【実施例】
【0022】
実験
さらに以下に説明するように、硬化プロセスについての種々の図面の実験はそれぞれ、過酸化水素および他の酸化剤を利用している。硬化プロセスは、アルメレ、オランダのASM International N.V.から入手可能なA412(商標)垂直炉で実施した。この炉は、ウェーハボートに保持される基板と共に、300mmの直径を有する150個の大量の半導体基板またはウェーハを収容できるプロセスチャンバを有する。本明細書に説明されているように、米国仮特許出願第61/972,005号に記載されている過酸化水素供給システムを使用してH
2O
2をプロセスチャンバに提供した。
【0023】
他に特定しない限り、堆積の間、酸素を加えずに流動可能な誘電体膜を堆積させた。NH
3遠隔プラズマと組み合わせてトリ−シリルアミン(TSA)を使用して膜をCVDによって堆積させた。
【0024】
成膜直後の膜を、蒸気または過酸化水素を含有する雰囲気中で硬化プロセスに供し、異なるバッチの基板を用いて、300℃、400℃および500℃のそれぞれの温度で各々6時間、硬化プロセスに供した。ウェーハボートにウェーハをロードし、ウェーハボートをプロセスチャンバにロードした。プロセスチャンバを300℃に加熱し、ウェーハボートのロードの間、酸素流をプロセスチャンバを通して適用した。硬化のために蒸気または過酸化水素流のスイッチをオンにした場合、酸素流のスイッチをオフにした。本明細書に説明されているように、いくつかの硬化のために、プロセスチャンバを300℃より高い温度に加熱し、酸化ガスをリアクタに供給している間、温度を安定化させた。蒸気による硬化のためのプロセスチャンバの圧力は大気圧であり、H
2O
2については100Torrであった。
【0025】
図1、2、および3は、過酸化水素および酸化剤を有する蒸気を使用して300℃、400℃および500℃のそれぞれで行った硬化プロセス後の流動可能な誘電体膜のFTIRスペクトルを示す。300℃および400℃(
図1および2)において、蒸気アニールは約890cm
−1にてSiO−H結合ピークを減少させるのに有効ではなかったが、蒸気アニールは約960cm
−1にてSi−N結合ピークを除去するのに有効であった。500℃にて、蒸気および過酸化水素でアニールした膜のFTIRスペクトルは同様であった。
【0026】
図1〜3の膜の密度を
図4に示す。過酸化水素による硬化について、300℃の低さの硬化温度について比較的高い膜密度を既に得た。500℃まで温度を増加させると、密度はさらに増加する。他方で、300℃での蒸気による硬化は、同じ温度でH
2O
2による硬化より実質的に低い密度(約17%低下)を生じる。500℃まで硬化温度を増加させた後にのみ、蒸気および過酸化水素での硬化後、膜の密度は同等になった。
【0027】
図5において、過酸化水素における300℃での硬化時間の関数として膜密度を3つの異なるセットの試料について示す。第1の試料セットは、実験結果を
図1〜4に示した試料と同じ条件下で堆積した、比較的低い、成膜直後の酸素含有量を有する流動可能な誘電体である。第2および第3の試料セットは第1の試料セットと同じ条件下で堆積した流動可能な誘電体であったが、第2および第3のセットは堆積直後でH
2O
2硬化前にO
3硬化を受け、したがってH
2O
2硬化の前に比較的高い酸素含有量を有した。さらに、
図5に示されるように、第1および第2のセットに関して、インサイチュプレコンディショニングを適用した。これは、チャンバ内へのボートのロードの間、および該当する場合、硬化温度がロード温度より高い場合、硬化温度への加熱の間、酸素流がプロセスチャンバを介して適用されたことを意味する。2つの異なる種類の膜の間の硬化挙動の目立った相違が観察された:低い酸素含有量を有する流動可能な誘電体膜は、所望の最大密度をほぼ達成し、300℃での硬化の2時間後のみ、硬化プロセスを完了するようであるのに対して、H
