(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
従来、冷凍サイクルやヒートポンプサイクルを実現する冷媒回路装置において、膨張弁の代わりにエジェクタが用いられたものが知られている。エジェクタは、放熱器から供給された高圧の冷媒(高圧冷媒)を減圧させることによるエネルギーを利用して、蒸発器より吐出された低圧の冷媒(低圧冷媒)を吸引し、吸引した低圧冷媒を高圧冷媒と混合させ、該低圧冷媒を昇圧させた後に吐出するものである。
【0003】
このようなエジェクタを用いた冷媒回路装置では、吸引した低圧冷媒を昇圧させた後に吐出するので、圧縮機に吸引される冷媒の圧力を高くすることができ、これにより圧縮機の運転効率を向上させることができるという利点を有する。
【0004】
ところで、エジェクタには、高圧冷媒を減圧して加速させるノズル部を有しており、かかるノズル部にはノズル弁が設けられている。ノズル弁は、例えばステッピングモータ等により駆動するもので、駆動することにより高圧冷媒を減圧させるための開度(絞り量)を調整することができる。
【0005】
かかるエジェクタでは、例えば低外気温時等で冷媒流量が絞って運転されることにより自身に供給される冷媒が低流量となる場合には、1パルスあたりの冷媒流量変化が流量に対して相対的に大きくなるという特性を有している。
【0006】
そのため、ノズル部やノズル弁の形状を加工することで低流量域においても流量制御が良好に実現できるようにした冷媒回路装置が提案されている(例えば、特許文献1参照)。
【発明を実施するための形態】
【0014】
以下に添付図面を参照して、本発明に係る冷媒回路装置の好適な実施の形態について詳細に説明する。
【0015】
図1及び
図2は、それぞれ本発明の実施の形態である冷媒回路装置が適用された自動販売機を示すもので、
図1は内部構造を正面から見た場合を示す説明図であり、
図2は断面側面図である。ここで例示する自動販売機は、本体キャビネット1を備えている。
【0016】
本体キャビネット1は、前面が開口した直方状の断熱体として形成されたものである。この本体キャビネット1には、その前面に外扉2及び内扉3a,3bが設けられており、その内部に例えば2つの断熱仕切板4によって仕切られた3つの独立した商品収容庫5が左右に並んだ態様で設けられている。
【0017】
より詳細に説明すると、外扉2は、本体キャビネット1の前面開口を開閉するためのものであり、内扉3a,3bは、商品収容庫5の前面を開閉するためのものである。内扉3a,3bは、上下に分割されており、上側の扉3aは商品を補充する際に開閉するものである。商品収容庫5は、缶入り飲料やペットボトル入り飲料等の商品を所望の温度に維持した状態で収容するためのものである。
【0018】
商品収容庫5には、商品収納ラック6、払出機構7及び搬出シュータ8が設けられている。商品収納ラック6は、商品を上下方向に沿って並ぶ態様で収納するためのものである。払出機構7は、商品収納ラック6の下部に設けられており、この商品収納ラック6に収納された商品群の最下位にある商品を1つずつ搬出するためのものである。搬出シュータ8は、払出機構7から払い出された商品を下側の内扉3bに設けられた商品搬出口3cを介して外扉2に設けられた商品取出口(図示せず)に導くためのものである。
【0019】
図3は、
図1及び
図2に示した自動販売機に適用された冷媒回路装置を概念的に示す概念図であり、
図4は、
図3に示した冷媒回路装置の特徴的な制御系を示すブロック図である。ここで例示する冷媒回路装置は、内部に冷媒が封入された冷媒回路10を有しており、この冷媒回路10は、主経路20、高圧冷媒導入経路30及び戻経路40を備えて構成されている。
【0020】
主経路20は、圧縮機21、庫外熱交換器22、エジェクタ23、気液分離器24及び庫内熱交換器25を冷媒管路26にて順次接続して構成されている。
