(58)【調査した分野】(Int.Cl.,DB名)
前記ユーザの前記環境内の前記刺激を検出するステップは、視覚的刺激、聴覚的刺激、身体的刺激、振動性刺激、電磁的刺激、嗅覚的刺激、温度刺激、および運動刺激のうちの少なくとも1つを検出するステップを含むことを特徴とする請求項1に記載のコンピュータベースの方法。
前記没入型仮想現実、拡張された仮想現実、またはわずかに拡張された現実の前記環境内の前記検出された刺激を前記ユーザに警告するステップをさらに含むことを特徴とする請求項5に記載のコンピュータベースの方法。
前記没入型仮想現実内にコンテンツを執筆するステップをさらに含み、可変レベルの支援を提供するステップは、前記執筆されたコンテンツをさらに提供することを特徴とする請求項5に記載のコンピュータベースの方法。
前記可変レベルの支援を提供するステップは、前記ユーザを訓練して、より低いレベルの支援を必要とさせるステップを含むことを特徴とする請求項1に記載のコンピュータベースの方法。
可変レベルの支援を前記ユーザに提供するステップは、個人的な安全訓練またはチームの安全訓練を提供するステップを含むことを特徴とする請求項1に記載のコンピュータベースの方法。
可変レベルの支援を前記ユーザに提供するステップは、前記ユーザのデジタルフットプリントを解析して、技能のレベルを判断し、技能の前記判断されたレベルに基づいて、提供された可変レベルの支援を修正するステップを含むことを特徴とする請求項1に記載のコンピュータベースの方法。
前記検出された刺激から判断された肯定的な推論および否定的な推論を前記ユーザに警告するステップをさらに含むことを特徴とする請求項1に記載のコンピュータベースの方法。
前記環境刺激検出モジュールは、視覚的刺激、聴覚的刺激、身体的刺激、振動性刺激、電磁的刺激、嗅覚的刺激、温度刺激、および運動刺激のうちの少なくとも1つを検出するようにさらに構成されることを特徴とする請求項14に記載のシステム。
前記没入型仮想現実、拡張された仮想現実、またはわずかに拡張された現実の前記環境内の前記検出された刺激を前記ユーザに警告するように構成された警告モジュールをさらに備えることを特徴とする請求項18に記載のシステム。
前記支援モジュールは、前記没入型仮想現実内のコンテンツを執筆するようにさらに構成され、前記支援モジュールは、前記執筆されたコンテンツを提供するようにさらに構成されることを特徴とする請求項18に記載のシステム。
可変レベルの支援を前記ユーザに提供することは、前記ユーザのデジタルフットプリントを解析して、技能のレベルを判断し、技能の前記判断されたレベルに基づいて、提供された可変レベルの支援を修正することを含むことを特徴とする請求項14に記載のシステム。
前記検出された刺激から判断された肯定的な推論および否定的な推論を前記ユーザに警告するように構成された警告モジュールをさらに備えることを特徴とする請求項14に記載のシステム。
前記検出された環境のリスク評価に基づいて、指示を前記ユーザに提供するように構成されたリスクベースの指示モジュールをさらに備えることを特徴とする請求項14に記載のシステム。
【発明を実施するための形態】
【0014】
以下、本発明の例示的な実施形態を記述する。
【0015】
図1は、環境110内でシンビオティックヘルパー104を使用しているユーザ102の
図100である。シンビオティックヘルパー104は、仮想現実環境をユーザ102に提供することによってユーザ102を支援する。シンビオティックヘルパー104は、異なるレベルの仮想現実をユーザ102に提供することができる。シンビオティックヘルパー104は、没入型仮想現実(または、没入型現実)をユーザ102に提供することができる。没入型仮想現実は、実世界環境110と無関係の完全な仮想現実環境をユーザに提供する。例えば、没入型仮想現実は、ユーザの安全性を危険にさらさずに重要な訓練経験をユーザに提供する訓練シミュレーションであってよい。シンビオティックヘルパーは、没入型仮想現実を用いることによって、実世界環境110に関連する従来のリスク(例えば、身体的傷害、器物破損など)からユーザを守る。
【0016】
シンビオティックヘルパー104は、拡張された現実(または、拡張された仮想現実)をユーザ102に提供することもできる。拡張された現実は、重要な情報をオーバレイすることが可能な環境110の表現をユーザ102に提供することができる。例えば、シンビオティックヘルパー104は、特定の機械または機械装置のセットをどのように使用するかに関してオーバレイされた指示と共に、環境110の表現を表示することができる。別の例として、シンビオティックヘルパー104は、ユーザに方向を示すためのGPSロケータに基づいてオーバレイされた指示と共に、環境110の表現を表示することができる。シンビオティックヘルパー104は、ユーザの能力のレベルを判断して、能力のレベルにふさわしい指示を表示することができる。例えば、シンビオティックヘルパー104は、低い訓練レベルのユーザ102に、基本的な、またはより詳細な指示を表示することができ、かつより高い訓練レベルのユーザ102に、より高度な、もしくはより複合的なタスクに関するより高度な、またはより高いレベルの指示を表示することができる。加えて、シンビオティックヘルパー104は、詳細な段階的な指示を提供することによって、低いレベルの訓練から複合的なタスクまでユーザ102を案内することができる。シンビオティックヘルパー104は、そのプロセスの侵入性がより低く、あまり詳細でないリマインダーを提供することによって、高い訓練レベルのユーザ102が同じタスクを経験するのを支援することができる。
【0017】
シンビオティックヘルパー104は、ユーザ102が後でより少ない訓練を必要とするように、ユーザ102に訓練を提供する。例えば、シンビオティックヘルパー104は、シンビオティックヘルパー104が次の訓練セッションで、より低いレベルの支援(例えば、指示性がより低いレベルの訓練)を提供できるような訓練をユーザ102に提供することができる。これは、シンビオティックヘルパー104の支援から独立するようにユーザを訓練することが可能である。
【0018】
シンビオティックヘルパー104は、わずかに拡張された現実(または、わずかに拡張された仮想現実)をユーザ102に提供することもできる。わずかに拡張された現実は、ユーザ102の注意(例えば、即時の注意)を必要とする刺激の通知または警告の表現と共に環境110の表現を表示する。例えば、環境110内で、ユーザ102は、視覚的刺激108および/または聴覚的刺激106のいずれかを認知できるほど近接している場合がある。
