(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6382202
(24)【登録日】2018年8月10日
(45)【発行日】2018年8月29日
(54)【発明の名称】超音波トランスデューサを備えた医療装置
(51)【国際特許分類】
A61B 8/12 20060101AFI20180820BHJP
【FI】
A61B8/12
【請求項の数】20
【全頁数】16
(21)【出願番号】特願2015-536945(P2015-536945)
(86)(22)【出願日】2013年10月11日
(65)【公表番号】特表2016-501558(P2016-501558A)
(43)【公表日】2016年1月21日
(86)【国際出願番号】US2013064579
(87)【国際公開番号】WO2014059299
(87)【国際公開日】20140417
【審査請求日】2016年10月5日
(31)【優先権主張番号】61/713,142
(32)【優先日】2012年10月12日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】512240408
【氏名又は名称】マフィン・インコーポレイテッド
【氏名又は名称原語表記】MUFFIN INCORPORATED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】フィアノット,ニール・イー
(72)【発明者】
【氏名】マキニス,ピーター・エス
(72)【発明者】
【氏名】ロビンス,サラ
(72)【発明者】
【氏名】チョウ,ユン
【審査官】
門田 宏
(56)【参考文献】
【文献】
米国特許出願公開第2010/0249602(US,A1)
【文献】
特開2007−152101(JP,A)
【文献】
米国特許第05240003(US,A)
【文献】
特開平03−146044(JP,A)
【文献】
米国特許第05485845(US,A)
【文献】
米国特許出願公開第2012/0172698(US,A1)
【文献】
米国特許第05377685(US,A)
【文献】
特開2007−000293(JP,A)
【文献】
特表2001−517523(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 − 8/15
(57)【特許請求の範囲】
【請求項1】
医療装置であって、
超音波ビームを発するおよび/または受信するためのトランスデューサを備え、前記ビームは前記装置の少なくとも一部の周りを回転するように適合され、
前記医療装置はさらに、
前記トランスデューサを収容し、音響的に透明な音響窓を有するハウジングを備え、該音響窓は、前記超音波ビームの少なくとも一部が通過する、内面および外面を有する、前記ハウジングの壁の少なくとも一部に設けられ、
前記ビームの経路に沿って移動した超音波エネルギの1つ以上の品質を表わす前記トランスデューサからの電子信号を受信および評価するための、前記トランスデューサに電子的に接続された超音波制御システムと、
第1の導体を形成する前記音響窓の内部の導電性材料からなる第1の膜とを備え、前記第1の導体は前記トランスデューサに電子的に接続され、第2の導体を形成する前記音響窓の内部の導電性材料からなる第2の膜をさらに備え、前記第2の導体は前記トランスデューサに電子的に接続され、前記第1の導体から電気的に絶縁される、装置。
【請求項2】
前記第1の膜は前記壁の第1の部分にあり、前記第1の膜および前記第2の膜のいずれもが前記壁の第2の部分にはないことにより、前記壁の前記第1の部分の超音波減衰は前記壁の前記第2の部分の超音波減衰と異なる、請求項1に記載の装置。
【請求項3】
前記超音波ビームは、少なくとも周期的に回転する際に、前記第1の部分および前記トランスデューサに交差する経路に沿って移動し、前記超音波ビームは、少なくとも周期的に回転する際に、前記第2の部分および前記トランスデューサに交差する経路に沿って移動し、
前記壁の前記第1の部分に交差する経路に沿った超音波の1つ以上の品質を表わす、前記トランスデューサによって送信される第1の電子信号は、前記壁の前記第2の部分に交差する経路に沿った超音波の1つ以上の品質を表わす、前記トランスデューサによって送信される第2の電子信号と異なる少なくとも1つの特性を有し、
前記超音波制御システムは、前記少なくとも1つの特性を検出し、前記少なくとも1つの特性を参照することによって複数の前記電子信号による画像を互いに位置合わせするように適合される、請求項2に記載の装置。
【請求項4】
前記壁の前記第1の部分による影響は、前記超音波ビームを第1の程度まで減衰させることを含み、前記壁の前記第2の部分による影響は、前記超音波ビームを第2の程度まで減衰させることを含む、請求項3に記載の装置。
【請求項5】
前記壁の前記第1の部分は、前記第1の電子信号の振幅が前記第2の電子信号の振幅よりも大きいように前記超音波ビームの少なくとも一部を反射する、請求項3に記載の装置。
【請求項6】
2つの前記第1の部分および2つの前記第2の部分を備え、該第2の部分のうちの一方は前記第1の膜を含み、他方は前記第2の膜を含み、前記第2の部分は正反対の場所に位置決めされる、請求項2に記載の装置。
【請求項7】
2つの前記第2の部分は、2つの前記第1の部分を第1および第2の導電部に分離し、その各々が前記トランスデューサに電気的に接続されるため、前記第1の導電部は前記トランスデューサに、および/または前記トランスデューサから信号を伝導し、前記第2の導電部は接地である、請求項6に記載の装置。
【請求項8】
前記金属材料は、金、白金、ロジウム、銀、銅およびアルミニウムの少なくとも1つを含む、請求項2に記載の装置。
【請求項9】
前記金属材料からなる層の厚みは約1nmから20μmである、請求項7に記載の装置。
【請求項10】
前記トランスデューサは前記超音波ビームを発し、前記ビームを回すように少なくとも360度の弧内に回転可能である、請求項1に記載の装置。
【請求項11】
前記トランスデューサは前記超音波ビームを発し、前記装置はさらに、少なくとも360度の経路内で回って前記トランスデューサからの前記ビームを反射し、反射した前記超音波ビームを前記トランスデューサに反射するミラーを備える、請求項1に記載の装置。