2O
2硬化前にO
3硬化を受けた流動可能な誘電体膜に関して、2時間後にH
2O
2硬化は完了せず(すなわち、同様の密度に到達しなかった)、同じ密度を達成するのに6時間の硬化を必要とした。さらに、ボートのロードの間の酸素の存在または非存在は膜密度に対して有意な効果を有するようである:高い酸素含有量を有する膜について、膜密度は、ボートが酸素を加えられながらロードされる場合と比較して、ボードが酸素を加えられずに炉内にロードされる場合、低い。
【0028】
アニールをしていない低い酸素含有量を有する成膜直後の流動可能な誘電体膜の密度は測定できないが、別の実験において、蒸気での6時間の硬化後の密度を
図4に示し、1.83g/cm
3にて低くなることが見出された。成膜直後の低酸素含有量の膜の密度はさらに低くなり得ると考えられる。成膜直後の高酸素含有量を有する流動可能な誘電体の密度は、最初は、成膜直後の低酸素含有材料の密度より高い(周囲空気への数時間の露出後、約2.04g/cm
3)が、成膜直後の高酸素含有材料は、成膜直後の低酸素含有材料と比較して、最大密度を達成するのに長い硬化時間を依然として必要とする。したがって、これは有益であり得、流動可能な誘電体膜が、成膜直後の低酸素濃度で堆積し、膜の堆積とH
2O
2による硬化との間に、O
3による硬化などの他の硬化を実施せずに、酸素含有量を増加させ、膜の密度および質を増加させるために過酸化水素に露出された場合、短い硬化時間を提供できることが見出された。さらに、炉内への試料のロードの間に酸素流を提供することは有益であるようである。
【0029】
300℃にて30分などの長い安定化時間、または窒素流もしくは窒素流と酸素流の混合物下での高い硬化温度により、過酸化水素流がこのような遅延をせずに開始したプロセスと比較して、低い膜密度および/または長い硬化時間が生じたことが見出された。したがって、いくつかの実施形態において、不必要な遅延をせずにプロセスチャンバにおける基板のロードの完了の直後に過酸化水素流のスイッチをオンにする。いくつかの実施形態において、過酸化水素は、プロセスチャンバにおける基板のロードを完了してから約25分以内、約15分以内、または約8分以内でプロセスチャンバ内に流れる。
【0030】
図6は、炉内への試料のロードおよび400℃への硬化温度の上昇が、酸素ガスを意図的に加えずに、N
2雰囲気中で実施された条件下で成膜直後の低酸素含有量を有する流動可能な誘電体膜の表面に形成された欠陥の走査電子顕微鏡写真である。このような欠陥は、プロセスチャンバ内に試料をロードし、酸化雰囲気中で、例えば、いくつかの実施形態に従って、プロセスチャンバを通る酸素流を用いて、硬化温度に上昇させることによって回避され得る。
【0031】
上記のプロセス条件に関して、使用されるリアクタの容量(約160リットル)および300℃のプロセス温度を想定して、リアクタ中のガスの滞留時間は約44秒であった。例示的なプロセスにおいて、以下の条件を使用した:
N
2流 5slm
H
2O流 7slm
H
2O
2流 1.6slm
圧力 100Torr
温度 100℃〜500℃
【0032】
実験の別のセットにおいて、膜をH
2O
2硬化に供した後、流動可能な誘電体膜をアニールする効果の調査を行った。特に、水素含有量およびダングリングボンドの密度に対する、およびエッチング耐性に対する不活性ガスアニールの効果を調査した。
図7はアニール温度の関数としてSi−H結合およびダングリングボンドの密度のグラフを示す。Si−H密度は水素含有量を示すと理解される。
【0033】
流動可能な誘電体膜を200℃にて2時間、H
2O
2硬化に供した。次いで温度をアニール温度に増加させ、膜を、アニール温度にて0.5時間、N
