(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6382567
(24)【登録日】2018年8月10日
(45)【発行日】2018年8月29日
(54)【発明の名称】太陽熱集熱システム及びその制御方法
(51)【国際特許分類】
F24S 40/50 20180101AFI20180820BHJP
F24S 40/52 20180101ALI20180820BHJP
【FI】
F24S40/50
F24S40/52
【請求項の数】12
【全頁数】16
(21)【出願番号】特願2014-96132(P2014-96132)
(22)【出願日】2014年5月7日
(65)【公開番号】特開2015-215095(P2015-215095A)
(43)【公開日】2015年12月3日
【審査請求日】2017年2月13日
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100082991
【弁理士】
【氏名又は名称】佐藤 泰和
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100124372
【弁理士】
【氏名又は名称】山ノ井 傑
(72)【発明者】
【氏名】後藤 功一
(72)【発明者】
【氏名】高橋 政彦
(72)【発明者】
【氏名】山下 勝也
(72)【発明者】
【氏名】沖田 信雄
【審査官】
柳本 幸雄
(56)【参考文献】
【文献】
特開2014−020567(JP,A)
【文献】
特開2012−127536(JP,A)
【文献】
実開昭59−170171(JP,U)
【文献】
特開昭61−122457(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F24S 40/50
F24S 40/52
(57)【特許請求の範囲】
【請求項1】
太陽光線により熱媒体を加熱する集熱器と、
前記熱媒体により被加熱流体を加熱する加熱器と、
前記集熱器と前記加熱器との間で前記熱媒体を循環させるための配管と、
前記集熱器から前記加熱器へと向かう前記熱媒体の温度を、前記集熱器から前記加熱器へと向かう前記配管の最初の屈曲部分よりも上流で計測する温度センサと、
前記温度センサにより計測された前記熱媒体の温度に基づいて、前記熱媒体の加熱を制御する制御部と、
を具備し、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分とを具備し、前記温度センサは、前記第2部分の前記熱媒体の温度を計測する
または、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分と、前記第1部分と前記第2部分との間に位置する第3部分とを具備し、前記温度センサは、前記第2部分、前記第3部分、または前記第2部分と前記第3部分との境界上の前記熱媒体の温度を計測する
事を特徴とする太陽熱集熱システム。
【請求項2】
前記集熱器は、前記配管の一部を構成する集熱管と、太陽光線を集光して前記集熱管内の前記熱媒体を加熱する反射鏡とを具備し、前記制御部は、前記反射鏡を回転駆動させる事により、前記熱媒体の加熱を制御する事を特徴とする請求項1に記載の太陽熱集熱システム。
【請求項3】
太陽光線により熱媒体を加熱する集熱器と、
前記熱媒体により被加熱流体を加熱する加熱器と、
前記集熱器と前記加熱器との間で前記熱媒体を循環させるための配管と、
前記集熱器から前記加熱器へと向かう前記熱媒体の温度を、前記集熱器から前記加熱器へと向かう前記配管の最初の屈曲部分よりも上流で計測する温度センサと、
前記温度センサにより計測された前記熱媒体の温度に基づいて、前記熱媒体の加熱を制御する制御部と、
を具備し、
前記集熱器は、前記配管の一部を構成する集熱管と、太陽光線を集光して前記集熱管内の前記熱媒体を加熱する反射鏡とを具備し、前記温度センサは、前記熱媒体の温度を、前記集熱管の中心軸よりも前記反射鏡に近い箇所で計測する事を特徴とする太陽熱集熱システム。
【請求項4】
