【実施例】
【0037】
以下、実施例の燃料電池単セルについて、図面を用いて説明する。なお、同一部材については同一の符号を用いて説明する。
【0038】
(実施例1)
実施例1の燃料電池単セルについて、
図1、
図2を用いて説明する。
図1、
図2に示すように、本例の燃料電池単セル5は、燃料ガスが供給されるアノード1と、固体電解質層2と、酸化剤ガスが供給されるカソード3とを有している。燃料電池単セル5は、アノード1側に、高熱伝導部6を有している。高熱伝導部6は、
長手方向が酸化剤ガスの流れ方向Oに沿って形成されており、かつ、アノード1に含まれる電子導電性材料と同一の材料を主成分とする。以下、これを詳説する。
【0039】
本例において、燃料電池単セル5は、固体電解質層2とカソード3との間に中間層4を有している。具体的には、燃料電池単セル5は、固体電解質層2と、固体電解質層2の一方面に積層されたアノード1と、固体電解質層の他方面に中間層4を介して積層されたカソード3とを有しており、アノード1を支持体とする平板形の単セルである。アノード1は、具体的には、固体電解質層側に配置される活性層11と、活性層11における固体電解質層2側と反対側の面に積層された拡散層12とを備えている。なお、アノード1に供給される燃料ガスは、水素ガスであり、カソード3に供給される酸化剤ガスは、空気ガスである。
【0040】
燃料電池単セル5は、燃料ガスと酸化剤ガスとが一軸方向に流れる方式を採用している。具体的には、燃料電池単セル5は、燃料ガスと酸化剤ガスとがセル面内で同方向に流れる並行流方式とされている。図中、符号Fは、燃料ガスの流れ方向であり、符号Oは、酸化剤ガスの流れ方向である。
【0041】
ここで、燃料電池単セル5は、高熱伝導部6を複数有している。各高熱伝導部6は、酸化剤ガスの流れ方向Oに沿って直線状に形成されている。また、各高熱伝導部6は、アノード1の外表面である拡散層12の外表面に形成されている。なお、各高熱伝導部6は、互いに所定間隔離れた状態で配置されている。
【0042】
燃料電池単セル5における各部位の材質等は、次の通りである。固体電解質層2は、ジルコニア系固体電解質より形成されている。ジルコニア系固体電解質は、具体的には、8mol%のY
2O
3を含むイットリア安定化ジルコニア(以下、8YSZ)等の酸化ジルコニウム系酸化物である。固体電解質層2の厚みは、10μmである。
【0043】
アノード1における活性層11は、電子導電性材料と固体電解質とを含む混合物(サーメット)より形成されている。電子導電性材料は、Niであり、固体電解質は、8YSZである。電子導電性材料と固体電解質との体積比は、50/50である。活性層11の厚みは、20μmである。
【0044】
アノード1における拡散層12は、電子導電性材料と固体電解質とを含む混合物(サーメット)より形成されている。電子導電性材料は、Niであり、固体電解質は、8YSZである。電子導電性材料と固体電解質との体積比は、50/50である。拡散層12の厚みは、500μmである。
【0045】
カソード3は、ペロブスカイト型酸化物より形成されている。ペロブスカイト型酸化物は、La
1−xSr
xCo
1−yF
yO
3(x=0.4、y=0.8、以下、LSCF)である。カソード3の厚みは、50μmである。
【0046】
中間層4は、酸化セリウム系酸化物より形成されている。酸化セリウム系酸化物は、10mol%のGdがドープされたセリア(以下、10GDC)である。中間層4の厚みは、5μmである。
【0047】
高熱伝導部6は、アノード1に含まれる電子導電性材料と同一の材料であるNiより形成されている。高熱伝導部6の厚みは、100μm〜300μmである。高熱伝導部6の幅は、1mmであり、高熱伝導部6間のピッチは1mmである。
【0048】
本例の燃料電池単セル5は、例えば、次のようにして製造することができる。
【0049】