【請求項12】
前記音響窓の導電率は、25オーム未満の抵抗を含む、請求項1に記載の装置。
【請求項13】
前記第1の膜および第2の膜の各々の少なくとも一部は、前記壁を間に挟んで互いに重なる、請求項1に記載の装置。
【請求項14】
前記内面は内周を有し、前記第1の膜は前記内周の全体の周りに延在する、請求項1に記載の装置。
【請求項15】
前記外面は外周を有し、前記第2の膜は前記外周の全体の周りに延在する、請求項1に記載の装置。
【請求項16】
前記第1の導体は信号導体である、請求項1に記載の装置。
【請求項17】
前記第2の導体は接地である、請求項1に記載の装置。
【請求項18】
前記第1および第2の膜の両方が前記壁の前記内面上にある、請求項1に記載の装置。
【請求項19】
前記第1および第2の膜の両方が前記壁の前記外面上にある、請求項1に記載の装置。
【請求項20】
前記第1および第2の膜の一方が前記壁の前記内面上にあり、他方の膜が前記壁の前記外面上にある、請求項1に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、内部で使用する超音波装置と、回転機械的走査超音波装置に既存の問題の解決とに関する。
【0002】
関連出願との相互参照
本願は2012年10月12日に出願された米国仮出願番号第61/713,142号の利益を主張し、この仮出願は引用により本明細書に援用される。
【背景技術】
【0003】
背景
多数の超音波撮像装置およびシステムが提案されており、多くの設計において、超音波
装置によって得られる画像のフレームの各々を互いに適切に
位置合わせすることを保証する問題が存在する。そのような
位置合わせがなければ、超音波トランスデューサの機械的な動きの変化、または装置の故意でないもしくは意図的な動きが、医師が観察する画像内で説明されず、画像の向きまたは内容の望ましくない変更につながる可能性がある。
【0004】
たとえば、超音波トランスデューサを装置の縦軸の周りに(たとえばモータによって)回す装置が提案されている(たとえば米国特許第8,214,010号(Courtney et al.))。しかし、場合によっては、時間とともに、位置誤差(すなわちモータのロータの所望のまたは意図した位置と体内組織に対するその実際の位置との間の差)が許容できないレベルまで急激に大きくなることがある。モータの小さい速度誤差であっても、蓄積されると、画像が超音波観察画面またはコンソール上で回転しているように見えることがあり、撮像装置が静止している場合でも当該装置が体内で物理的に回転しているという印象を与えてしまう。
【0005】
そのような当惑させるまたは紛らわしい、誤った効果に対処するため、回転フィードバック機構を使用して、超音波撮像によって得られる各画像フレームを前のフレームに対して
位置合わせする(すなわち適切に方向付ける)ように角度位置を正確に測定する場合がある。ホール効果センサ、インクリメンタル直交エンコーダ、絶対グレイエンコーダ、およびポテンショメータなどのさまざまな回転エンコーダが市販されているが、そのような既製の装置はあまりにも嵩高く複雑であるため、血管内のまたは他の薄型の装置に嵌合することができない。
【発明の概要】
【発明が解決しようとする課題】
【0006】
1つの解決策は、
画像の位置合わせのための信号として使用する音響窓の内部にワイヤまたは他の構造を配置することである。しかしこれによって音響窓に欠陥が生じ、鮮明な撮像および/または治療用途に容認し得ない問題を引起す。したがって、現在まで、設計者は
位置合わせまたは鮮明な観察窓を選択することを迫られていた。
【0007】
ゆえに、嵩高さが減少し、かつ音響窓を妨害しないか他の方法で音響窓に容認し得ない欠陥を生じさせない
位置合わせ装置またはシステムが必要である。
【課題を解決するための手段】
【0008】
概要
とりわけ、連続画像を互いに
位置合わせするための回転フィードバックシステムを有する内部超音波装置が開示される。特定の実施形態では、回転フィードバックシステムを有する超音波装置(たとえば血管内超音波またはIVUS装置)は超音波ビームを発するためのトランスデューサを含み、ビームは縦軸の周りに回転可能であり、トランスデューサは、ビームを発し、反射した超音波を受信し、反射した超音波を電子信号に変換するように適合され、装置はさらに、トランスデューサからの電子信号を受信し、電子信号から画像を作成するための、トランスデューサに電子的に接続された超音波制御および/または分析(たとえば撮像)システムを含む。トランスデューサを囲む壁は、壁の2つ以上の区分同士の間で異なる音響インピーダンス(または超音波減衰)を有する。ゆえに、壁の当該区分はビームを異なる程度まで減衰させる(たとえば反射する、屈折させる、および/または吸収する)ため、制御システムによって区別可能な少なくとも1つの特性(たとえば振幅)が異なる電子信号がもたらされる。システムは、電子信号を、電子信号内の1つ以上の区別可能な特性があるかどうか監視し、それらをたとえば連続した画像で角度位置に相関付けるように適合される。
【0009】
特定の実施形態では、フィードバックシステムを有する内部超音波装置は、超音波ビー
ムを発するおよび/または受信するためのトランスデューサを含み、ビームは装置の少な
くとも一部の周りを回転するように適合され、トランスデューサは電子信号を送信するよ
うに適合され、電子信号は、ビームの経路に沿った超音波エネルギの1つ以上の品質を表
わす。ハウジングがトランスデューサを収容し、音響的に透明な音響窓を含む。音響窓は
、トランスデューサに、かつトランスデューサから電気信号を搬送するのに十分な導電率
、ならびに/または装置によって得られる画像の
位置合わせに十分な音響インピーダンスおよび/もしくは音響減衰の変化を有する。
【0010】