前記制御部は、前記反射鏡を回転駆動させる事により、前記熱媒体の加熱を制御する事を特徴とする請求項3に記載の太陽熱集熱システム。
【請求項5】
前記制御部は、
前記温度センサにより計測された前記熱媒体の温度が、予め定められた上限温度よりも低い場合に、前記反射鏡が太陽を追尾するように前記集熱器を制御し、
前記温度センサにより計測された前記熱媒体の温度が前記上限温度よりも高い場合に、前記反射鏡が太陽の追尾を停止し、前記反射鏡の向きを前記集熱管に太陽光線を集光しない向きに設定するように前記集熱器を制御する、
事を特徴とする請求項2または4に記載の太陽熱集熱システム。
【請求項6】
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分とを具備し、前記温度センサは、前記第2部分の前記熱媒体の温度を計測する
または、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分と、前記第1部分と前記第2部分との間に位置する第3部分とを具備し、前記温度センサは、前記第2部分、前記第3部分、または前記第2部分と前記第3部分との境界上の前記熱媒体の温度を計測する
事を特徴とする請求項3から5のいずれか1項に記載の太陽熱集熱システム。
【請求項7】
前記制御部は、前記配管を流れる前記熱媒体の流量を変化させる事により、前記熱媒体の単位流量当たりの加熱量を制御する事を特徴とする請求項1から6のいずれか1項に記載の太陽熱集熱システム。
【請求項8】
前記制御部は、
前記温度センサにより計測された前記熱媒体の温度が、予め定められた上限温度よりも低い場合に、前記熱媒体の流量を第1の流量に調整し、
前記温度センサにより計測された前記熱媒体の温度が前記上限温度よりも高い場合に、前記熱媒体の流量を前記第1の流量よりも大きい第2の流量に調整する、
事を特徴とする請求項7に記載の太陽熱集熱システム。
【請求項9】
前記制御部は、前記熱媒体の温度が予め定められた上限温度よりも高い場合に、前記熱媒体の単位流量当たりの加熱量を、前記熱媒体の温度が前記上限温度よりも低い場合に比べて減少させる事を特徴とする請求項1から8のいずれか1項に記載の太陽熱集熱システム。
【請求項10】
太陽光線により熱媒体を加熱する集熱器と、
前記熱媒体により被加熱流体を加熱する加熱器と、
前記集熱器と前記加熱器との間で前記熱媒体を循環させるための配管と、
を具備する太陽熱集熱システムの制御方法であって、
前記集熱器から前記加熱器へと向かう前記熱媒体の温度を、前記集熱器から前記加熱器へと向かう前記配管の最初の屈曲部分よりも上流で計測し、
前記最初の屈曲部分よりも上流で計測された前記熱媒体の温度に基づいて、前記熱媒体の加熱を制御する、
事を具備し、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分とを具備し、前記熱媒体の温度の計測では、前記第2部分の前記熱媒体の温度を計測する
または、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分と、前記第1部分と前記第2部分との間に位置する第3部分とを具備し、前記熱媒体の温度の計測では、前記第2部分、前記第3部分、または前記第2部分と前記第3部分との境界上の前記熱媒体の温度を計測する
事を特徴とする太陽熱集熱システムの制御方法。
【請求項11】
太陽光線により熱媒体を加熱する集熱器と、
前記熱媒体により被加熱流体を加熱する加熱器と、
前記集熱器と前記加熱器との間で前記熱媒体を循環させるための配管と、
を具備する太陽熱集熱システムの制御方法であって、
前記集熱器から前記加熱器へと向かう前記熱媒体の温度を、前記集熱器から前記加熱器へと向かう前記配管の最初の屈曲部分よりも上流で計測し、
前記最初の屈曲部分よりも上流で計測された前記熱媒体の温度に基づいて、前記熱媒体の加熱を制御する、
事を具備し、
前記集熱器は、前記配管の一部を構成する集熱管と、太陽光線を集光して前記集熱管内の前記熱媒体を加熱する反射鏡とを具備し、前記熱媒体の温度の計測では、前記熱媒体の温度を、前記集熱管の中心軸よりも前記反射鏡に近い箇所で計測する事を特徴とする太陽熱集熱システムの制御方法。