2中でアニールした。
図7を参照して、約400℃から開始して水素含有量は減少し、約650℃からダングリングボンドの数は増加し始めることを見ることができる。約400℃〜約800℃の範囲のアニール温度は通常、低酸素含有量を提供した。H
2O
2硬化およびアニールの両方の間、流動可能な誘電体膜を露出し、H
2O
2硬化とアニールとの間、あらゆる他の処理(堆積またはエッチング)に供さなかったことは理解される。
【0034】
図8は、アニールしなかった膜とアニールした膜についての湿潤エッチング速度比(WEER)を比較したグラフを示す。アニールは不活性ガス雰囲気中で550℃にて行った。湿潤エッチング速度比(WERR)を求めた。WERRは、評価(アニールした流動可能な誘電体膜)の下での膜の湿潤エッチング速度と、同じエッチング条件下での熱酸化シリコンの湿潤エッチング速度の比であると理解される。有益には、40%のWERRの減少を得た。
【0035】
本明細書に開示される実施形態に対する種々の修飾および改良がなされてもよいことは理解される。いくつかの実施形態において、短い滞留時間を提供することによって、プロセスチャンバにおける分解に起因するH
2O
2濃度の減少は妨げられ、H
2O
2濃度は比較的高いレベルのままである。高温にて、過酸化水素はより急速に分解し、好ましい滞留時間はより短くなり得ることが理解される。短い滞留時間は、低い圧力ならびに/または多い気体および蒸気の流れにより達成され得る。低い圧力はまた、H
2O
2分圧を減少させ、それによって硬化プロセスの反応性を減少させる。いくつかの用途において、リアクタに供給される気体混合物の1Torr未満のH
2O
2分圧は効果的な硬化に十分ではあり得ないことが見出された。リアクタに供給される気体混合物のH
2O
2分圧は、好ましくは、約1Torr以上、より好ましくは約3Torr以上、より好ましくは約10Torr以上であり、いくつかの実施形態において最大で約60Torrであってもよい。プロセス温度に応じて、反応硬化プロセスが最も効果的であるリアクタ圧力が存在し得る。いくつかの実施形態において、約150℃〜約350℃の温度範囲で、約50〜約200Torrの範囲の圧力が特に効果的であることが見出された。一例において、プロセス圧力は約100Torrであってもよい。いくつかの実施形態において、約50℃〜150℃を含む、温度範囲の下端において、最大で約300Torrまでの圧力が使用され得る。
【0036】
いくつかの実施形態において、プロセスチャンバにおける圧力は所望の硬化圧力まで減少し得る。硬化工程の間、硬化圧力は実質的に一定のままであっても、変化してもよい。硬化圧力で過酸化水素の流れを開始する前に、プロセスチャンバを基準圧力に排気することにより、効果的な硬化に対して有害な作用があることが見出された。好ましくは、流動可能な誘電体は、過酸化水素の流れが開始する前に、10Torr未満の圧力に露出されず、より好ましくは、50Torr未満の圧力に露出されない。いくつかの実施形態において、硬化圧力は100Torrであり、流動可能な誘電体は、過酸化水素に露出される前に、100Torr未満の低い圧力に露出されない。
【0037】
いくつかの実施形態において、リアクタ温度は硬化の開始時に低レベルに設定され得るのに対して、硬化圧力は比較的高くてもよい。比較的高い圧力は流動可能な誘電材料内への反応種の拡散を促すのに対して、比較的低い温度は上側膜の上部が硬化の初期段階で閉鎖することを防ぐと考えられる。硬化過程の間、温度は、より完全な硬化を達成するために増加でき、一方、圧力は減少できる。したがって、プロセス条件は一定ではないが、硬化の間に動的に調整され得ることが理解される。
【0038】