壁がトランスデューサを囲み、壁は、第1の態様で超音波ビームに影響を与える(たとえば超音波ビームを第1の程度まで減衰させる)第1の部分と、第2の態様で超音波ビームに影響を与える(たとえば超音波ビームを第1の程度とは異なり得る第2の程度まで減衰させる)第2の部分とを有するため、超音波ビームは、少なくとも周期的に回転する際に、壁の第1の部分に交差する(たとえば第1の部分とトランスデューサとの間の経路を含む線に沿う)経路に沿って移動し、ビームは、回転する際に、壁の第2の部分に交差する(たとえば第2の部分とトランスデューサとの間の経路を含む線)経路に沿って少なくとも周期的に移動する。トランスデューサからの電子信号を受信および評価するための超音波制御システムがトランスデューサに電子的に接続される。(たとえばトランスデューサと第1の部分との間の)壁の第1の部分に交差する経路に沿った超音波の1つ以上の品質を表わす、トランスデューサによって送信される第1の電子信号は、(たとえばトランスデューサと第2の部分との間の)壁の第2の部分に交差する経路に沿った超音波の1つ以上の品質を表わす、トランスデューサによって送信される第2の電子信号と異なる少なくとも1つの特性を有する。超音波制御システムは、少なくとも1つの特性を検出し、少なくとも1つの特性を参照することによって複数の電子信号を互いに
位置合わせするように適合される。
【0011】
具体例には、第1の電子信号が第2の電子信号に対して遅延するように、超音波ビームが第2の部分と交差する前に移動しなければならないよりも遠くまで超音波ビームは第1の部分と交差する前に移動しなければならないように壁の第1および第2の部分が配置される例、ならびに、壁の第1の部分は、第1の電子信号の振幅が第2の電子信号の振幅よりも大きいように超音波ビームの少なくとも一部を反射する例がある。壁の第2の部分は、音響インピーダンスが比較的低い(たとえば周囲のまたは隣接する環境との不整合が低い)材料を含んでもよく、壁の第1の部分は、音響インピーダンスが比較的高い(たとえば周囲のまたは隣接する環境との不整合が高い)線形部材を含む。血管または隣接組織の内部での環境における使用例では、壁の第2の部分は、水に近い音響インピーダンスを有する材料を含んでもよく、壁の第1の部分(たとえば線形部材)は、水よりもはるかに高い音響インピーダンスを有する材料からなるか当該材料を含む。そのような線形部材は、たとえばトランスデューサに接続された電子伝導体であってもよい。導体は同軸ケーブルおよび/または金属材料からなる細片を含んでもよい。線形部材は、超音波ビームの回転軸に実質的に平行に配置されてもよい。いくつかの実施形態では、壁の第1の部分は金属材料からなる膜を含み、壁の第2の部分は金属材料からなる膜を含まないため、壁の第1の部分の超音波減衰は壁の第2の部分の超音波減衰と異なる。特定の例には、2つの第1の部分および2つの第2の部分があり、第2の部分は正反対の場所に位置決めされる例がある。2つの第2の部分は、2つの第1の部分を第1および第2の導電部に分離してもよく、その各々がトランスデューサに電気的に接続されるため、第1の導電部はトランスデューサに、および/またはトランスデューサから信号を伝導し、第2の導電部は接地である。好適な金属材料は、金、白金、ロジウム、銀、銅およびアルミニウムの少なくとも1つを含み、膜または層の好適な厚みは約1nmから20μmを含む。別の例として、壁は、導電性材料でドーピングされた音響的に透明な材料を含む。
【0012】
さらに、超音波ビームを発する、および受信するためのトランスデューサを含む内部超音波装置の実施形態が開示され、ビームは装置の少なくとも一部の周りを回転するように適合され、トランスデューサは電子信号を送信するように適合され、電子信号は、ビームの経路に沿った超音波エネルギの1つ以上の品質を表わし、装置はさらに、トランスデューサを囲む壁を含み、壁は、全体的にトランスデューサの方を向く内面と、全体的にトランスデューサと反対の方を向く外面とを有する。内面は、第1の導体を形成する金属材料からなる第1の膜を含み、第1の導体はトランスデューサに電子的に接続され、外面は、第2の導体を形成する金属材料からなる第2の膜を含み、第2の導体はトランスデューサに電子的に接続され、第1の導体から電子的に絶縁される。特定の例では、第1の膜および第2の膜の各々の少なくとも一部が、壁を間に挟んで互いに重なっている。他の実施形態では、内(または外)壁または円周を区分し、互いに電気的に絶縁された2つのコーティングを内(または外)円周の分離した半分または他の区分上に配置し、ゆえに同一面上にあるが互いに電気的に絶縁されたコーティングを有することなどによって、重ならない第1および第2の膜またはコーティングを同一面上に有してもよい。第1の膜は、内面の内周の全体の周りに延在してもよく、および/または第2の膜は、外面の外周の全体の周りに延在してもよい。具体的な実施形態では、第1の導体を信号導体として使用し、および/または第2の導体を接地として使用する。壁は、超音波ビームが通過する音響窓を規定し、第1および第2の導体の少なくとも一方は少なくとも部分的に音響窓の内部にあってもよく、そのような場合、音響窓の内部の第1および第2の導体の少なくとも一方の部分によって、それらを通る超音波撮像が可能になる。
【0013】
超音波ビームを壁に対して回すための多数の構成が使用され得る。たとえば、トランスデューサは、トランスデューサがビームを回すように少なくとも360度の弧内に回転可能であるようにモータに直接的または間接的に接続されてもよい。別の例として、装置は、少なくとも360度の経路内で回ってトランスデューサからのビームを反射し、反射した超音波をトランスデューサに反射するミラーを含んでもよい。
【0014】
以下にさらに述べるように、(たとえば血管内超音波またはIVUSに使用する)超音波トランスデューサアセンブリで使用され得るエンコーダの実施形態が開示される。ハウジングまたはトランスデューサアセンブリの壁部の超音波減衰特性は、少なくとも2つの部分同士の間で変化する。超音波ビームが回転すると、ビームは、音響減衰のレベルが異なるか変化する領域を通過する。(超音波信号の結果として)トランスデューサから受信する信号(たとえばRF信号)は、振幅、または壁内の音響減衰差を反映する他の特性の変更があるかどうか監視され、これらの信号(およびそれらから作成されるか得られる画像またはデータ)がビームの角度位置に関して関連付けられる。
【図面の簡単な説明】
【0015】