【請求項12】
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分とを具備し、前記熱媒体の温度の計測では、前記第2部分の前記熱媒体の温度を計測する
または、
前記配管は、透明管で覆われた第1部分と、保温材で覆われており、前記第1部分の下流に位置し、前記最初の屈曲部分よりも上流に位置する第2部分と、前記第1部分と前記第2部分との間に位置する第3部分とを具備し、前記熱媒体の温度の計測では、前記第2部分、前記第3部分、または前記第2部分と前記第3部分との境界上の前記熱媒体の温度を計測する
事を特徴とする請求項11に記載の太陽熱集熱システムの制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、太陽熱集熱システム及びその制御装置及び制御方法に関する。
【背景技術】
【0002】
図7及び
図8はそれぞれ、従来の集熱器1の構造を示す斜視図及び断面図である。符号X及びYは、互いに垂直な水平方向を示し、符号Zは、鉛直方向を示す。
図8は、
図7に示す集熱器1の一断面を示している。
【0003】
図7及び
図8に示す集熱器1は、太陽光線S
1から太陽熱を集熱する太陽熱集熱システム内に設置されている。一般に太陽熱集熱システムにはトラフ型、フレネル型、タワー型等の種類があるが、この太陽熱集熱システムはトラフ型である。
【0004】
集熱器1は、集熱管2と、反射鏡3と、透明管4と、支柱5とを具備している。符号11は、太陽熱集熱システム内の配管を示す。配管11は、複数本の分岐管11aを含んでおり、集熱管2は、これらの分岐管11aの一部分を構成している。
図8は、1本の集熱管2及び1枚の反射鏡3の断面を示している。
【0005】
反射鏡3は、
図7に示すように、水平方向に長い曲面状の形状を有している。反射鏡3の長手方向に垂直な断面の形状は、
図8に示すように、放物線である。集熱器1は、地面Gに設置されている。集熱器1は、太陽光線S
1がこの放物線の中心軸(焦点と頂点とを結ぶ直線)と平行になるように、反射鏡3を回転駆動させる。即ち、反射鏡3は、太陽の高度の変化に応じて回転する事で、太陽を追尾する。
【0006】
集熱管2は、反射鏡3の水平軸と平行に配置された管であり、反射鏡3の(放物線の)焦点位置に設置されている。よって、反射鏡3の中心軸が太陽光線S
1と平行に設定されている場合、太陽光線S
1は、反射鏡3で反射され集熱管2の位置に集光される。符号S
2は、太陽光線S
1の反射光を示す。集熱管2は、例えば金属管である。
【0007】
反射鏡3の回転中心は、反射鏡3の焦点に一致する場合もあるし、反射鏡3の焦点に一致しない場合もある。
図8では、反射鏡3の回転中心は支柱5の先端であり、反射鏡3は矢印A
1のように回転する。集熱管2と反射鏡3は連結され一体化されているため、反射鏡3が回転すると、それに合わせて集熱管2も矢印A
2のように回転移動する。また、集熱管2と反射鏡3が連結され一体化されているため、集熱管2の回転移動中心は、反射鏡3の回転中心と同一である。よって、集熱管2の周方向位相の観点では、集熱管2上における反射鏡3に最も近い表面場所は、反射鏡3が回転しても変わらない。
【0008】
図9は、従来の集熱器1の構造を示す拡大断面図である。
【0009】
集熱管2の内部には、熱媒体6が流通している。熱媒体6は、例えば油である。熱媒体6は、集熱管2の一方の端から流入し、集熱管2の他方の端から流出する。熱媒体6は、集光された反射光S
2により加熱される。
【0010】
集熱管2における反射鏡3と隣接する部分、即ち、集熱管2における反射光S
2が集光される部分は、透明管4の中に設置されている。透明管4は、例えばガラス管である。集熱管2と透明管4との間の空間は、真空7である事が望ましい。ただし、集熱管2と透明管4との間のシール構造の都合上、集熱管2と透明管4との間には空気が存在する場合もある。
【0011】
図10は、従来の太陽熱集熱システムの構成を示す模式図である。
【0012】
図10の太陽熱集熱システムは、上述の集熱器1と、上述の配管11と、温度感知部12aを有する温度センサ12と、ポンプ13と、加熱器14と、制御部15とを具備している。