【0021】
圧縮機21は、
図2にも示すように機械室9に配設されている。機械室9は、本体キャビネット1の内部であって商品収容庫5と区画され、かつ商品収容庫5の下方側の室である。この圧縮機21は、吸引口を通じて冷媒を吸引し、吸引した冷媒を圧縮して高温高圧の状態(高圧冷媒)にして吐出口より吐出するものである。
【0022】
庫外熱交換器22は、圧縮機21と同様に機械室9に配設されており、第1庫外熱交換器22a及び第2庫外熱交換器22bを有している。尚、この庫外熱交換器22の近傍には庫外送風ファンF1が配設されている。
【0023】
第1庫外熱交換器22aは、圧縮機21で圧縮された冷媒が自身の流路を通過する場合に、該冷媒を周囲空気と熱交換させて放熱させるものである。この庫外熱交換器22と圧縮機21とを接続する冷媒管路26には、三方弁271が設けられている。かかる三方弁271については後述する。
【0024】
第2庫外熱交換器22bは、自身の流路に熱的に接続されるフィン部材が第1庫外熱交換器22aと共通化された状態で該第1庫外熱交換器22aと一体的に構成されている。この第2庫外熱交換器22bは、流路を通過する冷媒、すなわち第1庫外熱交換器22aで放熱した冷媒を周囲空気と熱交換させて放熱させるものである。
【0025】
エジェクタ23は、詳細は後述するが、庫外熱交換器22(第2庫外熱交換器22b)で放熱された高圧の冷媒(高圧冷媒)を減圧させることによって、庫内熱交換器25により吐出された低圧の冷媒(低圧冷媒)を吸引し、該吸引した低圧冷媒を庫外熱交換器22からの高圧冷媒と混合させ、昇圧させた後に吐出するものである。本実施の形態におけるエジェクタ23は、
図5に示すように、2相流噴射型エジェクタであり、ノズル部231、混合部232及びディフューザ部233を有している。
【0026】
ノズル部231は、高圧冷媒導入口234を通じて吸入された庫外熱交換器22からの高圧冷媒を減圧して加速させる部位である。このように高圧冷媒を加速させることで、冷媒吸入口235を通じて庫内熱交換器25より吐出された低圧冷媒を吸引することができる。このノズル部231には、ノズル弁231aが設けられている。ノズル弁231aは、高圧冷媒を減圧させるためのノズル径を調整するための弁体である。
【0027】
混合部232は、ノズル部231で加速させた高圧冷媒と、冷媒吸入口235を通じて吸引した低圧冷媒とを混合させる部位である。
【0028】
ディフューザ部233は、混合部232にて混合された冷媒(混合冷媒)を昇圧させる部位である。昇圧された混合冷媒は、気液分離器24に向けて吐出されることになる。
【0029】
気液分離器24は、エジェクタ23より吐出された混合冷媒を気相冷媒と液相冷媒とに分離するものである。この気液分離器24にて分離された気相冷媒は、圧縮機21に吸引される一方、分離された液相冷媒は、庫内熱交換器25に吐出されることになる。
【0030】
庫内熱交換器25は、複数(図示の例では3つ)設けられており、それぞれが各商品収容庫5の内部低域であって背面ダクトDの前方側に配設されている。各庫内熱交換器25の近傍には、庫内送風ファンF2が配設されている。
【0031】
これら庫内熱交換器25と気液分離器24とを接続する冷媒管路26は、その途中に配設された分配器28により3つに分岐され、右側の商品収容庫5(以下、右庫5aともいう)に配設された庫内熱交換器25(以下、右庫内熱交換器25aともいう)、中央の商品収容庫5(以下、中庫5bともいう)に配設された庫内熱交換器25(以下、中庫内熱交換器25bともいう)並びに左側の商品収容庫5(以下、左庫5cともいう)に配設された庫内熱交換器25(以下、左庫内熱交換器25cともいう)の入口側にそれぞれ接続されている。
【0032】
また、この冷媒管路26においては、分配器28から左庫内熱交換器25cに至る途中に電磁弁272が設けられている。電磁弁272は、後述する制御部50から与えられる指令に応じて開閉する弁体である。