図1は、自動車として視覚的刺激108を、自動車から発せられた音として聴覚的刺激106を例示するが、視覚的刺激108および聴覚的刺激106は環境110内で生み出される何らかの刺激であってよい点を当業者は認識されよう。ユーザ102は、人の知覚のしきい値に満たないが、シンビオティックヘルパー104などの機械の知覚のしきい値を超える視覚的刺激108または聴覚的刺激106のいずれかに近接している場合がある。シンビオティックヘルパー104は、視覚的刺激および音響刺激を検出するように構成されたプロセッサに結合されたカメラならびにマイクロフォンを利用することによって、視覚的刺激108および聴覚的刺激106を検出することができる。シンビオティックヘルパー104は、運動センサ、熱センサ、光センサなどを同じように用いることができる。
【0019】
シンビオティックヘルパー104は、視覚的刺激108および聴覚的刺激106の通知をユーザに対して生成することができる。ある例示的な通知は、シンビオティックヘルパー104が、自然言語もしくはコードを使用して、その刺激をユーザ102に知らせるためにユーザ102に話しかける音響通知、または環境110の表現上でオーバレイされた視覚的通知など、警告であってよい。例えば、視覚的通知は、ユーザが読み取る言語メッセージか、例えば、その刺激を明るい色もしくは注意を引く枠もしくは形状で囲むことによって、またはその刺激を比較的明るい状態に残しながら、環境110の残りの部分を不鮮明にすることによって特定の刺激が強調表示された、環境110の表現であってもよい。シンビオティックヘルパー104は、これらの方法のうちのいずれか1つもしくはそれらの組合せを用いて、視覚的手段によって、または聴覚的手段によってのいずれかで、ユーザの注意を特定の刺激に向けさせることができる点を当業者は認識されたい。
【0020】
図2は、中央システム202と通信するために用いられるシンビオティックヘルパー204のある例示的な実施形態200のブロック図である。中央システム202は、知識ベース208、1つまたは複数のマスタリポジトリ210、他のチームメンバモジュール212、および追加の入力モジュール214からの情報を交換することによって、シンビオティックヘルパー204と通信するために結合されたワイヤレス通信モジュール206を含む。さらに、ワイヤレス通信モジュール206は、視覚情報、聴覚情報、嗅覚情報、またはシンビオティックヘルパー204が記録もしくは収集するように構成された何らかのその他の情報など、環境から検出された情報をシンビオティックヘルパー204から受信するように構成される。
【0021】
知識ベース208は、シンビオティックヘルパー204がそれを用いてそのユーザを支援するように構成された様々な活動の知識を含む。例えば、知識ベース208は、様々な刺激に対応するデータを含むことが可能である。知識ベース208は、シンビオティックヘルパー204がその環境内で検出して、その刺激の存在をユーザに通知できる様々な聴覚情報または視覚情報のモデルを含むことが可能である。
【0022】
(1つもしくは複数の)マスタリポジトリ210は、言語または文化に特定の(1つもしくは複数の)知識ベースである。一実施形態では、マスタリポジトリ210は、言語および文化の知識を橋渡しすることができる。マスタリポジトリ210は、コンテンツと関係とを含む。
【0023】
本明細書で説明される場合、概念は、(製品、コンピュータ、疾病、企業、およびツールなど)オブジェクトのタイプ、ならびに(足の爪を切る、旅行に出る、診断手順を実行する、および医薬品を製造するなど)活動のタイプを含む。
【0024】
本明細書で説明される場合、関係は、概念を一緒に結合させる。関係は、分類関係(例えば、概念のサブタイプ、サブクラス、もしくはインスタンス)、パートノミック(partonomic)関係(例えば、デバイスの、組織の、もしくは事象の一部である概念)、地理空間関係(例えば、概念の近接性、概念のインスタンスの接触、概念の隣接性、もしくは概念の相対的位置)、ツール関係および/またはリソース関係(例えば、2.5インチ(6.35cm)から3.5インチ(8.89cm)用のボールベアリング抽出器を備えた、スライドハンマーに結合された3インチ(7.62cm)のボールベアリング)、ならびに時間関係(例えば、前、後、同時、共存)であってよい。
【0025】
マスタリポジトリ210は、多くの基本的および複合的な概念ならびに関係の集約である。これらの概念および関係は、それぞれの領域特定の指示的意図(instructional intent)で強化される。マスタリポジトリ210は2つの目標を有する。第1に、マスタリポジトリ210は、特定の文化および言語で「常識」と一般に見なされるものに対処する。第2に、マスタリポジトリ210は、特定の領域の新しい訓練3D経験の指示的意図に特定の新しい関連する概念および関係を追加する。
【0026】
マスタリポジトリ210に領域特定の訓練を追加するとすぐに、その領域特定の訓練の概念に関連する3D(および、2D)表現がマスタリポジトリ210に追加される。並行して、領域特定の訓練が執筆されている(authored)環境(および、その成分特徴)がマスタリポジトリ210に追加される。(ウィキペディアなど)追加の事実および定義を含む外部のリポジトリを処理、検索、ならびに/または索引付することによってマスタリポジトリ210を拡張することが可能である。
【0027】
シンビオティックヘルパー104は、多数のアサーション(事実および規則)のうちのいずれかに関するブール結論を判断するための形式論理学と共に、概念および関係に基づいて構築されたマスタリポジトリを使用する。マスタリポジトリ210を用いるシンビオティックヘルパー104は、状況に依存しないアサーション、または状況に依存するアサーションのいずれかを解決することができる。例えば、特定のユーザ、Tomによって理解されるフラストラム(錐台)では、マスタリポジトリを使用するシンビオティックヘルパー104は、「およそ2時の方向に、オレンジ色の生成器の左側の第1の赤色の垂直管」を判断することができる。
【0028】
シンビオティックヘルパー104は、その訓練環境が設計されているように訓練環境にアクセスすること、および訓練生によって認知されて、対話されるように、その訓練環境にアクセスすることが可能であるため、シンビオティックヘルパー104は、そのようなアサーションを解決することができる。シンビオティックヘルパー104は、いくつかの実施形態では、画像認識技法を用いることができる。シンビオティックヘルパー104は、訓練環境のモデルから対応する量を抽出して、そのモデルのその部分内に含まれた生成器を選択することによって、Tomによって認知されたフラストラム内に含まれた生成器の収集物を選択し、オレンジ色の生成器をフィルタリングし、垂直の2時方向の面を仮想的に追跡し、適切な生成器(例えば、2時方向の面内のオレンジ色の生成器)を選択し、第1の赤色の垂直管と交差するまで、その適切な生成器の位置(例えば、その現在の位置)の左側にその環境を増分的に処理し、その赤色の管を選択および/または強調表示することができる。