【0013】
集熱器1により加熱された熱媒体6は、配管11を介してポンプ13により加熱器14に搬送され、加熱器14内で被加熱流体16を加熱する。例えば、太陽熱集熱システムが太陽熱発電所の場合には、被加熱流体16の例は、蒸気タービンの作動流体である。加熱器14から排出された熱媒体6は、配管11を介して集熱器1に再び搬送される。このように、
図10の太陽熱集熱システム内の熱媒体6は、集熱器1と加熱器14との間を配管11を介して循環する。
【0014】
熱媒体6が充分に高温になると、熱媒体6の性状が熱変性により劣化し、熱媒体6としての機能が低下する。そのため、太陽熱集熱システムでは熱媒体6の許容上限温度が定められており、熱媒体6の温度を許容上限温度よりも低く設定して太陽熱集熱システムを運転する。例えば、熱媒体6が油である場合には、油の種類によって異なるが、熱媒体6の許容上限温度は、熱媒体6の温度の余裕度を持たせて300〜350℃程度に定められる事が多い。
【0015】
熱媒体6の流路の内、熱媒体6が最も高温になる箇所は、一般に集熱器1の出口E
1である。集熱器1の出口E
1とは、各集熱管2における最終段の反射鏡3の最後尾の箇所である。熱媒体6の温度は、熱媒体6が集熱器1の出口E
1から遠ざかるほど低下する。ただし、
図10の太陽熱集熱システムにおいては、集熱器1の出口E
1よりも下流の配管11が保温材で覆われているため、集熱器1の出口E
1よりも下流での熱媒体6の温度低下は少ない。
図10の温度感知部12aは、配管11内の点Pに設置されている。点Pを、温度センサ12の温度計測位置と呼ぶ。
図10の温度計測位置Pは、集熱器1の出口E
1から遠く離れている。そのため、配管11が保温材で覆われていても、熱媒体6の温度は、集熱器1の出口E
1から温度計測位置Pに至るまでに少し低下する。そこで、
図10の太陽熱集熱システムにおける許容上限温度は、上記の許容上限温度の例(300〜350℃程度)に比べて、低く定める事が望ましい。
【0016】
温度センサ12は通常、熱媒体6の温度を正確に計測するために、集熱管2の内部に充分に差し込まれている。温度センサ12は例えば熱電対であり、その温接点(温度感知部12a)である先端は通常、集熱管2の中心軸付近に位置している。なお、
図10の温度センサ12は、温度センサ12の信号線を含めて図示されている。
【0017】
熱媒体6の温度が許容上限温度を越えた場合、制御部15は、反射鏡3を回転駆動させて、反射鏡3の中心軸を太陽光線S
1と非平行にする。これにより、反射光S
2が集光される位置が反射鏡3の焦点位置でなくなり、かつ、反射光S
2のすべてが同じ位置に集光する状態ではなくなる。しかしながら、集熱管2の形状は線ではなく太さを有する円柱であるため、反射鏡3の回転角度がわずかであると、反射光S
2が集熱管2の表面のどこかに当たり、集熱管2が加熱される事になる。そのため、制御部15は、反射光S
2が集熱管2に集光されなくなる角度まで、反射鏡3を回転駆動させる。その結果、集熱管2の加熱は充分に小さくなり、熱媒体6の温度は許容上限温度よりも低くなる。
【0018】
なお、以上の説明は、トラフ型の太陽熱集熱システムを想定しているが、フレネル型やタワー型の太陽熱集熱システムでも同様に成立する。
【先行技術文献】
【特許文献】
【0019】
【特許文献1】特開2012−127607号公報
【発明の概要】
【発明が解決しようとする課題】
【0020】
図9に示すように、反射光S
2は、集熱管2の反射鏡3に近い側の表面に当たる。集熱管2は、金属製である事が多い。そのため、集熱管2の表面の内、反射鏡3に近い側の表面は反射光S
2により加熱されるが、反射鏡3の反対側の表面は集熱管2を伝導してきた熱により加熱される。よって、集熱管2の温度は、反射鏡3に近い側がより高く、反射鏡3の反対側がより低い。
【0021】
集熱管2内を流れる熱媒体6は、集熱管2の内壁から加熱される。よって、熱媒体6の内、反射鏡3に近い領域R
1の熱媒体6がより大きく加熱され、反射鏡3から遠い領域R
2の熱媒体6がより小さく加熱される。