【0033】
上記庫内熱交換器25のそれぞれの出口側に接続された冷媒管路26は、途中の第1合流点P1で合流してエジェクタ23の冷媒吸入口235に連通する態様で該エジェクタ23に接続されている。
【0034】
高圧冷媒導入経路30は、一端が三方弁271に連結され、かつ他端が左庫5cに配設された加熱用熱交換器32の入口側に接続された高圧冷媒導入管路31により構成されている。この高圧冷媒導入経路30は、圧縮機21で圧縮された高圧冷媒を加熱用熱交換器32に導入させるためのものである。
【0035】
ここで三方弁271は、圧縮機21で圧縮された高圧冷媒を第1庫外熱交換器22aへ送出する第1送出状態と、加熱用熱交換器32へ送出する第2送出状態との間で択一的に切り換え可能な弁体である。かかる三方弁271の切換動作は、制御部50から与えられる指令に応じて行われる。
【0036】
戻経路40は、一端が加熱用熱交換器32の出口側に接続され、かつ他端が主経路20を構成する冷媒管路26、すなわち第1庫外熱交換器22aと第2庫外熱交換器22bとの間の冷媒管路26の第2合流点P2に接続された戻管路41により構成されている。この戻経路40は、加熱用熱交換器32を通過した冷媒を主経路20に戻すためのものである。尚、
図3中の符号42は逆止弁である。
【0037】
以上のような冷媒回路装置においては、上記構成の他に、バルブ29、庫内温度センサS1及び制御部50を有している。
【0038】
バルブ29は、第2庫外熱交換器22bとエジェクタ23との間の冷媒管路26に配設されている。このバルブ29は、制御部50から与えられる指令により開閉可能な弁体であり、開成する場合には第2庫外熱交換器22bからエジェクタ23に向けて冷媒が通過することを許容する一方、閉成する場合には第2庫外熱交換器22bからエジェクタ23に向けて冷媒が通過することを規制するものである。
【0039】
庫内温度センサS1は、各商品収容庫5の内部に配設されており、自身が配設された商品収容庫5の庫内温度(内部温度)を検出するものである。庫内温度センサS1で検出された庫内温度は、庫内温度信号として制御部50に与えられることになる。
【0040】
制御部50は、メモリ55に記憶されたプログラムやデータにしたがって冷媒回路装置を構成する三方弁271、電磁弁272、バルブ29の制御を行うものあり、入力処理部51、算出処理部52及び出力処理部53を備えている。
【0041】
入力処理部51は、各庫内温度センサS1や自販機制御部60からの信号や指令を入力処理するものである。自販機制御部60は、冷媒回路装置が適用される自動販売機の動作を統括的に制御するものである。
【0042】
算出処理部52は、入力処理部51を通じて入力した対象となる商品収容庫5の庫内温度と、メモリ55に記憶された当該商品収容庫5の目標温度との偏差を求め、かかる偏差に基づいてPID演算を行ってバルブ29の開閉割合(デューティー比)を算出処理するものである。出力処理部53は、電磁弁272、三方弁271及びバルブ29のそれぞれに対して指令を与えるものである。
【0043】
以上説明したような冷媒回路装置においては、制御部50を通じて三方弁271や電磁弁272を制御することで各商品収容庫5の内部温度を所望の温度状態に調整することができ、次のようにして商品収容庫5に収容された商品を冷却、あるいは加熱することができる。ここでは、CCC運転(全ての商品収容庫5の内部空気を冷却する運転)を行う場合とHCC運転(左庫5cの内部空気を加熱し、右庫5c及び中庫5bの内部空気を冷却する運転)を行う場合とを代表例として説明する。
【0044】
まずCCC運転を行う場合について説明する。この場合、制御部50は、三方弁271を第1送出状態にさせるとともに、電磁弁272を開成させる。
【0045】
これにより圧縮機21で圧縮された冷媒は、