【0029】
シンビオティックヘルパー104は、マスタリポジトリ210を使用して、特定の領域に関する訓練の間に、行動的な観点から肯定的な推論および否定的な推論も行う。すなわち、マスタリポジトリを用いるシンビオティックヘルパー104は、入力および条件の所与のセットからのある行動が実際の行動であるか、または観測された行動であるかを判断する。特定の領域に関連する、より複合的なモデルまたは多変量のルックアップテーブルをマスタリポジトリ210に追加して、その行動を生み出す本質的な変数および方程式をモデル形成する必要なしに、特定の複合的な行動関係を表すことが可能である。
【0030】
他のチームメンバモジュール212は、他のチームメンバの位置、他のチームメンバの状態、他のチームメンバに割り当てられた(1つもしくは複数の)タスク、またはチームメンバもしくはチームリーダによって割り当てられた他の情報など、他のシンビオティックヘルパーを用いるチームメンバに関する情報を記憶するように構成される。
【0031】
マスタリポジトリ210は、そのチーム内のそれぞれの個人の個々のリポジトリ(またはその複製)を抽出および記憶することができる。他のチームメンバモジュール210は、チームメンバの個々のリポジトリを全部または一部含むことが可能である。
【0032】
追加の入力モジュール214は、ワイヤレス通信モジュール206を経由して、シンビオティックヘルパー204から任意のその他の追加の入力を受信し、必要に応じて、ワイヤレス通信モジュール206を経由して、解析をシンビオティックヘルパー204に戻すように構成される。
【0033】
シンビオティックヘルパー204は、解析モジュール216および入出力モジュール218を含む。解析モジュールは、中央システム202のワイヤレス通信モジュール206と通信するように構成されたワイヤレス通信モジュール220を含む。解析モジュール216は、視覚解析モジュール222をさらに含む。視覚解析モジュール222は、例えば、カメラ、撮像デバイス、またはその他の写真捕捉デバイスもしくは写真捕捉モジュールから視覚情報を受信して、獲得されたデータの特徴(例えば、刺激、異常、環境)を解析するように構成される。視覚解析モジュール222は、知識ベース208内の情報を獲得するためのワイヤレス通信モジュール220、中央システム202内のマスタリポジトリ210、他のチームメンバモジュール212、および/または追加の入力モジュール214を利用することによって、これを達成する。同様に、音解析モジュール224は、マイクロフォン、デジタル音受信モジュールから、またはネットワークを介してデジタルで音を受信し、受信された音響(例えば、音響情報)を解析する。音解析モジュール224は、ワイヤレス通信モジュール220を介して、知識ベース208、マスタリポジトリ210、他のチームメンバモジュール212、および/または追加の入力モジュール214から獲得された情報を利用する。
【0034】
解析モジュール216は、音声合成モジュール226をさらに含む。音声合成モジュール226は、例えば、ワイヤレス通信モジュール220から情報を受信して、その情報をシンビオティックヘルパー204のユーザに話すことができるスピーチに合成するように構成される。
【0035】
追跡および事象捕捉モジュール228は、シンビオティックヘルパー204によって解析および認識されている事象を追跡するように構成される。シンビオティックヘルパー204は、事象を追跡することによって、それらの事象内のパターンを認識することができる。事象を継続的に追跡し続けることによって、シンビオティックヘルパー204の追跡および事象捕捉モジュール228は、その活動に関する肯定的な推論および否定的な推論を認識して、それらの推論をユーザに警告することができる。例えば、圧力計と結合されたタイヤポンプを操作するユーザは、そのユーザがタイヤにポンプで空気を入れるとき、(タイヤの圧力が上がるべきときに)タイヤの圧力が上がっていないことに気付かない場合がある。シンビオティックヘルパー204は(追跡および事象捕捉モジュール228を経由して)圧力計の示度数が上がっていないという否定的な推論を検出することができる。次に、シンビオティックヘルパー204は、タイヤにポンプで空気を入れているユーザに、圧力が変わらず、圧力は上がるべきであることを通知する。
【0036】
個々のリポジトリモジュール230は、そのユーザが訓練するにつれて、特定の領域に関する1つまたは複数の学習方法に基づく、ユーザ(すなわち、個人)の過去の対話経験の結果を含む。個々のリポジトリモジュール230をその訓練経験内の口頭表現、表情、およびジェスチャに関する特定の言語ならびに/または文化と結び付けることが可能である。
【0037】
訓練3D表現および関連する3D表現は、領域特定であり、訓練生が学習すべき知識および経験と一致する指示的意図を反映する。領域特定の経験の例は、(i)石油台上およびガス台上のガスに関する安全性、(ii)Windows(登録商標)7に関するコンピュータセキュリティ、(iii)操作環境におけるコマンドおよび制御、(iv)鉱業環境における方向性、または(v)ディーゼルエンジン修理である。
【0038】
訓練は、通常、3つのステップ、すなわち、(1)実演説明、(2)対話式学習、および(3)試験を使用して実行される。
【0039】
(1)実演説明段階の間、シンビオティックヘルパー104は、通常、ビデオおよび/または音響を使用して、訓練生に概念を提示する。訓練生は、実演説明を再開/再生するか、または、その訓練生がその特定の実演説明内に提示された概念を理解する場合、訓練の次の項目に進むかを決定することができる。
【0040】
(2)訓練の対話式学習段階の間、シンビオティックヘルパーは、実演説明内で提示された(1つもしくは複数の)問題と同一かまたは類似の解決すべき問題を訓練生に提示する。訓練のレベルおよび/もしくはユーザ能力に応じて、学習のためのヒントは利用可能であってもよく、または利用可能でなくてもよい。
【0041】
(3)訓練の試験段階の間、シンビオティックヘルパーは、対話式学習段階および実演説明段階からの(1つまたは複数の)問題と類似の解決すべき問題を提示する。
【0042】
一実施形態では、シンビオティックヘルパー104は、3段階の訓練に指導を追加する。この場合、シンビオティックヘルパー104は、伝統的な指導を補完または置換することができる。