【
図1】本明細書にさらに開示される内部超音波装置の実施形態の概略図である。
【
図2】本明細書にさらに開示される内部超音波装置の実施形態の概略図である。
【
図3】縦軸上に、かつ縦軸に沿って見た、
図1の実施形態によって生成される超音波場の実施形態の概略図である。
【
図4】縦軸上に、かつ縦軸に沿って見た、
図2の実施形態によって生成される超音波場の実施形態の概略図である。
【
図5】本明細書にさらに開示される内部超音波装置の実施形態の概略図である。
【
図6】本明細書にさらに開示される内部超音波装置の一部の実施形態の概略図である。
【
図7】導電性材料でドーピングされた壁を有する内部超音波装置の一部の実施形態の概略図である。
【発明を実施するための形態】
【0016】
図示される実施形態の詳細な説明
本開示の原理の理解を促進するために、図面に示される実施形態をここで参照し、特定の用語を用いてそれらを説明する。しかし、それによる特許請求の範囲の限定は意図されておらず、図示される実施形態におけるそのような変更およびさらなる修正、ならびに図面に示される本開示の原理のそのようなさらなる用途は、本開示が関連する分野の当業者が普通に思い付くと考えられることが理解されるであろう。
【0017】
ここで図面を全体的に参照すると、体内に超音波を提供するための装置20の実施形態が示されている。そのような装置は、診察または治療(介入治療を含む)用途向けであってもよく、経皮的に、皮下に、または経膣的に患者に挿入される装置を含む。とりわけ、本開示は、画像品質を犠牲にすることなく音響窓(たとえばカテーテル壁の一部)の内部に導体およびの超音波エンコーダを提供する。本明細書で用いる「音響窓」という用語は、使用時にトランスデューサ28と装置20の外部に位置決めされ得る有機流体または組織との間の装置20の構造全体にわたって音響的に透明な(たとえば超音波撮像に十分な音響エネルギの通過を可能にする)または障害のない通路を含む。換言すれば、音響窓全体は、超音波撮像を可能にするのに十分低い音響減衰を有し、および/または血液もしくは水に実質的に整合する音響インピーダンスを有する。ゆえに、音響窓には、アーティファクト、障害、または誤差などの不要な音響減衰がない。
【0018】
画像の位置合わせのための2つの技術が提示され、伝導のためのさまざまな技術が提示される。1つの
位置合わせ技術は、具体的には、超音波を強力に反射する1つ以上のマーカをカテーテル壁に追加することによって、反射に重点を置く。マーカは、反射する超音波エネルギが小さく、全体的な画像品質が影響を受けないように、小さくてもよい。別の技術は、トランスデューサによって生成される電気(たとえばRF)信号の振幅が角度位置に、すなわち超音波ビームおよびそのエコーが通過する壁の部分に依存するように、カテーテル壁の個別領域または部分の音響減衰または音響インピーダンスを変化させることによって、減衰に重点を置く。音響減衰が異なる領域の形状は大小にかかわらず任意であってよいが、好ましい実施形態ではビーム幅よりも大きい。そのような装置の例には、血管内超音波(IVUS)撮像または深部静脈血栓症(DVT)の治療のために設計された実施形態がある。伝導のためのさまざまな技術には、以下に詳述するように、導電薄膜および小型の直線状導体がある。
【0019】
図1に概略的に示される実施形態では、装置20は、内部チャンバ26を規定する壁24を有する、可撓性を有する長尺部材22(たとえばカテーテルまたは他の管状部材)であり、カテーテル22は、脈管系に挿入されるようにおよび/または脈管系に沿って移動するようにサイズ決めおよび構成される。チャンバ26の内部にはトランスデューサ28があり、トランスデューサ28はこの実施形態では、超音波ビームを発し、反射した超音波を受信し、反射した超音波を表わす電子信号を送信するためのものである。図示される実施形態は、回転モータ32に装着される超音波反射ミラー30を含む。トランスデューサ28はミラー30の代わりにモータ32に(直接的または間接的に)接続されてもよいことが理解されるであろう。超音波画像を表示するための撮像システム34がトランスデューサ28に電子的に接続される。より広いもしくは可変の超音波場を提供するための、トランスデューサ28もしくはミラー30のための二軸ジンバルマウントもしくは他の旋回機構、ならびに/またはマウントおよび/もしくはトランスデューサ28を強制的に旋回させるためのシャフトを有するリニアモータなどの他の特徴が装置22に含まれてもよい。米国仮出願番号第61/713,172号(2012年10月12日に出願済)および第61/727,680号(2012年11月17日に出願済)ならびに国際出願番号PCT/US13/
(本願と同日に出願済であり、「三次元内部超音波使用のための装置および方法(Devices and Methods for Three-Dimensional Internal Ultrasound Usage)」と題される)に例が示されており、これらの出願の各々はその全体が引用により本明細書に援用される。
【0020】
図示される実施形態におけるカテーテル22は、プラスチックまたは他の頑丈な可撓性材料からなる長尺装置であり、当該材料は、超音波信号の通過に対して与えるバリア(すなわち材料とそれに隣接する物質との境界における音響インピーダンスの差)が十分小さいため、バリアを通って超音波画像を合理的に得ることができる。壁24はこの実施形態ではカテーテル22の一部であり、ゆえに同じ超音波透明材料からなる。壁24は、図示される実施形態では装置20の遠端にあるチャンバ26の少なくとも一部を囲み、近位に延在する。壁24および/またはカテーテル22の近端は使用時に患者の外部に延在してもよく、撮像システム34または接続撮像システム34などのハンドルまたは他の作動部内で終端してもよい。カテーテル22または少なくともチャンバ26の特定の実施形態は円筒形であり、大腿動脈に挿入されて心臓に向かって大腿動脈を通過するなど、血管に挿入されて血管を通過するようにサイズ決めされる。壁24の少なくとも一部は、トランスデューサ28からの超音波ビームが出るときに通過する、かつ反射した超音波がトランスデューサ28に戻るときに通過する、超音波場36または音響窓の一部を規定する。