シート状の拡散層形成用材料、シート状の活性層形成用材料、シート状の固体電解質層形成用材料、および、シート状の中間層形成用材料をこの順に積層し、積層体を得る。なお、積層体は、CIP成形法等による圧着や脱脂等を行うことができる。得られた積層体を1250〜1500℃程度の温度で同時焼成する。これにより、拡散層12、活性層11、固体電解質層2、および、中間層4がこの順に積層された焼結体を得る。得られた焼結体における拡散層12の外表面に、スクリーン印刷法等により、高熱伝導部形成用材料を塗布する。この高熱伝導部形成用材料が塗布された積層体を1250〜1500℃程度の温度で焼成する。これにより、アノード1の外表面である拡散層12の外表面に高熱伝導部6を形成する。この高熱伝導部6が形成された焼結体における中間層4の表面に、カソード形成用材料を積層し、900〜1200℃程度の温度で焼成する。これにより、中間層4の表面にカソード3を形成する。以上により、燃料電池単セル5を得ることができる。
【0050】
次に、本例の燃料電池単セルの作用効果について説明する。
【0051】
燃料電池単セル5は、アノード1側に、高熱伝導部6を有している。そのため、燃料電池単セル5は、酸化剤ガスの流れ方向Oと平行方向のセル熱抵抗が、酸化剤ガスの流れ方向Oと直交方向のセル熱抵抗に比べて小さくなる。それ故、発電により生じた熱は、酸化剤ガスの流れ方向Oと平行方向に放熱される。つまり、燃料電池単セル5は、発熱するセル自身が酸化剤ガスの流れ方向Oと平行方向に積極的に熱分散を行うことができる。なお、高熱伝導部6は、酸化剤ガスの流れ方向Oと平行方向に発電により生じた熱の放熱を促す。そのため、燃料電池単セル5は、セル側面からの放熱の影響を受け難い。したがって、燃料電池単セル5は、発電時におけるセル面内の温度分布を効率良く低減することができる。また、高熱伝導部6は、アノード1に含まれる電子導電性材料と同一の材料を主成分とする。そのため、燃料電池単セル5は、他のアノード部位との接合性を十分に確保しつつ、セル面内の温度分布を低減することができる。
【0052】
また、本例では、燃料電池単セル5は、高熱伝導部6を複数有しており、各高熱伝導部6は、直線状に形成されている。そのため、直線状に形成された複数の高熱伝導部6により、発電により生じた熱が、酸化剤ガスの流れ方向Oと平行方向に放熱されやすい。それ故、燃料電池単セル5は、セル面内の温度分布をより一層効率良く低減することが可能となる。
【0053】
また、本例では、高熱伝導部6は、アノード1の外表面に形成されている。そのため、燃料電池単セル5は、上記作用効果を得るために、アノード1の外表面に高熱伝導部6を追加形成するだけで済む。それ故、燃料電池単セル5は、セル面内の温度分布をより一層効率良く低減することができ、製造性に優れる。さらに、高熱伝導部6は、アノード1に含まれる電子導電性材料と同一の材料を主成分とする。そのため、燃料電池単セル5は、高熱伝導部6を、アノード1側における集電体として機能させることができる。それ故、燃料電池単セル5は、アノード1側の集電体を別途設ける必要がなくなり、製造性に優れる。
【0054】
(実施例2)
実施例2の燃料電池単セルについて、
図3、
図4を用いて説明する。
図3、
図4に示すように、本例の燃料電池単セル5は、高熱伝導部6がアノード1内に形成されている点で、実施例1と大きく異なっている。すなわち、高熱伝導部6は、具体的には、アノード1における拡散層12内に形成されている。拡散層12では、高熱伝導部6と、アノード1を構成する材料よりなる低熱伝導部7とが交互に配置されている。したがって、高熱伝導部6のみならず、低熱伝導部7も、酸化剤ガスの流れ方向Oに沿って直線状に形成されている。
【0055】
高熱伝導部6は、電子導電性材料と固体電解質との混合物(サーメット)より形成されている。電子導電性材料は、Niであり、固体電解質は、8YSZである。電子導電性材料と固体電解質との体積比は、90/10である。高熱伝導部6の厚みは、650μmである。高熱伝導部6の幅は、1mmであり、高熱伝導部6間のピッチは、1mmである。一方、低熱伝導部7は、電子導電性材料と固体電解質との混合物(サーメット)より形成されている。電子導電性材料は、Niであり、固体電解質は、8YSZである。電子導電性材料と固体電解質との体積比は、50/50である。低熱伝導部7の厚みは、650μmである。低熱伝導部7の幅は、1mmである。燃料電池単セル5は、低熱伝導部7に含まれる電子導電性材料の含有割合<高熱伝導部6に含まれる電子導電性材料の含有割合の関係を満たしている。拡散層12の厚みは、650μmである。その他の構成は、実施例1と同様である。
