粉末上に浸透させた。その後、同一の浸透法を用いて、硝酸パラジウムをそのPt/Siralox粉末上に浸透
(含浸)させた。その後、その貴金属が浸透した粉末を水中に分散させてスラリーを作成した。連続粉砕機を用いてこのスラリーを粉砕し、その粒径を90%4μm未満に減少させた(D
90<4μm)。粉砕の完了前に、沸石をそのスラリーに添加した。得られたスラリーを水でさらに希釈し、19重量%の固体を得た。そのスラリーの最終pHは4.1であった。
【0033】
その後、その基板の入口側を下に向け、その出口側をそのスラリー面の真上(約1/4インチ)に向けた状態でその基板をそのスラリー中に含浸させることによって、そのスラリーをウォッシュコートした。その基板をそのスラリーから取り出し、ウォッシュコートスラリーが全く出てこなくなるまで、その出口側から空気流を流した。その後、その被覆した試料を110℃で2時間乾燥し、450℃で1時間空気中にて焼成した。
【0034】
実施例B
この実施例のために、D
90<4μmを有するCe/Zr合成物を用いた。その粒径をさらに減少させることなくそのCe/Zr粉末を用いた。実施例Aと同様の方法でそのスラリーをウォッシュコートした。
【0035】
実施例C
この実施例のために、D
90<13μmを有するZSM−5のアンモニウム形態(0.3g/in
3)を用いた。その粒径をさらに減少させることなくその沸石粉末を用いた。実施例Aと同様の方法でそのスラリーをウォッシュコートした。
【0036】
実施例D
この実施例のために、D
90<5μmに粉砕したSiralox1.5粉末(0.1g/in
3)を用いた。実施例Aと同様の方法でそのスラリーをウォッシュコートした。
【0037】
実施例E
この実施例のために、Siralox1.5粉末(0.3g/in
3)を用いた。粉砕する前に酒石酸を添加しながら、その粉末をD
90<6μmに粉砕した。その入口側と出口側の両方からそのスラリーをウォッシュコートし、合計0.3g/in
3のウォッシュコート荷重を得た。
【0038】
実施例F
D
90<7μmを有する、ジェットミルにより粉砕したアルミナ粉末を用いた。このアルミナ粉末を連続粉砕機内でさらにD
90<5μmに粉砕した。その入口側からそのスラリーを被覆し、0.40g/in
3のウォッシュコートを得た。
【0039】
図4は、実施例(試料)A〜Fに関する熱膨張係数(CTE)の図表を示す。これらの測定を1,000℃で行った。CTEが低い程、より頑強な触媒すすフィルタを示す。全ての粉砕した試料(実施例B〜F)は、比較実施例Aより低いCTEを明示する。15×10
−7/℃未満のCTEを有する触媒すすフィルタは、頑強であることが観測されてきた。15×10
−7〜25×10
−7/℃の間のCTEは、頑健性について検討されている。ほとんどが15×10
−7/℃未満である状態で、全ての粉砕した試料は25×10
−7/℃未満のCTEを有する。
【0040】
実施例G〜I
D
90<7μmを有するジェットミルにより粉砕したアルミナ粉末を、機械的に3つの切片にさらに分類した:細かい切片(実施例G)、中間の切片(実施例H)、および粗い切片(実施例I)。その粒径分布(PSD)を
図5に示す。細かい粉末である実施例Gは、10%の約1.1μm未満の大きさを有する粒子(90%が1.1μm超過)を有する。中間の粉末である実施例Hは、10%の約1.7μm未満の大きさを有する粒子(90%が1.7μm超過)を有する。粗い粉末である実施例Iは、10%の約2.0μm未満の大きさを有する粒子(つまり、90%が2.0μm超過)を有する。
【0041】