図9では、領域R
1が斜線で示されている。
【0022】
しかしながら、熱媒体6の流量が充分に大きい場合には、熱媒体6の管内流速が大きく熱媒体6が充分に撹拌されるため、
図9に示す集熱管2の断面における熱媒体6の温度分布は一様に近い。
【0023】
集熱器1が太陽光線S
1、S
2から受ける熱量は、太陽高度や天候により変化する。そのため、加熱器14は、熱媒体6により被加熱流体16を加熱するための熱量を、熱媒体6の流量の増減に応じて調節する。
【0024】
集熱器1が太陽光線S
1、S
2から受ける熱量が大きいが、熱媒体6の流量が小さい場合には、熱媒体6は充分には撹拌されず温度成層化する。そのため、集熱管2の断面における熱媒体6の温度分布は非一様になる。即ち、集熱管2の断面において、熱媒体6の温度は、反射鏡3に近い領域R
1でより高く、反射鏡3から遠い領域R
2でより低くなる。
【0025】
集熱管2よりも下流の配管11、即ち、反射光S
2により加熱される部分よりも下流の配管11に屈曲部分11bがあると、配管11内を流れる熱媒体6は屈曲部分11bで撹拌される。この場合、屈曲部分11bよりも上流の配管11の断面では、熱媒体6の温度分布は非一様であるが、屈曲部分11bよりも下流の配管11の断面では、熱媒体6の温度分布は一様に近い。
【0026】
よって、屈曲部分11bよりも下流に温度感知部12aを設置すれば、配管11のどの場所に温度感知部12aを設置しても、ほぼ同じ温度計測値を得る事ができる。この場合の温度計測値は、屈曲部分11bよりも上流の配管11の各断面における熱媒体6の平均温度に近い。
【0027】
例えば、集熱管2の下流の配管11にボールジョイントが設置されており、ボールジョイントよりも下流の配管11が移動しないように構成されている場合、ボールジョイントの設置に伴い配管11に屈曲部分11bが設けられる。この場合、
図10に示すように温度計測位置Pが屈曲部分11bよりも下流に位置する場合には、温度計測位置Pにおける熱媒体6の温度分布は一様に近い。
【0028】
しかしながら、熱媒体6が充分に撹拌された下流位置における計測温度が許容上限温度以下であっても、屈曲部分11bよりも上流位置(例えば集熱器1の出口E
1)における熱媒体6の温度が局所的に許容上限温度を越えている場合があり得る。具体的には、熱媒体6の温度は、反射鏡3に近い領域R
1で許容上限温度を越えている場合があり得る。
【0029】
熱媒体6の温度が一部で局所的に許容上限温度を越えている場合、その部分で熱媒体6の性状が劣化する。よって、温度センサ12の計測温度が許容上限温度以下であっても、熱媒体6の性状が劣化する可能性がある。例えば、温度センサ12の計測温度が許容上限温度と等しい場合には、集熱器1の出口E
1におけるいずれかの部分で熱媒体6の温度が許容上限温度を越えている事となる。
【0030】
そこで、本発明は、熱媒体の性状の劣化を効果的に防止する事が可能な太陽熱集熱システム及びその制御装置及び制御方法を提供する事を課題とする。
【課題を解決するための手段】
【0031】
一の実施形態によれば、太陽熱集熱システムは、太陽光線により熱媒体を加熱する集熱器と、前記熱媒体により被加熱流体を加熱する加熱器とを具備する。さらに、前記システムは、前記集熱器と前記加熱器との間で前記熱媒体を循環させるための配管を具備する。さらに、前記システムは、前記集熱器から前記加熱器へと向かう前記熱媒体の温度を、前記集熱器から前記加熱器へと向かう前記配管の最初の屈曲部分よりも上流で計測する温度センサと、前記温度センサにより計測された前記熱媒体の温度に基づいて、前記熱媒体の加熱を制御する制御部とを具備する。
【図面の簡単な説明】
【0032】
【
図1】第1実施形態の太陽熱集熱システムの構成を示す模式図である。
【
図2】第1実施形態の集熱器の構造を示す断面図である。
【
図3】第1実施形態の集熱器の構造を示す別の断面図である。
【
図4】第1実施形態の太陽熱集熱システム内の熱媒体温度の例を示すグラフである。
【
図5】第1実施形態の変形例の集熱器の構造を示す断面図である。
【
図6】第2実施形態の太陽熱集熱システムの構成を示す模式図である。