【0056】
本例の燃料電池単セル5は、例えば、次のようにして製造することができる。
【0057】
高熱伝導部6を形成するための第1部位と低熱伝導部7を形成するための第2部位とを含むシート状の拡散層形成用材料を準備する。シート状の拡散層形成用材料は、材料を混合したスラリーを成形することなどにより準備することができる。シート状の拡散層形成用材料、シート状の活性層形成用材料、シート状の固体電解質層形成用材料、および、シート状の中間層形成用材料をこの順に積層し、積層体を得る。得られた積層体を1250〜1500℃程度の温度で同時焼成する。これにより、高熱伝導部6と低熱伝導部7とを含む拡散層12、活性層11、固体電解質層2、および、中間層4がこの順に積層された焼結体を得る。得られた焼結体における中間層4の表面に、カソード形成用材料を積層し、900〜1200℃程度の温度で焼成する。これにより、中間層4の表面にカソード3を形成する。以上により、燃料電池単セル5を得ることができる。
【0058】
次に、本例の燃料電池単セルの作用効果について説明する。
【0059】
本例では、高熱伝導部6は、アノード内に形成されている。そのため、高熱伝導部6と発熱部位との距離がより近くなる。そのため、発電により生じた熱が、酸化剤ガスの流れ方向Oと平行方向に放熱されやすくなる。それ故、燃料電池単セル5は、セル面内の温度分布をより一層効率良く低減することが可能となる。
【0060】
また、高熱伝導部6と低熱伝導部7とが交互に配置されているので、発電部位が偏在し難い。その他の作用効果は、実施例1と同様である。
【0061】
<実験例>
以下、実験例を用いてより具体的に説明する。
燃料電池単セルの発電時におけるセル面内の温度分布を調べるため、シミュレーションを実施した。これについて説明する。
【0062】
(ケース1−1)
ケース1−1では、以下の燃料電池単セルを設定した。すなわち、ケース1の燃料電池単セルは、アノードと、固体電解質層と、カソードとを有している。燃料電池単セルの大きさは、100mm角である。
図5に示されるように、アノード1の外表面には、酸化剤ガスの流れ方向Oに沿って複数の高熱伝導部6が直線状に形成されている。固体電解質は8YSZからなり、厚みは0.01mmである。固体電解質の熱伝導率は1W/m・Kである。アノードはNi−8YSZ(体積比で、Ni:8YSZ=50:50)からなる単層であり、厚みは0.45mmである。アノードの熱伝導率は2W/m・Kである。カソードはLSCFからなり、厚みは0.04mmである。カソードの熱伝導率は1W/m・Kである。高熱伝導部はNiからなり、厚みは0.1mm、幅1mm、ピッチは1mmである。高熱伝導部の熱伝導率は90W/m・Kである。なお、燃料ガスの流れ方向Fは、酸化剤ガスの流れ方向Oと同方向である。
【0063】
(ケース1−2)
ケース1−1において、高熱伝導部6の厚みを0.2mmとした点以外は、同様にして、ケース1−2の燃料電池単セルとした。
【0064】
(ケース1−3)
ケース1−1において、高熱伝導部6の厚みを0.3mmとした点以外は、同様にして、ケース1−3の燃料電池単セルとした。
【0065】
(ケース2−1)
ケース1−1において、
図6に示されるように、アノード1の外表面に、酸化剤ガスの流れ方向Oと直交する方向に沿って複数の熱伝導部90が直線状に形成されている点以外は、同様にして、ケース2−1の燃料電池単セルとした。
【0066】
(ケース2−2)
ケース2−1において、熱伝導部90の厚みを0.2mmとした点以外は、同様にして、ケース2−2の燃料電池単セルとした。
【0067】
(ケース2−3)
ケース2−1において、熱伝導部90の厚みを0.3mmとした点以外は、同様にして、ケース2−3の燃料電池単セルとした。
【0068】
(ケース3−1)
ケース1−1において、