【0043】
シンビオティックヘルパー104は、訓練の全ての段階の間、訓練生のデジタルフットプリントを捕捉する。例えば、実演説明段階において、デジタルフットプリントは、費やされた時間、訓練生が実演説明を閲覧した回数、または訓練生がどの実演説明を閲覧したかであってよい。
【0044】
別の例として、対話式学習段階のデジタルフットプリントは、学習に費やされた時間、訓練生の初期の間違え、訓練生が閲覧したヒントの使用、経路上での訓練生の躊躇、訓練生による事象の性質またはオブジェクトの状態の誤認、訓練生による正しい応答、または訓練生がその問題を成功裏に回答または解決するのに費やされた時間であってよい。
【0045】
さらに別の例として、試験段階におけるデジタルフットプリントは、正しい回答、応答ごとに費やされた時間、または誤りのタイプであってよい。
【0046】
シンビオティックヘルパー104は、特定の訓練の間、異なる学習方法を用いることができる。これらの方法は、互いを除外せず、組合せ可能である。5つのタイプの学習方法が一般に用いられる。すなわち、(1)刷り込み、文化適応、および習慣化(受け身モード)、(2)試行錯誤、および行動、(3)シミュレーション、およびミラー反応、(4)模擬、および観察、ならびに/または(4)機械的反復(Rote)、音響的入力もしくは視覚的入力、口頭応答もしくは指示応答、および組合せ、である。個々のリポジトリモジュール230は、領域特定経験に関する訓練に関連する方法またはグループを識別する。
【0047】
入出力モジュール218は、視覚補完モジュール240、音響補完モジュール242、音声モジュール244、およびユーザモデルモジュール246を含む。
【0048】
視覚補完モジュール240は、ユーザの視覚を環境の仮想現実の表現、拡張された現実の表現、またはわずかに拡張された現実の表現で補完するように構成される。同様に、音響補完モジュール242は、視覚補完モジュール240と同じ仮想現実の表現、拡張された現実の表現、またはわずかに拡張された現実の表現をユーザに提供するように構成される。しかし、音響補完モジュール242は、ビデオの代わりに、音響をユーザに提供することによって、仮想現実の表現、拡張された現実の表現、またはわずかに拡張された現実の表現をユーザに提供する。音響補完モジュール242は、ユーザに再生される音警告234を解析モジュール216から受信する。同様に、視覚補完モジュール240は、ユーザに表示するためのディスプレイ画像232を解析モジュール216から受信する。
【0049】
音声モジュール244は、ユーザから音声コマンドを受信する。音声モジュール244は、音声コマンド236を解析モジュール216に送信する。解析モジュール216は、音解析モジュール224を使用して、音声コマンドを解析する。
【0050】
ユーザモデルモジュール246は、解析モジュール216からユーザモデル情報238を受信する。ユーザモデルモジュール246は、シンビオティックヘルパー204を使用している間のユーザの動作に基づいて、ユーザモデル情報238を改正し、ユーザモデル情報238を解析モジュール216に戻すようにさらに構成される。
【0051】
図3は、シンビオティックパートナーシステム304およびネットワーク306と共に環境110内で用いられるシンビオティックヘルパー104のある例示的な実施形態のブロック
図300である。シンビオティックヘルパー104は、カメラ308、マイクロフォン310、嗅覚検出器312、および他のセンサ314を含む。カメラ308は、環境110の視覚的刺激324を検出するように構成される。マイクロフォン310は、環境110の聴覚的刺激326を検出するように構成される。嗅覚検出器312は、環境110から、嗅覚的刺激328、例えば、香りを検出するように構成される。他のセンサ314は、環境110から他の刺激330を検出するように構成される。他のセンサ314は、例えば、温度、電磁刺激、生命兆候などの生物学的刺激、または全地球的測位システム刺激など、任意の他のタイプの刺激を検出するように構成される。他のセンサは当技術分野で知られているいずれかの刺激を検出できることを当業者は認識されよう。
【0052】
プロセッサ316は、カメラ308、マイクロフォン310、嗅覚検出器312、および他のセンサ314からの視覚的刺激324、音響刺激326、嗅覚的刺激328ならびに他の刺激330を示すデータ325、327、329、331を受信するように構成される。プロセッサ316は、
図2を参照して説明されたように、それぞれの検出モジュール308、310、312、314によって生成されたそれぞれの刺激データ325、327、329、331を解析して、ディスプレイモジュール318内でレンダリングされることになる仮想現実の画像データ332、およびスピーカ320を介してレンダリングされることになる音334を生成するように構成される。プロセッサ316は、ネットワーク306、例えば、インターネット、に結合された接続インターフェース322、およびシンビオティックパートナーシステム304を用いることも可能である。プロセッサ316は、ネットワーク316を使用して、解析処理のうちのいくつかを外部委託すること、または環境110の刺激324、326、328、330の解析(処理)を支援するための追加の情報(データ)をダウンロードすることができる。
【0053】
さらにプロセッサ316は、シンビオティックパートナーシステム304と通信するように構成される。例えば、シンビオティックパートナーシステム304は、プロセッサ316にその独自の状態について知らせることができる。例えば、シンビオティックパートナーシステム304が自動車である場合、シンビオティックパートナーシステムはその状態に関する追加の情報をプロセッサ316に通信することができる。追加の情報のある例は、その自動車またはいずれかの特定のシンビオティックパートナーシステム304が検出する燃料状態、タイヤ圧状態、付近のオブジェクト検出、燃料状態、もしくは任意のその他の情報を含むことが可能である。
【0054】
