【0010】
以下、本発明をリン回収材の中間体の製造方法、リン回収材の製造方法、およびリン回収材に分けて説明する。
1.リン回収材の中間体の製造方法
該リン回収材の中間体の製造方法は、少なくとも水ガラスおよび酸化カルシウムを、CaO/SiO
2のモル比が1.5以上、かつ水ガラス/酸化カルシウムの質量比が0.8〜2.0となるように混合して、リン回収材の中間体を製造する方法である。
前記水ガラスは、好ましくはJIS K 1408に規定するけい酸ナトリウムである。また、前記酸化カルシウムには生石灰も含まれる。
また、前記混合は、水ガラスに対して酸化カルシウムを添加して混合するか、またはその反対に、酸化カルシウムに対して水ガラスを添加して混合する行為のいずれも含む。通常、水和は常温で進むため、原則として前記混合時における加熱は不要であるが、リン回収材の中間体の製造を加速するために加熱してもよい。また、混合装置は、特に制限されず、ホバートミキサ、二軸バッチ式混練機、およびヘンシェル型ミキサ等が挙げられる。また、水ガラスと酸化カルシウムとの混合時間は、好ましくは1〜40分であり、より好ましくは2〜30分である。混合時間が1分未満では、水ガラスと酸化カルシウムは十分に反応せず、40分を超えると反応は終了する。
【0011】
また、前記リン回収材の中間体の製造方法において、前記混合を容易にするために水を添加してもよい。水を添加する場合は、水ガラス、酸化カルシウム、および水を、CaO/SiO
2のモル比が1.5以上、かつ(水ガラス+水)/酸化カルシウムの質量比が、0.8〜2.0となるように混合して、リン回収材の中間体を製造する。
前記の水を添加しない場合、および水を添加する場合のいずれにおいても、CaO/SiO
2のモル比が1.5以上、かつ、水ガラス/酸化カルシウムの質量比、または(水ガラス+水)/酸化カルシウムの質量比が0.8〜2.0であれば、後掲の表1に示すように、生成物(混合物)は粉体化する。なお、好ましくは、CaO/SiO
2のモル比は1.9〜3.5、かつ、水ガラス/酸化カルシウムの質量比、または(水ガラス+水)/酸化カルシウムの質量比は1.0〜1.8である。
なお、後掲の表1において、水ガラス/酸化カルシウムの質量比、および(水ガラス+水)/酸化カルシウムの質量比のいずれも、L/Sと略記する。
【0016】
前記リン含有水は、特に限定されず、下水処理場において発生した余剰汚泥の脱水濾液、嫌気性消化を行った汚泥の離脱水、し尿処理場において発生した汚泥の脱水濾液、家畜糞尿の廃水、およびリンを含む工場廃液等が挙げられる。
本発明のリン回収材は、スラリー、脱水ケーキ、または乾燥物(粉体を含む)の形態でリン回収に用いることができるが、リン回収材の製造工程の簡略化のため、スラリー(ペーストを含む)の形態で用いるのが好ましい。このように、リン回収材をスラリーの形態で用いれば、脱水機または乾燥機や、乾燥工程が不要となる。したがって、現地(例えば、下水処理場や工場等)に簡易なリン回収材の製造設備を設置して、リン回収材を製造しながらリン回収を行うことができ、さらに、リン回収材の保管が不要なため、リン回収材が劣化(炭酸化等)するおそれもない。
リン含有水とリン回収材を混合する時間は、混合量にもよるが、好ましくは5分以上であり、より好ましくは15分以上である。また、混合する液の温度は特に限定されず、一般に常温でよい。
リンを吸着した後のリン回収材(リン回収物)は、濾過、沈降分離、または遠心分離等により分離する。分離したリン回収物はリンの含有量が高いため、リン酸質肥料またはその原料として用いることができる。
【実施例】
【0017】
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.リン回収材の中間体の製造
(1)加水しないで製造した例(実施例1〜4、比較例1)
表1に示す配合に従い、3号水ガラス(含有率はSiO
2が30質量%、Na
2Oが10質量%、水が60質量%)に生石灰(北上石灰社製の90粉末生石灰)を添加し、ホバートミキサを用いて表1に示す時間、非加熱下で撹拌した。実施例1〜4は、該撹拌に伴い酸化カルシウムの水和熱が発生し、この水和熱により(水和)生成物が乾燥して粉体化したが、比較例1は粉体化せず塊になった。
次に、実施例1〜4の粉体は篩分けして、粒径が1mm以下のリン回収材の中間体を製造した。また、比較例1の塊は粉砕した後に篩分けして、粒径が1mm以下のリン回収材の中間体を製造した。
前記撹拌(発熱)に伴う生成物(一例として実施例1)の性状の変化を
図1に示す。
図1に示すように、撹拌に伴い、生成物はペースト状からケーキ状を経て粉体に変化した。また、実施例1と同様にして、実施例2〜4の生成物も粉体になった(表1参照)。
また、実施例1〜4および比較例1のリン回収材の中間体のXRDチャートを
図2に示す。
図2に示すように、リン回収材の中間体中の主要成分は、珪酸カルシウム水和物、水酸化カルシウム、および酸化カルシウムであった。
【0018】
【表1】
【0019】
(2)加水して製造した例(実施例5〜8、比較例2)