触媒すすフィルタを調製するためのアルミナ担持体として、当該分類した粉末の各切片を用いた。アルミナスラリーを作成するために、アルミナ粉末を水中に添加した。テトラモノエタノールアミン白金をそのスラリーに一滴ずつ添加し、その後硝化パラジウムをそのスラリーに同一の方法で添加した。そのスラリーをチタン酸アルミニウム基板上にウォッシュコートした。その基板は、51%の空隙率、約14〜15μmの平均粒径、約300cpsiのセル密度、および約13ミルの壁厚を有する。その基板の寸法は周囲2インチ×6インチである。その被覆した試料を110℃で2時間乾燥し、その後450℃で2時間空気中にて焼成した。PtおよびPdの量は、23.3g/ft
3のPtおよび11.7g/ft
3のPdと同等である。アルミナの量は0.35g/in
3であった。そのウォッシュコートの荷重は、各被覆したフィルタに関して同一である。
【0042】
25〜1,000℃の各被覆したフィルタに関して、熱膨張係数(CTE)を測定した。1,000℃でのCTE値を
図6にまとめる。「細かい」、「中間の」、および「粗い」アルミナ粉末でそれぞれ被覆したフィルタに関して、CTEは約20.5、12.3、および10.0である。
【0043】
比較実施例J〜L
テトラモノエタノールアミン水酸化白金溶液を、遊星混合器中で初期湿潤法によってSiralox粉末上に浸透させた。酢酸(粉末と比較して5重量%)をその粉末に添加した。その後、その貴金属が浸透した粉末を水中に分散させてスラリーを作成した。連続粉砕機を用いてこのスラリーを粉砕し、その粒径を90%4μm未満に減少させた(D
90<4μm)。粉砕の完了前に、Ce/Zr粉末をそのスラリーに添加した。その後、その基板の入口側を下に向け、その出口側をそのスラリー面の真上(約1/4インチ)に向けた状態でフィルタ基板をそのスラリー中に含浸させることによって、そのスラリーをウォッシュコートした。その基板をそのスラリーから取り出し、ウォッシュコートスラリーが全く出てこなくなるまで、その出口側から空気流を流した。その後、その被覆した試料を110℃で2時間乾燥し、450℃で2時間空気中にて焼成した。同一のスラリーで3種類の基板を被覆し、下記の触媒組成を得た:5g/ft
3、0.2g/in
3のSiralox、0.1g/in
3のCe/Zr。3種類の基板の特性を表1に記載する。
【0044】
【表1】
【0045】
実施例M〜O
当該被覆のために乾式粉砕したアルミナ粉末を用いた。このアルミナ粉末は下記の粒径分布(PSD)を有する:90%の粒子が5μm未満であり、90%の粒子が1.1μmより大きい。湿式粉砕したスラリー(実施例J〜Lから)と、乾式粉砕アルミナ(本実施例)との間のPSD比較を
図7で図示する。
【0046】
アルミナスラリーを作成するために、アルミナ粉末を水中に添加した。テトラモノエタノールアミン白金をそのスラリーに一滴ずつ添加し、その後硝化パラジウムをそのスラリーに同一の方法で添加した。表1に示した各3種のフィルタ基板上にそのスラリーをウォッシュコートした。その被覆したフィルタを110℃で2時間乾燥し、その後450℃で2時間焼成した。その金属およびウォッシュコートの荷重は、当該参照試料のものと同程度である。
【0047】
図8は、当該参照試料(実施例J〜L)、および、より少ない微粒を有する乾式粉砕したアルミナ粉末から作成した試料(実施例M〜O)のCTE(800℃で測定)の比較を示す。各フィルタ基板に関して、そのCTEはより少ない微粒子を有する粉末を用いることによって大幅に減少される。
【0048】
実施例P〜Q
試料PおよびQのための触媒ウォッシュコートは、同量の貴金属(50g/ft
3、Pt/Pd=2:1)および卑金属成分(0.4g/in
3の担持体、0.1g/in
3のβ沸石)を含む。同種のフィルタ基板(SiC、空隙率50%、平均粒径=20μm、300cpsi、壁厚12ミル)上に両試料を被覆した。しかしながら、異なる方法によってそのウォッシュコートスラリーを作成した。試料Aと同一の方法によって試料Pを作成した。試料Mと同一の方法によって試料Qを作成した。