図4は、シンビオティックヘルパー104によって用いられ、プロセッサ316によって実行される訓練プロセスのある例示的な実施形態400の流れ図である。シンビオティックヘルパーシステム104は訓練を開始する(402)。次いで、シンビオティックヘルパー104は、その訓練生をシンビオティックヘルパーに向けさせる(404)。シンビオティックヘルパー104は、次いで、個人的な安全訓練を訓練生に提供する(406)。例えば、シンビオティックヘルパー104は、ユーザが実世界でそれらのリスクを回避できるように、特定の訓練活動における個人的な安全リスクについてユーザに知らせて、活動を提供する。ユーザは、例えば、知識しきい値を超えるまで、必要に応じて、安全訓練を繰り返すことが可能である。これは、ユーザによって回答された問題に関するポイントによって、または任意のその他の適切な測定方法によって測定可能である。さらに、安全訓練の反復は、自動的であってよく、またはユーザの自由裁量であってもよい。次に、シンビオティックヘルパーは、状況特定の訓練を訓練生に提供する(408)。例えば、シンビオティックヘルパー104は、特定のタスクに関する訓練を提供することができる。安全訓練のように、ユーザは、知識しきい値を超えるまで、必要に応じて、状況特定の訓練を繰り返すことが可能である。状況特定の訓練の反復は、自動的であってよく、またはユーザの自由裁量であってもよい。
【0055】
シンビオティックヘルパー104は、次に、サービス提供訓練をユーザに提供することができる(410)。例えば、シンビオティックヘルパー104は、特定の機械またはシステムをどのように使用するかに関する訓練だけでなく、システムの設置、システム内の問題の診断、システムの修理、またはシステムの保守に関する訓練もユーザに提供することができる。ユーザは、必要に応じて、かつ上で説明されたように、自動的にまたはユーザの自由裁量で、サービス提供訓練を繰り返すことが可能である。
【0056】
シンビオティックヘルパー104は、次いで、チーム訓練をユーザに提供することができる(412)。チーム訓練は、訓練生をシンビオティックヘルパーおよび訓練の対象物を使用するそのチームの他のメンバーとの作業に順応させる。シンビオティックヘルパー104は、次いで、遠隔操作サポートまたはサポート機能訓練を提供する(414)。遠隔操作サポートは、特定の状況でどのように進めるかに関する指示をユーザに提供する遠隔の人物または機械の例である。次に、シンビオティックヘルパー104は、不確実訓練(contingency training)を訓練生に提供することができる(416)。不確実訓練は、計画されていない状況に関する訓練を提供することを含む。この場合も、ユーザは、必要に応じて、一人で、またはグループ設定のいずれかで、チーム訓練、遠隔操作サポートもしくはサポート機能訓練、および/または不確実訓練を繰り返すことができる。次に、シンビオティックヘルパー104は、操作状況で訓練生がシンビオティックヘルパー104を使用するのを可能にすることによって訓練を終了する(418)。操作状況は、上で要点が述べられた訓練方法によって、ユーザが訓練を受ける主題でユーザが訓練した状況である。
【0057】
図5は、シンビオティックヘルパー104によって用いられて、プロセッサ316によって実行されるプロセス500の流れ図である。プロセス500は、訓練を始めることによって開始する(502)。次いで、シンビオティックヘルパー104は、ビデオ画像データ332の視覚ディスプレイ318およびスピーカ320を介して生成された音/音響334(
図3)によって訓練生を仮想環境内に没入させる(504)。仮想環境は、訓練生が、通常、特定の活動を学習することができる環境であってよい。例えば、訓練生は、特定の車両を運転できる、特定の車両の仮想環境内に配置されることによってその車両をどのように運転するかを学習することができる。その他の訓練状況および仮想環境をシンビオティックヘルパー内で実施することが可能であることを当業者は認識されよう。
【0058】
このシステムは、次に、訓練活動を訓練生に提供する(506)。訓練活動は、例えば、仮想環境内の特定の活動に関する場合がある。例えば、特定の車両を運転できるように訓練生を訓練する場合、訓練活動は、車両を仮想的に作動させること、車両を仮想的に停止させること、または車両を仮想的に運転することを含むことが可能である。
【0059】
シンビオティックヘルパー104は、次いで、訓練活動を実行する際の訓練生の動作のデジタルフットプリントを捕捉する(508)。例えば、デジタルフットプリントは、特定の動作を実行する際の訓練生の活動のログを含むことが可能である。デジタルフットプリントは、仮想環境内で実行されるデジタル動作、例えば、仮想環境内の車両内のボタンを押下することを含むことが可能である。デジタルフットプリントは、訓練生が話す言葉、または訓練生による動きなど、より広い範疇を含むことも可能である。一実施形態では、ユーザプロファイルは、デジタルフットプリント(例えば、累積デジタルフットステップ)および仮想環境とのユーザの対話(例えば、3D経験)から記録されたその他のユーザ特性を記憶する。
【0060】
訓練生の動作のデジタルフットプリントを捕捉した(508)後で、シンビオティックヘルパーは、捕捉されたデジタルフットプリントを審査する(510)。シンビオティックヘルパー104は、デジタルフットプリントを審査して、訓練活動で訓練生が得た技能のレベルを判断することができる。例えば、デジタルフットプリントが、訓練生が(仮想的な意味で)車両を非常に迅速に正確に作動させたことを示す場合、シンビオティックヘルパーは、ユーザは訓練活動において熟練であると判断することができる。他方で、デジタルフットプリントが、訓練活動を正確に実行する前に、ユーザが多くの間違ったボタンを押下し、車両を作動させるなど、様々な誤りを犯したことを示す場合、システム104は、ユーザが訓練活動において低い技能を有すると判断することができる。
【0061】
同様に、シンビオティックヘルパー104は、訓練生の技能のレベルによってさらなる訓練が必要とされるかどうかを判断することができる(512)。訓練生がいかなるさらなる訓練も必要としない場合、訓練活動は終了する(514)。さらなる訓練が必要とされる場合、シンビオティックヘルパーは、デジタルフットプリントに基づいて訓練が修正されるべきであるかどうかを判断する(516)。
【0062】
システムは、デジタルフットプリントを介して、訓練生が訓練活動に困難を感じ始めた訓練地点を判断することによって、デジタルフットプリントに基づいて訓練が修正されるべきであるかどうかを判断する(516)。訓練活動の困難は、ユーザが通常の訓練ステップのコースから脱線したことを判断することによって、または所望される結果もしくはチェックポイントの結果を達成しなかったことによって、システムによって判定可能である。シンビオティックヘルパー104が、デジタルフットプリントに基づいて、訓練が修正されるべきであることを判断した場合、システムは、デジタルフットプリントに基づいて訓練を修正する(518)。システムは、異なる訓練技法のデータベースを使用することによって、または訓練ステップを動的に再経路指定して、デジタルフットプリント経路内でユーザの不安を回避するか、もしくはそうでない場合、防止する、訓練活動用の異なる経路を提供することによって、デジタルフットプリントに基づいて訓練を修正する。他方で、訓練がデジタルフットプリントに基づいて修正されない場合、シンビオティックヘルパー104は、訓練活動を訓練生に提供する(506)。加えて、デジタルフットプリントに基づいて訓練を修正した(518)後で、システムは、訓練活動を訓練生にやはり提供する(506)。