図6に示すように、第1送出状態にある三方弁271を通過して第1庫外熱交換器22aに至る。第1庫外熱交換器22aに至った冷媒は、該第1庫外熱交換器22aを通過中に、周囲空気(外気)と熱交換を行って放熱する。第1庫外熱交換器22aで放熱した冷媒は、第2庫外熱交換器22bに至り、かかる第2庫外熱交換器22bを通過中に、周囲空気と熱交換してさらに放熱する。第2庫外熱交換器22bで放熱した冷媒は、エジェクタ23に送出される。
【0046】
エジェクタ23に送出された冷媒(高圧冷媒)は、高圧冷媒導入口234を通じてノズル部231に進入し、減圧されて加速する。これにより、庫内熱交換器25を通過した冷媒(低圧冷媒)が冷媒吸入口235を通じて吸引されることになる。そして、該エジェクタ23の混合部232にて、加速された高圧冷媒と、吸引された低圧冷媒とが混合して混合冷媒となってディフューザ部233に至り、混合冷媒は、ディフューザ部233で昇圧された後に吐出される。
【0047】
エジェクタ23から吐出された混合冷媒は、気液分離器24に送出され、該気液分離器24で気相冷媒と液相冷媒とに分離される。分離された気相冷媒は、圧縮機21に吸引される。一方、分離された液相冷媒は、分配器28を介して各庫内熱交換器25に送出される。
【0048】
各庫内熱交換器25に送出された冷媒(低圧冷媒)は、図示せぬ冷媒流路を通過して周囲空気(内部空気)と熱交換して該周囲空気を冷却する。冷却された空気は、各庫内熱交換器25に近接配置された庫内送風ファンF2の駆動により内部を循環し、これにより各商品収容庫5に収容された商品は、循環する空気により冷却される。各庫内熱交換器25を通過した冷媒は、第1合流点P1で合流した後に、上記エジェクタ23において高圧冷媒が減圧されて加速されることによる吸引力により、エジェクタ23の冷媒吸入口235に至る。このようにして冷媒は、冷媒回路10を循環するサイクルを繰り返す。
【0049】
次に、HCC運転を行う場合について説明する。この場合、制御部50は、三方弁271を第2送出状態にさせ、電磁弁272を閉成させる。
【0050】
これにより圧縮機21で圧縮された冷媒は、
図7に示すように、第2送出状態である三方弁271を通過して高圧冷媒導入管路31を通じて加熱用熱交換器32に送出される。
【0051】
加熱用熱交換器32に送出された冷媒(高圧冷媒)は、図示せぬ冷媒流路を通過して周囲空気(内部空気)と熱交換して該周囲空気を加熱する。加熱された空気は、庫内送風ファンF2の駆動により内部を循環し、これにより左庫5cに収容された商品は、循環する空気により加熱される。
【0052】
加熱用熱交換器32を通過した冷媒は、戻管路41を通過した後に第2合流点P2に至り、かかる第2合流点P2で主経路20に進入する。主経路20に進入した冷媒は、第2庫外熱交換器22bを通過する。かかる第2庫外熱交換器22bを通過中に、周囲空気と熱交換して放熱する。第2庫外熱交換器22bで放熱した冷媒は、エジェクタ23に送出される。
【0053】
エジェクタ23に送出された冷媒(高圧冷媒)は、高圧冷媒導入口234を通じてノズル部231に進入し、減圧されて加速する。これにより、庫内熱交換器25を通過した冷媒(低圧冷媒)が冷媒吸入口235を通じて吸引されることになる。そして、該エジェクタ23の混合部232にて、加速された高圧冷媒と、吸引された低圧冷媒とが混合して混合冷媒となってディフューザ部233に至り、混合冷媒は、ディフューザ部233で昇圧された後に吐出される。
【0054】
エジェクタ23から吐出された混合冷媒は、気液分離器24に送出され、該気液分離器24で気相冷媒と液相冷媒とに分離される。分離された気相冷媒は、圧縮機21に吸引される。一方、分離された液相冷媒は、分配器28を介して中庫内熱交換器25b及び右庫内熱交換器25aに送出される。
【0055】