【0049】
1,000ppmのCO、C1基準で(on a C1 basis)で450ppmの炭化水素、100ppmのNO、10%のO
2、7%の水、5%のCO
2を含む供給物を有する(供給物の残部をN
2で補った)流反応器システムにおいて、当該触媒すすフィルタの試料(試料PおよびQ)を試験した。当該炭化水素の構成は、C1基準で、等しい割合のプロペン、トルエン、およびデカンであった。当該試験の空間速度は35,000/時であった。当該システムは、CO分析器、HC分析器、CO
2分析器、ならびにFTIR分光器、および質量分光器を備えており、これらを用いて触媒の転化効率を決定した。最初に触媒を当該供給物で90秒90℃にて飽和させ、その後、その温度を20℃/分で300℃まで増加させた。反応物および生成物の濃度を連続的に監視および記録した。COおよび合計の炭化水素(THC)の転化を、供給物における濃度(当該触媒を通さない)と、当該触媒を通過した後に得られた濃度との間の相対的差異として何度も計算した。試験前に、空気および10%の蒸気を流しながら、当該試料を装置内にて700℃で4時間経時させた。その後、試料を装置内にて800℃でさらに4時間経時させた。
【0050】
図9は、試料PおよびQの触媒性能の比較(COおよびHCの着火曲線)を示す。試料Qに関するCOおよびHCの両方は、試料Pの着火温度と比較して遥かに低い温度で着火する(より活性)。試料QにおけるCOのT50(50%転化の時点における温度と定義する)は試料Pのそれより14℃低く、HCのT50における差異は36℃である。1つ以上の実施形態によれば、当該触媒すすフィルタは、実施例PおよびQのための上記手順に従って試験する場合、一酸化炭素に関して約130℃未満のT50を示す。その他の実施形態では、当該触媒すすフィルタは、実施例PおよびQのための上記手順に従って試験する場合、炭化水素に関して約130℃未満のT50を示す。その他の実施形態では、当該触媒すすフィルタは、これらの条件下で試験する場合、一酸化炭素および炭化水素に関して約130℃未満のT50を示す。さらに他の実施形態では、実施例PおよびQの手順に従って測定する場合、炭化水素に関して約180℃未満のT70(70%転化)、または約160℃未満のT70、または約140℃未満のT70、または約130℃未満のT70を示す。
【0051】
従って、本発明はその様々な実施形態に関連して開示されているが、下記の特許請求の範囲によって定義されているように、その他の実施形態が本発明の主旨および範囲の中に含まれる可能性があるということを理解されたい。
【0052】
本明細書全体における「1つの実施形態」、「ある実施形態」、「1つ以上の実施形態」、または「一実施形態」への言及は、当該実施形態に関連して記載されている特定の特長、構造、物質、または特性が、本発明の少なくとも1つの実施形態に含まれるということを意味する。従って、本明細書全体における様々な場所での「1つ以上の実施形態では」、「特定の実施形態では」、「1つの実施形態では」、または「一実施形態では」等の語句の出現は、必ずしも本発明の同一の実施形態を指していない。さらに、当該特定の特長、構造、物質、または特性は、1つ以上の実施形態において任意の適切な方法で組み合わされてよい。
【0053】
本明細書の発明がある実施形態を参照して記載されているが、これらの実施形態は本発明の原理および用途をただ説明しているだけであるということを理解されたい。様々な変更および変形が、本発明の主旨および範囲を逸脱することなく、本発明の方法および装置に対して行うことができるということが当業者にとって明白になる。従って、本発明が、添付の特許請求の範囲およびその同等物の範囲内にある変更および変形を含むということが意図されている。