【0063】
図6は、シンビオティックヘルパー104によって用いられ、プロセッサ316によって実行されるプロセス600のある例示的な実施形態の流れ図である。プロセス600は、シンビオティックヘルパーを始めることによって開始する(602)。シンビオティックヘルパーは、次いで、他のセンサ314などを使用して、ユーザ状態を検出する(604)。ユーザ状態は、シンビオティックヘルパーが使用しているユーザの何らかの属性であってよい。例えば、ユーザ状態は、ユーザが見ている方向、ユーザのGPS位置、ユーザの生命兆候、またはユーザの訓練レベルであってよい。シンビオティックヘルパーは、次いで、カメラ308、マイクロフォン310、検出器312/センサ314を使用して、環境的刺激を検出する(606)。環境的刺激は、ユーザの環境の何らかの刺激であってよい。環境的刺激の例は、視覚的刺激324、聴覚的刺激326、もしくは嗅覚的刺激328、電磁刺激、身体的刺激、またはデジタル通信刺激(一般に、他の刺激330)であってよい。
【0064】
オプションで、システム104またはプロセス600は、ユーザの能力のレベルを判断する(608)。やはりオプションで、シンビオティックヘルパー104は、ユーザに提供するために可変レベルの支援を調整することができる(610)。シンビオティックヘルパー104は、このオプションの実施形態では、判断されたユーザの能力のレベルに基づいて、ユーザに提供するための支援のレベルを調整する。
【0065】
次に、シンビオティックヘルパー104は、可変レベルの支援をユーザに提供する(612)。オプションで、システム104またはプロセス600は、どのレベルの可変支援をユーザに提供するかを判断する(614)。システムが可変支援のレベルが没入型であることを判断した場合、システムは、ディスプレイ318およびスピーカ320(
図3)を介して没入型仮想現実ディスプレイをユーザに提供する(616)。没入型仮想現実ディスプレイは、環境的刺激を明らかにしないが、ユーザまたは訓練生が活動を安全かつ効率的に学習できる、制御された訓練環境を提供する仮想現実である。没入型仮想現実ディスプレイは、プロセッサ316によって生成された訓練環境の(画像データ332における)3Dモデルを含むことが可能である。一般的な3Dモデル形成技法が利用される。
【0066】
システム104またはプロセス600が可変支援のレベルが拡張されると判断した場合、システムは、ディスプレイ318およびスピーカ320を介して、拡張された現実をユーザに提供する(618)。拡張された現実は、環境的刺激を入力して、それらをユーザに表示するが、やはり、目前のタスクに関してユーザを支援するために必要とされる支援のレベルに基づいて仮想現実を環境上にオーバレイする。例えば、拡張された現実は、特定の機械およびボタンの機能(例えば、説明)をそれぞれの機械上およびボタン上にオーバレイすることができる。
【0067】
仮想支援のレベルがわずかである場合、シンビオティックヘルパー104は、ディスプレイ318およびスピーカ320を介して、わずかに拡張された現実を提供する(620)。わずかに拡張された現実は、開始点として、その環境を単に示すことによってディスプレイを提供する。シンビオティックヘルパーは、検出された刺激を知っておくべきことベースで(need to know basis)オーバレイすることによって、環境の観点に基づいて構築する。例えば、わずかに拡張された現実は、ユーザおよび環境を示すことができるが、発砲、または助けを呼ぶなど、危険な状況をユーザに警告する。わずかに拡張された現実は、仮想現実および拡張された仮想現実と共に、その環境内で見出された推論も同様にユーザに警告することができる。例えば、画像解析を使用して、わずかに拡張された現実モードのシンビオティックヘルパー104は、誤った方向に移動しているか、または移動すべきときに移動していない機械の特定の計測器にユーザの注意を向けることができる。
【0068】
次に、シンビオティックヘルパー104は、支援を提供し続けるべきかどうかを判断する(622)。シンビオティックヘルパーが支援を提供し続けるべきでないことを判断した場合、例えば、ユーザがシンビオティックヘルパーを停止することを望む場合、シンビオティックヘルパーは終了する(624)。しかし、システムがシンビオティックヘルパーは支援を提供し続けるべきであると判断した場合、システムは、ユーザ状態を検出して(604)、ステップ606〜622を繰り返す。
【0069】
図7は、シンビオティックヘルパーシステム104およびプロセッサ316によって用いられるプロセスのある例示的な実施形態を示す流れ
図700である。プロセス700は、シンビオティックヘルパーシステムを始めることによって開始する(702)。シンビオティックヘルパーは、刺激を解析するための規則の1つまたは複数のセットをロードする(704)。例えば、規則の1つまたは複数のセットは、シンビオティックヘルパー104のカメラ308、マイクロフォン310、その他の検出器312/センサ314によって検出された刺激の画像処理、もしくは音響処理、またはその他の処理に関する規則を含むことが可能である。シンビオティックヘルパーは、次いで、検出された刺激内の異常に関して検出された環境を解析する(706)。例えば、シンビオティックヘルパーは、カメラ308を使用して連続写真を撮ることによって、ユーザを取り囲んでいる視覚的風景を容易に検出することができるが、ユーザは、一般に、視覚的環境からの特定の刺激を警告されることを所望する場合がある。したがって、シンビオティックヘルパー104は、この例では、視覚的風景の検出された刺激324、326、328、330(
図3)からの異常を検出し、(スピーカ320およびディスプレイ318の出力を介して)特定の異常をユーザに警告する。そうでなければ、ユーザは、シンビオティックヘルパーなしに自らが判断することができる、自らの環境について不要な情報に圧倒される可能性がある。したがって、シンビオティックヘルパーは、爆発またはその他の異常など、異常に関して視覚的風景が解析されるとき最大効用のものであり、異常だけがユーザの注意に向けられる。異常および視覚的風景の概念を、聴覚的刺激、嗅覚的刺激、電磁的刺激、またはその他の刺激など、その他のタイプの刺激に適用することが可能である点を当業者は認識されよう。