【0021】
壁24は、チャンバ26への流体の注入を可能にするポート27または他の特徴を有してもよい。チャンバ26と、装置20が入れられる血液または他の体液との境界における超音波反射率に対処するため、チャンバ26の外部の流体と同様の超音波搬送特性を示す流体Fがチャンバ26に入れられる。特定の実施形態では、流体Fは食塩水であるため、チャンバ26(食塩水)内の超音波特性はチャンバ26の外部(血管内の血液)の超音波特性と同様である。ポート27によって、装置20の使用直前にユーザが流体Fをチャンバ26に注入することができる。ポートPはその後、チャンバ26から流体Fがほとんどまたは全く逃げないように自己封止し得る。1つ以上の封止材を装置20内に配置して、チャンバ26内の流体Fをモータ32から分離してもよい。
【0022】
トランスデューサ28は図面に概略的に示されている。「トランスデューサ」という用語は、2つ以上の部品のアセンブリおよび単一部品を含むと理解されるべきである。さらに、本明細書で使用される「トランスデューサ」は、超音波を送信し(すなわち電気(RF)信号を超音波に変換し)、超音波を受信する(すなわち超音波を電気(RF)信号に変換する)、または両方を行なう装置を含むことが理解されるであろう。複数のトランスデューサまたは部品が設けられる場合、超音波の送信がそのうちの1つで起こり、受信が別のもので起こってもよい。本明細書に説明されるトランスデューサは、1つ以上の圧電要素をそれぞれのトランスデューサとして有してもよく、体の内部または外部の他のトランスデューサと組合されて動作してもよい。
【0023】
例示的なトランスデューサ28は本体またはバッキング層40を含み、本体40は、本体40の一方側に取付けられた圧電要素42と、1つ以上のクランプリング44とを有する。インピーダンス整合層(図示せず)がトランスデューサ要素42に、たとえば本体40の反対側にさらに取付けられてもよい。トランスデューサ28は、
図1および
図2の実施形態ではチャンバ26およびカテーテル22の遠い(すなわちユーザからより離れた)部分に位置決めされ、要素42は図に示されるように縦方向に、かつ近位に向いている。ミラー30は、超音波ビームを場36内で壁24を通って横方向に(すなわちカテーテル22の縦軸から全体的に離れるように)反射する表面46を含む。
図5の実施形態では、トランスデューサ28は、全体的に横方向の超音波ビーム方向を提供するようにモータ32に取付けられる。本体40は超音波信号に実質的に不透明であるか、または超音波信号を反射し得るため、そのような信号は実際上、圧電要素42から外向きの横方向に、たとえばトランスデューサ28から径方向に一方側にまたは制限された角度範囲にのみ投影される。
【0024】
回転モータ32は、これらの実施形態ではミラー30(たとえば
図1および
図2)またはトランスデューサ28(たとえば
図5)に直接的または間接的に接続するための回転シャフト70を含む。回転モータ32は、カテーテル22のチャンバ26に入れられるのに適している超小型モータであり、好ましくは径が約2.8mm未満のサイズである。そのような超小型モータの例には、圧電または電磁モータがある。たとえば、モータ32の特定の実施形態は、ほとんど部品を有さず、小型であり、複雑度が最小である、2相のコアレスのブラシレスDC電磁モータである。シャフト70は
図1の実施形態では中空であり(すなわち自身を貫通する内腔72を規定し)、モータ32(たとえばデュアルシャフトモータ)全体を通って延在する。シャフト70を通る内腔72によって、電子伝導体(たとえばワイヤもしくはケーブル)、プルもしくはプッシュ機構、および/または他の特徴がシャフト70を通過することができ、シャフト70の回転に影響を与えることなく電気および/または機械力またはエネルギを内腔72を通って伝達することができる。
【0025】
例示される実施形態における回転モータ32は、シャフト70を単一の回転方向において連続的に回転させるように構成される。そのような実施形態では、トランスデューサ28によって発せられる超音波ビームは、その単一の回転方向においてシャフト70の縦軸の周りを回転する。回転モータ32は代替的に、往復運動で走るように構成され、シャフト70が、(たとえば予め定められた時間または巻数の)第1の回転方向における回転と、(たとえば予め定められた時間または巻数の)第2の反対の回転方向における回転とを切換えてもよいことが理解されるであろう。そのような往復運動装置の例は、米国仮出願番号第61/613,135号(2013年10月12日に出願済)および国際出願番号PCT/US13/
(本願と同日に出願済であり、「往復運動する内部超音波トランスデューサアセンブリ(Reciprocating Internal Ultrasound Transducer Assembly)」と題される)に記載されており、これらの出願の各々はその全体が引用により本明細書に援用される。図に見られるように、ミラー30またはトランスデューサ28は、装置20の全体的な縦軸に沿っているシャフト70に固定装着されてもよい。シャフトまたはロータ70が回転すると、トランスデューサ28によって発せられる超音波ビームは同じ速度で回転する。
【0026】
図示される実施形態では、トランスデューサ28によって発せられる、および受信される超音波ビームまたは信号をフィードバック機構として使用し、装置20の残りの部分に対する回転モータ32(およびそれによって回転する超音波ビーム)の回転位置を正確に評価または監視し、トランスデューサ28によって得られる画像の適切な
位置合わせを保証する。図示される実施形態は、超音波ビームが少なくとも1つの別個の場所でカテーテル22を出るときに当該ビームの少なくとも一部を減衰させる少なくとも1つの特徴を含む。たとえば、