表1に示す配合に従い、前記水ガラスに加水して希釈した後、該希釈液に前記酸化カルシウムを添加し、ホバートミキサを用いて表1に示す時間、非加熱下で撹拌した。実施例5〜8は、該撹拌に伴い酸化カルシウムの水和熱が発生し、この水和熱により生成物が乾燥して粉体化したが、比較例2は、撹拌2時間でも乾燥せずケーキ状のままだった。
次に、実施例5〜8の粉体は篩分けして、粒径が1mm以下のリン回収材の中間体を製造した。
該撹拌に伴う実施例5〜8の生成物の性状を表1に示す。また、実施例5〜8および比較例2のリン回収材の中間体のXRDチャートを
図3に示す。実施例5〜8のリン回収材の中間体中の主要成分は、
図3に示すように、珪酸カルシウム水和物、水酸化カルシウム、および酸化カルシウムであった。
【0020】
2.リン回収材の製造
次に、実施例8および比較例1のリン回収材の中間体(粉体)のそれぞれに、リン回収材の中間体:水=1:20(質量比)になるように水を添加し、スターラーを用いて表2に示す時間、非加熱条件下で撹拌した。該撹拌した後、該スラリーをろ過して固体を得た。さらに、該固体を60℃で1日乾燥して粉砕し、ふるい分けして粒径が1mm以下の実施例9〜13および比較例3〜7のリン回収材を製造した。
図4に、実施例11のリン回収材のXRDチャートと、参考として実施例11のリン回収材の原料である、実施例8のリン回収材の中間体のXRDチャートを示す。リン回収材の主要成分は、
図4に示すように、珪酸カルシウム水和物、および水酸化カルシウムであった。
【0021】
【表2】
【0022】
3.リン回収材の中間体、およびリン回収材を用いたリン回収試験
リン回収材の中間体およびリン回収材のリン回収効果を確認するため、実施例1〜8および比較例1〜2のリン回収材の中間体と、実施例9〜13および比較例3〜7のリン回収材を用いてリン回収試験を行った。具体的には以下のとおりである。
【0023】
(1)リン含有模擬排水の作製
リン酸態リン(PO
4−P)の濃度(以下「リン濃度」という。)が10000ppmのリン酸水溶液100mLに水を加えて全量を5000mLとして、実測したリン濃度が197ppmのリン含有模擬排水(a)を作製した。また、リン濃度が10000ppmのリン酸水溶液75mLに水を加えて全量を5000mLとして、実測したリン濃度が153ppmのリン含有模擬排水(b)を作製した。
そして、前記リン含有模擬排水(a)は、実施例1〜8および比較例1のリン回収材の中間体を用いたリン回収試験に、また、前記リン含有模擬排水(b)は、実施例9〜13および比較例3〜7のリン回収材を用いたリン回収試験に使用した。なお、本願明細書において、前記ppmはmg/Lと同じ意味である。
【0024】
(2)リン回収材の中間体およびリン回収材を用いたリン回収試験
前記リン含有模擬排水(a)200mLを、それぞれコニカルビーカーに量り取り、前記模擬排水中のリン(P)に対する、実施例1〜8および比較例1のリン回収材の中間体中のカルシウム(Ca)のモル比(Ca/P)が2となるように、前記リン回収材の中間体をそれぞれのビーカー内に添加して、マグネティックスターラーで1時間撹拌してリン回収を行った。
また、前記リン回収材の中間体およびリン含有模擬排水(a)に代えて、実施例9〜13および比較例3〜7のリン回収材とリン含有模擬排水(b)を用いて、前記リン回収材の中間体の場合と同様にしてリン回収を行った。
前記撹拌を停止して10分間静置した後、前記模擬排水の上澄みの清澄度を目視で観察した。また、上澄み液をろ過して得た濾液中のリン濃度を、迅速水質分析計(品番:DR/850 colorimeter、HACH社製)を用いて、アメリカ合衆国環境保護庁の排水についての分析方法365.2に準拠して測定し、前記(1)式を用いてリン回収率を算出した。その結果を表3および表4に示す。
【0025】
【表3】
【0026】
【表4】
【0027】
4.リン回収試験の結果について
(1)リン回収材の中間体を用いた場合
リン回収率は、比較例1では38%に対し、実施例1〜8では65〜81%と高い。しかし、実施例1〜8を添加したリン含有模擬排水(中間体添加液)は撹拌停止30分後においても懸濁状態にあった。リン回収材とリンが結合したリン回収物を通常の固液分離手段により分離して回収するためには、その懸濁物が沈殿する必要があるが、この沈殿には2時間以上もの長時間を要した。
(2)リン回収材を用いた場合
リン回収率は、比較例3〜7では13〜45%に対し、実施例9〜13では76〜97%と高い。また、実施例9〜13を添加したリン含有模擬排水(リン回収材添加液)は、上澄みとリン回収物の沈殿物が明確に分離しているため、濾過等の通常の固液分離手段により、リン回収物の分離・回収は容易であった。さらに、実施例9〜13のリン回収材のリン回収効果および清澄度(すなわち固液分離の容易性)は、表2に示すように、中間体からリン回収材を製造する際の撹拌時間に依らず、いずれも高いことが分かる。
なお、
図4にリン回収物のXRDチャートを示す。リン回収物の主要成分は、
図4に示すように、ハイドロキシアパタイト、珪酸カルシウム水和物、および炭酸カルシウムであった。