【0070】
シンビオティックヘルパー104は、次いで、異常に関する補足情報を判断する(708)。例えば、環境内に異常が存在することを判断するとすぐに、シンビオティックヘルパーは、その異常に関する補足情報を計算することができる。補足情報の例は、その異常は何か、その異常の距離、その異常(例えば、爆発)の温度、またはその異常を処理することによって判断できる何らかのその他の情報を含む。次いで、シンビオティックヘルパーは、オプションで、その異常がユーザに対して警告を生成されることを必要とするかどうかを判断する(710)。その異常がユーザに対して警告を生成されることを必要とする場合、シンビオティックヘルパーは、警告を生成して、ユーザに出力する(712)。その異常がユーザに対して警告が生成されることを必要としない場合、シンビオティックヘルパーは、検出された刺激内のその異常に関する保護環境を再度解析し(706)、プロセスのステップ708、710を繰り返す。同様に、ユーザに対して警告を生成した後で、シンビオティックヘルパーは、検出された刺激内の異常に関して検出された環境も解析し(706)、プロセスのステップ708、710を繰り返す。シンビオティックヘルパーが新しい刺激を検出するとすぐに、シンビオティックヘルパーは異常に関して検出された刺激を解析すること(706)ができる点を当業者は認識されよう。同様に、シンビオティックヘルパーシステムが停止されるか、または動作不能にされるまで、シンビオティックヘルパーシステムは、検出された刺激内の何らかの異常に関して検出された環境を継続的に解析する。
【0071】
図8は、ユーザ102と対話するように構成されたシンビオティックヘルパー104のブロック
図800である。シンビオティックヘルパー104は、ユーザ状態検出モジュール802、環境刺激検出モジュール804、および支援モジュール806を含む。ユーザ状態検出モジュールは、ユーザ102からユーザの状態808を検出するように構成される。例えば、ユーザが話す自然言語によってユーザの状態808を通信することが可能である。ユーザ状態検出802モジュールは、ユーザの状態808の表示を支援モジュール806に戻す。
【0072】
環境的刺激検出モジュール804は、環境110から環境示度数812を検出するように構成される。環境的刺激検出モジュール804は、環境示度数812を解析して、検出された刺激810を支援モジュール806に戻す。
【0073】
支援モジュール806は、ユーザ状態検出モジュール802からユーザの状態表示809を受信し、環境刺激検出モジュール804から検出された刺激810を受信するように構成される。支援モジュール806は、ユーザの状態表示809および検出された刺激810の両方を解析する。支援モジュールは、視覚的ディスプレイ318およびスピーカ320(
図3)を介して可変レベルの支援814をユーザ102に出力する。一実施形態では、支援モジュール806は、可変レベルの支援814をシンビオティックヘルパー104のオプションの装着可能デバイス816に出力し、装着可能デバイス816は、次いで、可変レベルの支援814をユーザ102に提供する。可変レベルの支援814は、プロセッサ316によって生成されたユーザ対話式3Dモデルの画像データ332を含むことが可能である。一般的な3Dモデル生成技法および/または3Dモデル生成技術が用いられる。
【0074】
図9は、没入型仮想現実から拡張された実世界へまた実世界へのメンタルモデルの転送のプロセスのある例示的な実施形態の流れ
図900である。
【0075】
メンタルモデルは、実世界で何かがどのように働くかの思考プロセスを説明する。メンタルモデルは、機械工が、車を構成している原理ならびに実際の部品およびシステムを理解することになるような、車をどのように運転するかの理解、または車がどのように動くかの理解など、その行動(または、準拠規則のセット)の理解であってよい。多くの活動は、開発される必要がある活動に関連する複合的かつ精神的なモデルである。没入型仮想現実環境および拡張された現実環境は、悪影響を伴わずに、この開発を円滑にする。これらの活動は、一般に、活動を適切に実行することができるまで、メンタルモデルの連続的調整を必要とする。ダブルループ学習(double−loop learning)プロセスは、没入型仮想現実および拡張された実世界のフィードバックからメンタルモデルの調整を可能にする。
【0076】
一実施形態では、メンタルモデル902は、没入型仮想現実900内で使用するためにまず開発される。(試験環境など)異なる環境の連続的なさらなる開発および精緻化の後で、メンタルモデル902を実世界930内で使用することが可能である。メンタルモデル902は、それぞれの連続的な環境から次の環境へ(例えば、没入型仮想現実910から拡張された実世界920へまた実世界930へ)転送される。
【0077】
シンビオティックヘルパー104は、メンタルモデル902に基づいて、意思決定規則904を作成、明確化、更新、または強化する。シンビオティックヘルパー104は、次いで、意思決定規則904に基づいて、決定906を没入型仮想現実910に送信する。没入型仮想現実910は、没入型仮想現実910内およびメンタルモデル902内の決定906の効果に基づいて、情報フィードバック908を作成する。将来の決定906は、その場合、意思決定規則904に加えて、情報フィードバック908に基づく。さらに、情報フィードバック908は、没入型仮想現実910内の決定906の効果に基づいて、メンタルモデル902を調整する。
【0078】
シンビオティックヘルパー104は、例えば、メンタルモデル訓練期間が完了した後で、拡張された実世界920と共に使用するために、メンタルモデル902をメンタルモデル912に複写することができる。シンビオティックヘルパー104は、メンタルモデル912に基づいて、意思決定規則914を作成、明確化、更新、または強化する。シンビオティックヘルパー104は、次いで、意思決定規則914に基づいて、決定916を拡張された実世界920に送信する。拡張された実世界920は、拡張された実世界920内およびメンタルモデル912内の決定916の効果に基づいて、情報フィードバック918を作成する。将来の決定916は、その場合、意思決定規則914に加えて、情報フィードバック918に基づく。さらに、情報フィードバック918は、拡張された実世界920内の決定916の効果に基づいて、メンタルモデル912を調整する。
【0079】