図1に示される実施形態は、壁24の内部に(すなわちチャンバ26内に)に固定され、超音波場36(すなわちモータ32による回転時に要素42からの超音波ビームが回転およびスイープする際に当該ビームが通過する領域)を通過する同軸ケーブル80を含む。特定の例におけるケーブル80は、トランスデューサ28に電力を供給する第1のチャネルまたは導体82と、要素42による超音波信号の受信によって発生する信号を撮像システム34に伝導する第2のチャネルまたは導体84とを有する。ケーブル80はさらに、壁24が超音波ビームを減衰させるよりも高い程度まで超音波ビームを(たとえば反射によって)減衰させる線形マーカの役割を果たす。壁24の(たとえば反射、屈折、散乱または吸収による)はるかに小さい減衰の中でのケーブル80のより大きい減衰は壁24に変化する減衰状態を提供し、超音波(放射ビームまたは反射エコー)は、ケーブル80が存在する場所を除いて壁24を比較的容易に通過または横断する。ゆえに、音響窓または場36内のケーブル80の当該別個の場所で生成される音響信号は、場36内の他の場所で生成される音響信号とは実質的に異なるため、実質的に異なるRF信号がトランスデューサ28によって生成されて観察者に送られる。たとえば、ケーブル80の当該別個の場所に関するRF信号は、壁24上の他の場所に対してトランスデューサ28によって他の方法で生成されるよりもはるかに大きい振幅を有し、当該場所からの実質的な反射を示し得る。別の例として、その別個の場所に関するRF信号は、他の信号よりもはるかに小さい(またはゼロに近い)振幅を有し、トランスデューサ28に近づく超音波がケーブル80によって遮断されることを示し得る。いくつかの実施形態では、ケーブル80による反射、遮断または他の減衰は、超音波場36内の約15度の弧(画像領域の1/24)であり得る角度B(
図3参照)に及び得る。
【0027】
図示される実施形態では、ケーブル80は、超音波場36の全体にわたって装置20の縦軸Aと平行である。超音波ビームが壁24の円周の周りを進むと、ビームは壁24によって実質的に均一に減衰され、たとえば、壁24は、ビーム内の超音波エネルギのすべてまたは実質的に均一の部分を通過させる。超音波ビームがケーブル80に出合うと、ケーブル80は自身に向けられるビームのいくらかまたはすべてを遮断する。その別個の場所(たとえば
図3の領域B)における反射超音波は、ケーブル80なしの超音波場の領域とは大幅に異なるRF信号(トランスデューサ28によって受信されるエコーを表わす)を生成する。たとえば、ケーブル80の方向に向けられた、または当該方向から受信された放射から生成されるRF信号は、壁24に沿った他の場所で受信された信号よりもかなり強力(たとえばより高強度)であり、ケーブル80による超音波ビームの本質的に全反射を示し得る。別の例として、ケーブル80は超音波ビームを散乱させ、ケーブル80を通ってトランスデューサ28に接近する戻り超音波エコーがないため、RF信号はゼロであるかゼロに近づき得る。この特有の信号が撮像システム34(たとえば表示ソフトウェアおよび装置)に出合うと、撮像システム34はその特有の信号を観察し、ビームがケーブル80に向けられていると判断する。したがって、壁24上のケーブル80、装置20の他の静止位置、および/または体内の組織もしくはマーカに対する超音波ビームの位置を正確に知ることができる。画像フレーム(たとえば連続フレーム)は、ケーブル80の静止位置のマーカまたはインジケータとしてのケーブル80によって提供される特有の信号特性を用いて撮像システム34によって
位置合わせされるため、連続画像は同じ位置および/または向きで表示されて医師または他のオペレータによって観察される。
【0028】
ケーブル80はこの実施形態ではチャンバ26の内部で、壁24の内面上にあるとして示されている。ケーブル80は壁24に沿って装置20の外部に配置されてもよいことが理解されるであろうが、ケーブル80がチャンバ26内にある構成では、血管内使用の分野で不利であり得るように装置20の外径が増加したり、装置20に不規則な外面が設けられたりしない。他の実施形態では、ケーブル80は壁24内に、すなわち壁24の物質同士の間でその内径と外径との間に配置される。たとえば、ケーブル80は、最初に壁24を形成する際に、または壁24内の材料の層同士の間に配置されてもよい。そのような構成は余分な外側構成を拡大または提示せず、動作部品のためのチャンバ26内の最大スペースを維持する。さらに、ケーブル80がトランスデューサ28へのまたはトランスデューサ28からの電気信号の伝達に不要である場合、壁24内にまたはその表面上に金属細片または層を配置して上述の減衰を提供してもよい。そのような細片または層は、より薄型形状を装置に提供する。
【0029】
壁24の残りの部分によって提供される遮断と異なる程度まで超音波を部分的にまたは完全に遮断することなどによって変化減衰壁24を作成するさまざまな材料または特徴をエンコーダまたは
位置合わせツールとして使用してもよいことが認識されるであろう。たとえば、
図2に示される実施形態では、薄い金属膜、コーティングまたは層からなる2つの区分90,92が壁24上に配置される。示される特定の実施形態は壁24の内部に(すなわちチャンバ26に面するか隣接する)区分90,92を有するが、そのような区分90,92は壁24の外側にまたは壁24内に、すなわちその内径と外径との間に配置されてもよいことが理解されるであろう。
図3の実施形態では、当該膜はスパッタリングまたは電気めっきなどの技術を用いて壁24の内側に堆積され、他の実施形態では、壁24(の外面上の)外側に配置されてもよい。特定の実施形態では、音響減衰を最小にするように音響窓の内部の壁24の部分の一方側(たとえば内側または外側)のみが薄膜でコーティングされる。図示される実施形態は、2つの開放された、または覆われていない部分94,96によって分離された2つの区分90,92を示す。部分94,96はこの実施形態では互いに正反対であり、実質的に同じ弧を形成する。1つの開放部分または2つよりも多いそのような開放部分が設けられてもよいことが理解されるであろう。
【0030】