いくつかの他の実施形態において、半導体基板に配置され、比較的低い酸素濃度を有する流動可能な誘電材料は、リアクタ内にウェーハをロードしている間、および/または第1の硬化温度に加熱している間、酸化ガスに露出され得る。酸化ガスは、水、酸素、過酸化水素、またはオゾンであってもよい。酸化ガスは
図6に示されるように欠陥の発生を防ぐのに有効であると考えられる。理論によって限定されないが、流動可能な誘電材料の成分は材料から蒸発または拡散し得ると考えられる。これらの成分の重合は気相で生じ得、ウェーハ表面上に再堆積され、
図6に示される欠陥として観察される、より大きな種を生成する。酸化ガスの添加は、誘電材料から気相内に出ていく種の重合を防ぐと考えられる。これは、データがオーバーロードされるKLA−TencorのSP3粒子計数器を用いた粒子測定によって証明され、非常に高い欠陥濃度を示し、流動可能な誘電材料が、酸素の意図される添加を必要とせずに、N
2雰囲気中でロードされた成膜直後の低い酸素濃度を有すると観察された。チャンバのロードおよび加熱の間、酸素の流れがプロセスチャンバに供給される場合、検出された欠陥の数は非常に低いレベルまで減少したことが見出された。
【0039】
いくつかの実施形態において、成膜直後の低い酸素濃度を有する流動可能な誘電材料を有する半導体基板が、約300℃未満、約200℃未満、約100℃未満、またはさらに約65℃未満(しかし室温より高い)の比較的低いロード温度にてプロセスチャンバ内にロードされ得る。過酸化水素による硬化はこの低い温度で開始され、一定の時間の後に、プロセスチャンバ温度は必要とされる硬化温度まで増加され得る。理論によって制限されることを望まずに、減少したロード温度は十分に低くでき、誘電材料から種の顕著な拡散または蒸発は発生し得ず、したがって欠陥は形成されない。酸化硬化雰囲気がプロセスチャンバにおいて確立されると、プロセスチャンバ温度は、欠陥を形成する危険性なく、ロード温度から硬化温度まで増加し得る。
【0040】
いくつかの実施形態において、流動可能な誘電材料を有する半導体基板は、硬化時間後、約100Torr以下、または約10Torr以下、または約1Torr以下の低圧力真空に露出され得る。半導体基板は循環モードにおいて低圧力に露出され得、基板が反応性過酸化水素種に露出される場合、低圧力の時間は高圧力の硬化時間に変えられる。低圧力露出は誘電材料から除去することが必要な種の流出を高めることができる。いくつかの実施形態において、プロセスチャンバ内への過酸化水素の流れは、低圧力への露出の間、継続し得ると理解される。
【0041】
いくつかの実施形態において、さらなる酸化ガスが過酸化水素ガスに加えられてもよい。このような酸化ガスの非限定的な例は、オゾン、酸素、水、およびそれらの組み合わせを含む。さらなる酸化ガスが一定の分圧でプロセスチャンバに提供されてもよく、または分圧は、硬化の間、動的に変化してもよい。いくつかの実施形態において、さらなる酸化ガスを過酸化水素ガスに加えること以外に、さらなる酸化ガスが、連続して、および過酸化水素ガスと交互に半導体基板に提供されてもよい。例えば、過酸化水素およびさらなる酸化ガスが、異なる時間にて次々に半導体基板に流れる、硬化サイクルが実施されてもよく、次いでそのサイクルは反復されてもよい。理論によって限定されないが、いくつかの適用において、1つの酸化ガスが硬化プロセスの一態様において効果的であってもよく、別の酸化ガスが硬化プロセスの別の態様において効果的であってもよいと考えられる。例えば、FTIRグラフ(
図1〜3)は、蒸気が、低温度でさえも、流動可能な誘電材料から窒素を除去するのに効果的であり得るのに対して、過酸化水素が、材料からSiO−H結合を除去するのに、より効果的であり得ることを示す。
【0042】