シンビオティックヘルパー104は、例えば、メンタルモデル訓練期間が完了した後で、実世界930と共に使用するために、メンタルモデル912をメンタルモデル922に複写することができる。シンビオティックヘルパー104は、メンタルモデル922に基づいて、意思決定規則924を作成、明確化、更新、または強化する。シンビオティックヘルパー104は、次いで、意思決定規則924に基づいて、決定926を実世界930に送信する。実世界930は、実世界930内およびメンタルモデル922内の決定926の効果に基づいて、情報フィードバック928を作成する。将来の決定926は、その場合、意思決定規則924に加えて、情報フィードバック928に基づく。さらに、情報フィードバック928は、実世界930内の決定926の効果に基づいて、メンタルモデル922を調整する。
【0080】
別の実施形態では、シンビオティックヘルパー104は、没入型仮想現実内でコンテンツを作成することができる。シンビオティックヘルパー104は、次いで、作成または執筆されたコンテンツを少なくとも没入型仮想現実910内または拡張された実世界920内に提供することができる。
【0081】
図10は、シンビオティックヘルパーによって用いられる訓練生からの対話前操作のある例示的なプロセスの流れ
図1000である。対話前任務で、シンビオティックヘルパー104は、「警告またはオーバライド」1020を生成して、決定1006に影響を与え、メンタルモデル1002を用いて、作成、明確化、更新、または強化するために使用される情報フィードバック1008を提供するために利用される。例えば、メンタルモデル1002は、意思決定規則1004に基づいて、決定1006を生成することができる。この決定はシンビオティックヘルパー104によって解釈される。警告しきい値またはオーバライドしきい値が満たされるとすぐに、シンビオティックヘルパー104は、警告またはオーバライド1020を生成する。ユーザに対する警告を生成するか、または決定1006をオーバライドするために、警告またはオーバライド1020は世界対話(world interaction)1010(例えば、没入型仮想現実910、拡張された実世界920、および実世界930)に送信される。警告またはオーバライド1020は、情報フィードバック1008をやはり修正し、情報フィードバック1008はメンタルモデル1002および決定1006をさらに修正する。
【0082】
しかし、シンビオティックヘルパー104が警告しきい値またはオーバライドしきい値が満たされると判断しない場合、決定1006は、いかなる警告またはオーバライド1020も伴わずに、世界対話1010に直接的に送信される。
【0083】
図11は、シンビオティックヘルパーによって用いられる訓練生からの対話後操作のある例示的なプロセスの流れ
図1100である。対話後任務で、シンビオティックヘルパー104は、警告またはオーバライド(例えば、警告またはオーバライド1020)を発行しない。代わりに、訓練生との対話に基づいて、シンビオティックヘルパー104はメンタルモデル1102を修正する。例えば、メンタルモデル1102は、意思決定規則1104に基づいて、決定1106を生成することができる。決定1106は世界対話1110(例えば、没入型仮想現実910、拡張された実世界920、および実世界930)に送信される。次いで、世界対話は、情報フィードバック1108およびシンビオティックヘルパー104を更新する。情報フィードバック1108は、それによって、メンタルモデル1102を更新し、シンビオティックヘルパー104はその次の決定の基礎を更新された世界対話1110に置く。
【0084】
仮想世界内の誤りの悪影響はより小さいため、対話後フィードバックは、通常、実世界状況で使用される。対話後モードで、シンビオティックヘルパー104は、訓練生が補正するための考えられる改善および間違えに関する説明を含めて、追加のフィードバックを訓練生に提供する。
【0085】
シンビオティックヘルパー104は、訓練生に関するデータを蓄積することによって経時的に展開する訓練生のユーザメンタルモデル(例えば、902、912、922、1002、1102)を作成、明確化、更新、または強化する。ユーザメンタルモデル(例えば、902、912、922、1002、1102)は、物理的特性および精神的特性を有する。精神的特性は、訓練生が仮想環境で実行したか、または実行している領域特定の訓練の間のその訓練生の行動から導出される。物理的特性は、ユーザ入力、ユーザの動きの検出、または自動化された物理的特性検出プロセスから導出される。
【0086】
個人は同じ間違えを繰り返し犯す場合がある。例えば、個人は、自らの環境を完全に観察する前に、または解決すべき問題の性質を明瞭に理解する前に動作する場合がある。この傾向は、実演説明段階でより短い時間が費やされること、対話式学習段階でより長い時間が費やされること、および/または試験段階の平均より低い得点によって検出可能である。そのような傾向は、領域特定の訓練に関して、知的な個人または経験を積んだ個人が実演説明段階および対話式学習段階の両方で少ない時間を費やして高い得点で合格することを妨げない。学習段階の間に補正される、その段階の間に補正される間違いは、その訓練生に非常に、永続的に記憶される傾向がある。異なる学習方法の試験得点は、訓練生がどの学習方法に最も効果的に応答するかをさらに判断することができ、訓練プロセスにおいて言語性刺激、視覚的刺激、およびその他の刺激の効果をさらに追跡することができる。
【0087】
本発明の実施形態または態様は、ハードウェア、ソフトウェア、もしくはファームウェアの形で実施可能である。ソフトウェアの形で実施される場合、ソフトウェアは、本明細書で開示された例示的な実施形態と一致する動作を実行することが可能な任意の形のソフトウェアであってよい。ソフトウェアは、RAM、ROM、磁気ディスク、または光ディスクなど、任意の非一時的なコンピュータ可読媒体内に記憶可能である。(1つまたは複数の)プロセッサによってロードおよび実行されるとき、(1つまたは複数の)プロセッサは本明細書で開示された例示的な実施形態に一致する動作を実行するように構成される。(1つまたは複数の)プロセッサは、本明細書で開示された動作を実行するように構成されていることが可能な任意の形の(1つまたは複数の)プロセッサであってよい。モジュールは、他のハードウェア要素と結合された(1つまたは複数の)プロセッサを備えたハードウェアの形で実施可能である。
【0088】
本発明は、その例示的な実施形態を参照して特に示され、説明されているが、添付の請求項によって包含される本発明の範囲から逸脱せずに、形および詳細の点で様々な変更をそれらの実施形態内で行うことが可能である点を当業者は理解されよう。