伝導および/または超音波減衰の差を提供する多数の物質が区分90,92内の膜または層に使用され得ることが理解されるであろう。金属(たとえばアルミニウム)が導電性のために使用されており、金、白金、またはロジウムからなる区分90,92の導電薄層の特定の実施形態がその生体適合性、高導電率および耐酸化性のために使用されてもよい。区分90,92の膜に効率的な導電体を使用すると、それらの区分90,92を使用して電気信号を超音波場を介して伝導することができ、さらに、装置20の変化減衰壁24内の場36内の超音波減衰の差が提供される。そのような導電薄膜は高導電率を有し、さらに音響伝達を可能にするため、そのような膜を有する音響窓が音響窓を横切ってまたは通って(すなわち縦軸に沿って)信号を伝導することができる一方で、導体の後ろの観察可能な画像を得ることができる。特定の実施形態では、層またはコーティングの厚みは約0.1μmから20μmであり、たとえば厚みは約2μmである。当該区分は一定の実施形態では音響窓の半分以上を覆い、特定の例(たとえば
図4)では各区分90,92が音響窓の約150度を覆い、それら同士の間の非コーティング領域の各々は約30度を覆い、互いに正反対である。他の実施形態では、区分90,92によって形成されるそれぞれの弧は最大で約160、最大で約170、または最大で約175度であってもよい。他の実施形態では、区分90,92(および/またはそれら同士の間のスペース)の弓形範囲は等しくなくてもよいことも理解されるであろう。非コーティング領域は、
位置合わせのために使用され得る音響信号内の非常に小さい摂動を示す。
【0031】
そのような厚みを試験したところ、所望通りに動作することがわかっている。より厚い層も使用可能であるが、これは音響反射を増加させ(したがって退去および戻りの両方における壁24を通過する音響エネルギの減少)、電気信号の損失を減少させ、逆の場合も同様である。両方のそのような損失は画像品質を劣化させるため、最小にされるべきである。音響反射率(したがって装置20の音響損失)は、膜と周囲材料(たとえば水または血液)とのインピーダンス不整合、膜厚、および超音波周波数に関連する。試験から、厚みが16μmのアルミニウム膜によって、往復の、すなわち外に向かう、かつ戻る、音響窓の内部の膜を2回通るトランスデューサ28からのパルスエコーの音響損失が4dB未満になることがわかっている。金薄膜によって、そのような往復時の超音波減衰が5dB未満になることが予想される。
【0032】
上述のような薄い金属層またはコーティングを使用する実施形態は、画像の
位置合わせを可能にしつつ、完全な360度領域における撮像の利点を提供する。
図3〜
図4に概略的に見られるように、(たとえば高音響インピーダンスを有する)ケーブルまたは他の長尺側超音波反射片を使用する実施形態を、薄膜を音響減衰器として使用する実施形態と比較する。
図3では、超音波ビームがページに垂直な(ページから出る)軸の周りを回り、ケーブル80は壁24上の一方側に静止配置されている。外円100は撮像すべき領域(たとえば血管などの組織)を表わし、超音波ビームが移動する内部を示している。ビームが回ると、各回転はケーブル80を通り、これによって視覚化不可能な、視覚化可能範囲がより小さい扇形領域102、摂動、またはケーブル80の後ろの異なる減衰を有する領域が生成される。上述のように、その領域102は弧の約15度以下の領域であってもよい。組織または領域の残りの部分は容易に撮像され、扇形領域102は静止したままであり、上述のように互いに画像を
位置合わせするために使用される。
【0033】
図4では、ビームは同様にページから出る軸の周りを回り、壁24に沿った金属薄層からなる2つの区分90,92を有する。当該層によって、上述のように、区分90,92同士の間の開放スペース94,96よりも低い程度ではあるが音響伝達が可能になる。ここでも、
図4の外円100は撮像すべき領域(たとえば脈管部分)を表わす。ビームが回ると、ビームはいくらかの減衰を伴って区分90,92を通過するが、十分な音響エネルギを有して区分90,92を通り抜けて所望領域を撮像する。開放スペース94,96はトランスデューサ28へのより強力な音響信号の戻りを提供し、これが画像の
位置合わせのために使用される。コーティングまたは層状化された区分90,92は画像品質を若干低下させ、より大きい弧にわたる全体の撮像深さを制限するが、超音波場36または音響窓全体にわたる撮像を可能にし、一方で、ケーブル80はその後ろの角度の視覚化を阻止または制限するが、場36の他の部分の視覚化には影響を与えない。
【0034】
2つの区分90,92が薄層でコーティングされており、非コーティング領域が当該区分を分離している例では、当該区分は別個の電気機能を有し得る。たとえば、1つの区分90はトランスデューサ28に、かつトランスデューサ28から電子(RF)信号を搬送し、トランスデューサ28に電力を供給して超音波ビームを発し、かつ超音波ビームの反射を表わすトランスデューサ28からの信号を搬送して、組織の画像を生成し得る。他方の区分92は接地として機能し得る。ゆえに、非コーティング領域94,96は、区分90,92を介して可能になったのとは異なる信号の強度を可能にするため、画像の
位置合わせのために、かつ区分90,92の互いの電気的絶縁のために機能する。
【0035】
金属材料または他の導電性材料からなる薄膜または層がトランスデューサ28のための、または他の方法における他の使用のための導体として用いられ得ることも理解されるであろう。全体的に
図5を参照して、壁24が内部チャンバ26を規定している可撓性長尺部材22(たとえばカテーテルまたは他の管状部材)を有する内部超音波装置120の実施形態が示されており、カテーテル22は、脈管系に挿入されるようにおよび/または脈管系に沿って移動するようにサイズ決めおよび構成される。チャンバ26の内部にはトランスデューサ28があり、トランスデューサ28はこの実施形態では、超音波ビームを発するため、かつ反射した超音波を受信し、反射した超音波を表わす電子信号を送信するためのものである。超音波ビーム用の音響窓または場36が示されている。部材22、壁24、チャンバ26、トランスデューサ28および場36はすべて、上述の実施形態と同様または同一である。
【0036】