いくつかの他の実施形態において、成膜直後の低酸素濃度で流動可能な誘電体膜を使用することによって、ならびに/またはプロセスチャンバ内に流動可能な誘電体膜を含有する半導体基板のロードの間、および加熱の間、酸素を提供することによって、ならびに/または硬化圧力未満の圧力への半導体基板の露出を回避することによって、過酸化水素による硬化時間は減少できるが、高い膜の質を提供する。いくつかの実施形態において、硬化時間は、約4時間、約3時間未満、または約2時間未満であってもよい。いくつかの実施形態において、このような硬化時間は、約2.075g/cm
3以上、または約2.10g/cm
3以上の膜密度を提供できる。
【0043】
いくつかの実施形態において、流動可能な誘電材料から炭素および窒素の除去を向上させるために硬化に水素が加えられてもよい。
【0044】
いくつかの実施形態において、窒素は、過酸化水素への露出の間、プロセスチャンバに加えられず、またはいくつかの場合、窒素は硬化プロセスの任意の部分から存在しない。窒素ガスは、アルゴンなどの異なる不活性ガス、または酸素、蒸気もしくはオゾンなどの酸化ガスに置き換えられてもよい。窒素ガスが酸化ガスに置き換えられる、このような実施形態において、過酸化水素のためのキャリアガスが酸化ガスに置き換えられる。
【0045】
本明細書に開示される実施形態は、有益には、流動可能な誘電材料を硬化するために適用され得るが、本明細書に開示される硬化プロセスはまた、酸素を種々の他の材料に提供するために適用され得ることは理解される。例えば、硬化プロセスは、ケイ素、ゲルマニウムまたはIII−V半導体を酸化するため、または低い質の二酸化ケイ素膜などの低い質の膜を硬化するために適用されてもよい。
【0046】
いくつかの実施形態において、硬化プロセスは、ケイ素材料、ゲルマニウム材料、またはIII−V半導体材料を堆積するためのプロセスと組み合わせて提供されてもよい。例えば、硬化プロセスは循環方式で堆積に組み込まれてもよく:薄膜(例えば、1Å〜10Å厚)の堆積後、硬化プロセスが比較的低い温度で堆積膜を酸化するために適用されてもよく、所望の厚さの酸化膜が形成されるまで、堆積および硬化工程は反復されてもよい。例えば、5Åがケイ素前駆体としてトリシラン(Si
3H
8)を使用して390℃にて堆積されてもよく、膜は、例えば0.5時間〜6時間、例えば200℃〜400℃の範囲の温度にて過酸化水素への露出によって酸化されてもよい。この温度範囲の下方部分(200℃〜300℃)において、酸化速度は蒸気の酸化速度より高いことが見出された。ケイ素について、酸化速度は比較的低くてもよいが、GeおよびII−V半導体について、酸化速度は高く、酸化について過酸化水素を使用した開示される硬化プロセスは、比較的低い温度にて比較的高い質の酸化物を形成する利点を有する。この低い温度の酸化物形成は、ゲルマニウムおよびIII−V酸化物などの、比較的低い熱安定性を有する酸化物を有する材料について有意な利点を提供する。
【0047】
いくつかの実施形態において、H
2O
2への基板の露出が第1の温度で実施され、続いて、第1の温度より高い、第2の温度にて不活性ガス中でアニールが行われる。例えば、第1の温度は500℃以下であってもよく、第2の温度は500℃超であってもよい。
【0048】
したがって、種々の省略、付加および修飾が、本発明の範囲から逸脱せずに上記のプロセスおよび構造に対してなされてもよいことは、当業者によって理解される。実施形態の特定の特徴の種々の組み合わせまたは副組み合わせおよび態様が説明の範囲内でなされてもよく、それは本発明の範囲内のままであることが意図される。開示される実施形態の種々の特徴および態様は、適切に互いに組み合わされてもよく、置換されてもよい。全てのこのような修飾および変更は、添付の特許請求の範囲に定義されるように本発明の範囲内に含まれると意図される。