図7に示されるように、アノード1の外表面に、酸化剤ガスの流れ方向Oに沿って複数の熱伝導部91が直線状に形成されているとともに、酸化剤ガスの流れ方向Oと直交する方向に沿って複数の熱伝導部92が直線状に形成されている点、熱伝導部91および熱伝導部92のピッチをそれぞれ2mmとした点以外は、同様にして、ケース3−1の燃料電池単セルとした。
【0069】
(ケース3−2)
ケース3−1において、熱伝導部91および熱伝導部92の厚みをそれぞれ0.2mmとした点以外は、同様にして、ケース3−2の燃料電池単セルとした。
【0070】
(ケース3−3)
ケース3−1において、熱伝導部91および熱伝導部92の厚みを0.3mmとした点以外は、同様にして、ケース3−3の燃料電池単セルとした。
【0071】
(ケース4)
ケース4では、以下の燃料電池単セルを設定した。すなわち、ケース4の燃料電池単セルは、アノードと、固体電解質層と、カソードとを有している。燃料電池単セルの大きさは、100mm角である。
図8に示されるように、アノード1内には、酸化剤ガスの流れ方向Oに沿って複数の高熱伝導部6が直線状に形成されている。アノード1は、活性層(不図示)と拡散層12とを備えており、拡散層12内に、高熱伝導部6と、アノード1を構成する材料よりなる低熱伝導部7とが交互に配置されている。固体電解質は8YSZからなり、厚みは0.01mmである。固体電解質の熱伝導率は1W/m・Kである。活性層はNi−8YSZ(体積比で、Ni:8YSZ=50:50)からなり、厚みは0.01mmである。活性層の熱伝導率は2W/m・Kである。拡散層において、高熱伝導部はNi−8YSZ(体積比で、Ni:8YSZ=90:10)からなり、厚みは0.65mm、幅は1mm、ピッチは1mmである。高熱伝導部の熱伝導率は25W/m・Kである。拡散層において、低熱伝導部はNi−8YSZ(体積比で、Ni:8YSZ=50:50)からなり、厚みは0.65mmである。低熱伝導部の熱伝導率は2W/m・Kである。カソードはLSCFからなり、厚みは0.04mmである。カソードの熱伝導率は1W/m・Kである。なお、燃料ガスの流れ方向Fは、酸化剤ガスの流れ方向Oと同方向である。
【0072】
(ケース5)
ケース4において、
図9に示されるように、アノード1内に、酸化剤ガスの流れ方向Oと直交する方向に沿って複数の熱伝導部90が直線状に形成されている点、熱伝導部90の間に、低熱伝導部7が配置されている点以外は、同様にして、ケース5の燃料電池単セルとした。
【0073】
(ケース6)
ケース4において、
図10に示されるように、アノード1内に、酸化剤ガスの流れ方向Oに沿って複数の熱伝導部91が直線状に形成されているとともに、酸化剤ガスの流れ方向Oと直交する方向に沿って複数の熱伝導部92が直線状に形成されている点、熱伝導部91および熱伝導部92の間に、低熱伝導部7が配置されている点、熱伝導部91および熱伝導部92のピッチをそれぞれ2mmとした点以外は、同様にして、ケース6の燃料電池単セルとした。
【0074】
上記のように設定した各ケースについて、燃料ガスの利用率を75%、酸化剤ガスである空気ガスの利用率を30%とし、0.25A/cm
2の発電を行った場合における、発電時のセル面内温度分布ΔT(℃)を計算により算出した。なお、燃料ガスおよび空気ガスは、セル面内を均一に流れると仮定した。また、ケース3−1、ケース3−2、ケース3−3、およびケース6は、セル全面へ均一に熱を分散させることが想定されたモデルである。ケース3−1は、ケース1−1、ケース2−1と対比される。ケース3−2は、ケース1−2、ケース2−2と対比される。ケース3−3は、ケース1−3、ケース2−3と対比される。ケース6は、ケース4、ケース5と対比される。各ケースについてのシミュレーション結果をまとめて表1に示す。
【0075】
【表1】
【0076】
表1に示されるように、本発明に規定される要件を満たすケース1−1、ケース1−2、ケース1−3、および、ケース4の燃料電池単セルは、発電時におけるセル面内の温度分布を低減しやすいことが確認された。
【0077】
以上、本発明の実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変更が可能である。