中庫内熱交換器25bに送出された冷媒(低圧冷媒)は、図示せぬ冷媒流路を通過して周囲空気(内部空気)と熱交換して該周囲空気を冷却する。冷却された空気は、中庫内熱交換器25bに近接配置された庫内送風ファンF2の駆動により内部を循環し、これにより中庫5bに収容された商品は、循環する空気により冷却される。
【0056】
右庫内熱交換器25aに送出された冷媒(低圧冷媒)は、図示せぬ冷媒流路を通過して周囲空気(内部空気)と熱交換して該周囲空気を冷却する。冷却された空気は、右庫内熱交換器25aに近接配置された庫内送風ファンF2の駆動により内部を循環し、これにより右庫5aに収容された商品は、循環する空気により冷却される。
【0057】
中庫内熱交換器25b及び右庫内熱交換器25aを通過した冷媒は、第1合流点P1で合流した後に、上記エジェクタ23において高圧冷媒が減圧されて加速されることによる吸引力により、エジェクタ23の冷媒吸入口235に至る。このようにして冷媒は、冷媒回路10を循環するサイクルを繰り返す。
【0058】
このようにCCC運転やHCC運転を行う冷媒回路装置においては、予め設定された時間間隔毎にバルブ開閉制御処理を行う。
【0059】
図8は、
図4に示した制御部が実施するバルブ開閉制御処理の処理内容を示すフローチャートである。
【0060】
このバルブ開閉制御処理において制御部50は、入力処理部51を通じて庫内温度センサS1より庫内温度信号を入力した場合(ステップS101:Yes)、すなわち冷却対象となる商品収容庫5の庫内温度が庫内温度センサS1により検出された場合、算出処理部52を通じて開閉割合の算出を行う(ステップS102)。より詳細に説明すると、制御部50は、算出処理部52を通じてメモリ55より庫内温度センサS1が配設された商品収容庫5の目標温度を読み出し、読み出した目標温度と、ステップS101で入力した庫内温度との偏差を求め、かかる偏差に基づいてPID演算を行ってバルブ29の開閉割合(デューティー比)を算出する。
【0061】
バルブ29の開閉割合を算出した制御部50は、出力処理部53を通じてバルブ29に対して該開閉割合にしたがって指令を与えてバルブ29を開閉させ(ステップS103)、その後に手順をリターンさせて今回の処理を終了する。
【0062】
これによれば、バルブ29を所定の開閉割合にて開閉させることでエジェクタ23に対する冷媒流量を連続的に制御することができる。
【0063】
以上説明したように、本実施の形態である冷媒回路装置によれば、庫外熱交換器22からエジェクタ23に至る冷媒管路26に配設されたバルブ29が、開成する場合には庫外熱交換器22からエジェクタ23に向けて冷媒が通過することを許容する一方、閉成する場合には庫外熱交換器22からエジェクタ23に向けて冷媒が通過することを規制し、制御部が予め設定された商品収容庫5の目標温度と該商品収容庫5の庫内温度との偏差を求め、かかる偏差に基づいてPID演算を行って算出された開閉割合によりバルブ29を開閉させるので、従来のようにノズル部やノズル弁の形状を高精度に加工して組み立て等することなく、エジェクタ23に対する冷媒流量を連続的に制御することができる。これにより、製造コストの増大化を抑制しつつ、低流量域においても流量制御が良好に実現できる。
【0064】
以上、本発明の好適な実施の形態について説明したが、本発明はこれに限定されるものではなく、種々の変更を行うことができる。
【0065】
上述した実施の形態では、気液分離器24で分離させた液相冷媒を庫内熱交換器25に送出させていたが、本発明においては、気液分離器で分離させた液相冷媒を電子膨張弁等の膨張機構にて断熱膨張させてから庫内熱交換器に送出するようにしてもよい。
【0066】
上述した実施の形態では、制御部50がバルブ開閉制御処理を行うことによって算出された開閉割合にしたがってバルブ29を開閉させているが、冷媒回路10における冷媒量が多い場合には、バルブ開閉制御処理を行わずにノズル弁を駆動させるようにしてもよい。