壁24は、全体的にトランスデューサ28の方を向く(たとえば装置120の縦軸に向かって内向きの)内面131と、全体的にトランスデューサ28と反対の方を向く外面133とを含む。ゆえに、内面131はチャンバ26の少なくとも一部を全体的に規定する。内面131の少なくとも一部上に、たとえば区分90,92に関して上記した材料の1つ以上などの金属材料からなる膜または薄層190がある。例示される実施形態では、膜190は内面131の周囲(この場合は円周)全体に延在し、場36または音響窓の一部の内部にある。他の実施形態では、膜190は周囲全体未満に延在してもよい。さらに、他の実施形態は、場36のすべてを取囲むか、または場36の内部に全くない装置120の縦軸に沿った長さを有する膜190を含んでもよい。同様に、外面133の少なくとも一部は金属材料からなる膜または薄層192を含む。例示される実施形態では、膜192は外面133の周囲(この場合は円周)全体に延在し、場36の一部の内部にある。他の実施形態では、膜192は周囲全体未満に延在してもよい。さらに、他の実施形態は、場36のすべてを取囲むか、または場36の内部に全くない装置120の縦軸に沿った長さを有する膜192を含んでもよい。図示される実施形態では、互いに重なる膜190,192が示されており、すなわち、装置20の径は各膜190,192に交差しているが、これらの膜は壁24によって分離されている。他の実施形態は、重ならない第1および第2の膜またはコーティング(たとえば膜190,192)を同一面(たとえば面131および133の一方)上に有してもよいことが理解されるであろう。たとえば、2つのコーティング190,192は、場36の同じ側の別個の半分、対向領域上に(たとえば各々または両方が場36の周囲の一部を覆っている)、または内面131もしくは外面133の他の部分上に配置され、(たとえば非導電スペースによって)互いに電気的に絶縁されることによって、同一面上にあるが互いに電気的に絶縁されているコーティングを有することができる。
【0037】
膜190,192の配置の別の実施形態が
図6に概略的に示されており、ここでは膜190は場36の一領域内の内面131上にあり、膜192は場36の別の領域内の外面133上にある。この図は、膜190および192が重ならないように約180度の別個の弧の周りに延在していることを示している。膜190,192の各々はより小さい弧を覆ってもよく、各々が互いに異なる弧を覆ってもよく、互いに対向してもよく、または他の方法で配置されてもよいことが理解されるであろう。そのような実施形態は、少なくともトランスデューサまたは反射器からそれぞれの膜190,192に移動する超音波ビームの移動距離が異なるために、膜192によって覆われる領域と比較して膜190によって覆われる領域と異なる超音波ビームに対する影響を提供する。ゆえに、膜192に交差する経路に沿って移動する超音波ビームは、膜192に出合う前に、膜190に交差する経路に沿って移動する超音波ビームの距離および時間と比較してより長い距離を移動する(かつより長い時間が掛かる)。膜190,192または(本明細書で記載されるような)他の部分による超音波ビームに対する他の影響も存在し得る。
【0038】
膜190,192は、図示される実施形態では壁24の材料などによって互いに絶縁される別個の電子伝導体を形成する。膜190,192の各々はこの実施形態ではトランスデューサ28に別個に電子的に接続されるため、一方の膜が信号導体として作用し、他方が接地として作用する。
図5の例では、外側膜192が接地であり、内側膜190が信号導体である。膜190,192は同一材料からなり、上述の区分90,92と同様に実質的に同じまたは同一の方法で準備されてもよい。上述のような厚みを有する場合、膜190,192は、(反射、屈折または吸収などによって)減衰が存在する場合であっても、自身を通る超音波撮像を可能にする。導体としての膜190,192は、区分90,92に関して上記したフィードバックまたは
位置合わせ特性を有してまたは有さずに使用され得ることが理解されるであろう。たとえば、両方の膜190,192がそれぞれの周囲に延在し、場36の大部分またはすべてに沿って延在する実施形態では、膜190,192による減衰は場36の内部で実質的に一定であるため、トランスデューサによって送信される電子信号は、信号または画像の
位置合わせまたはアライメントを可能にする振幅または他の差を有しない。
【0039】
いくつかの実施形態では、音響窓は、導電性材料でドーピングされた音響的に透明な材料の混合物を含んでもよい。一例(
図7に示される)として、壁24は、導電性材料でドーピングされた音響的に透明な材料で構成される。いくつかの例では、合金が使用される。添加される合金の量は、層の抵抗率を十分低下させることができるべきである(たとえば<25オーム、またはトランスデューサのインピーダンスのオーダの1/10以下が好ましい)。
図7の実施形態では、絶縁バリア196が壁24の内部に位置決めされ、2つの信号チャネルを作成して互いに電気的に絶縁する。
【0040】
伝導体の他の実施形態は、電気信号を搬送するのに効果的であるが、音響窓内に提供する減衰差がわずかであるかまったくないほど小さいカーボンナノチューブを有する膜を含んでもよい。一分子グラフェン層は音響特性を示さないが、電気信号を搬送するのに効果的である。イオン析出物を含むアルミニウム層を使用してもよい。いくつかの実施形態では、二重層設計が、壁24の外面上の絶縁コーティングと、壁24の内面上の第2の絶縁コーティングとを含む。
【0041】
図面および上記の説明において実施形態を詳細に図示および説明してきたが、これらの特徴は例示的であり制限的でないと考えられるべきであり、特定の実施形態のみが図示および説明されたこと、かつ本開示の思想内にあるすべての変更および修正の保護が所望されることが理解される。上述の特定の実施形態に関して有用な他の特徴または実施形態の例は、米国仮出願番号第61/713,186号(2012年10月12日に出願済)および国際出願番号PCT/US13/
(本願と同日に出願済であり、「マイクロモータを有する機械的走査超音波トランスデューサ(Mechanical Scanning Ultrasound Transducer with Micromotor)」と題される)に見られ、これらの出願の各々はその全体が引用により本明細書に援用される。1つ以上の具体的な実施形態に関して上記した特徴または属性は、開示した構造および方法の他の実施形態に使用されるか組込まれてもよいことが理解されるであろう。