【
図9】従来の集熱器の構造を示す拡大断面図である。
【
図10】従来の太陽熱集熱システムの構成を示す模式図である。
【発明を実施するための形態】
【0033】
以下、本発明の実施形態を、図面を参照して説明する。
【0034】
(第1実施形態)
図1は、第1実施形態の太陽熱集熱システムの構成を示す模式図である。本実施形態の太陽熱集熱システムの構成については、
図7〜
図10に示す構成との相違点を中心に説明する。
【0035】
図1の配管11は、複数本の分岐管11aを含んでおり、集熱器1の集熱管2は、これらの分岐管11aの一部分を構成している。符号11bは、集熱器1から加熱器14へと向かう各分岐管11aの最初の屈曲部分、即ち、集熱器1の出口E
1の付近及び下流における最上流の屈曲部分を示す。
【0036】
図1の太陽熱集熱システムは、複数個の温度センサ12を具備しており、これらの温度センサ12の温度感知部12aは、分岐管11a内に設置されている。具体的には、温度感知部12aは、集熱器1から加熱器14へと向かう分岐管11a内に設置され、かつ、最初の屈曲部分11bよりも上流に設置されている。
図1は、温度感知部12aが、集熱器1の出口E
1よりも下流、かつ、最初の屈曲部分11bよりも上流に設置されている様子を示している。
【0037】
よって、本実施形態の温度センサ12は、集熱器1から加熱器14へと向かう熱媒体6の温度を、集熱器1から加熱器14へと向かう分岐管11aの最初の屈曲部分11bよりも上流で計測する事ができる。符号Pは、温度センサ12の温度計測位置を示す。温度計測位置Pは、集熱管2内に位置していてもよいし、集熱管2以外の分岐管11a内に位置していてもよい。
【0038】
また、本実施形態の制御部15は、温度センサ12により計測された熱媒体6の温度に基づいて、熱媒体6の加熱を制御する。具体的には、制御部15は、
図1に示すように、集熱器1の反射鏡3を回転駆動させる事により、熱媒体6の加熱を制御する。制御部15の動作の詳細については、後述する。
【0039】
図2は、第1実施形態の集熱器1の構造を示す断面図である。
図2は、集熱管2の管軸方向(Y方向)に垂直な断面を示している。
【0040】
図2は、集熱管2内の領域の内、反射鏡3に近い領域R
1と、反射鏡3から遠い領域R
2とを示している。熱媒体6の内、反射鏡3に近い領域R
1の熱媒体6はより大きく加熱され、反射鏡3から遠い領域R
2の熱媒体6はより小さく加熱される。
図2では、領域R
1が斜線で示されている。
【0041】
本実施形態の温度感知部12aは、反射鏡3に近い領域R
1内に配置されている。このような配置を採用する理由については、後述する。このように、本実施形態の温度センサ12は、熱媒体6の温度を、領域R
1のように、集熱管2の中心軸よりも反射鏡3に近い箇所で計測する。
【0042】
図3は、第1実施形態の集熱器1の構造を示す別の断面図である。
図3は、集熱管2の管軸方向(Y方向)に平行な断面を示している。
【0043】
本実施形態の集熱管2は、透明管4で覆われた第1部分2aと、保温材8で覆われた第2部分2bとを具備している。第2部分2bは、第1部分2aの下流に位置し、最初の屈曲部分12bよりも上流に位置している。本実施形態の集熱管2はさらに、第1部分2aと第2部分2bとの間に位置する第3部分2cを具備している。第3部分2cは、透明管4にも保温材8にも覆われていない。
【0044】
符号E
1は、第1部分2aと第3部分2cとの境界を示す。境界E
1は、集熱器1の出口に相当する。符号E
2は、第3部分2cと第2部分2bとの境界を示す。
【0045】
第3部分2cは、存在しない方が望ましいが、集熱器1の施工上の理由で存在する場合がある。
図3は、第3部分2cが存在する場合を示している。第3部分2cでは通常、太陽光線S
1、S
2による加熱量(受熱量)が集熱管2の表面からの放熱量よりも大きいため、第3部分2cの熱媒体6は加熱されている。
【0046】
よって、このような集熱管2の加熱部分は、第1及び第3部分2a、2cであり、集熱管2内の熱媒体6は、第1部分2aだけでなく、第3部分2cでも加熱される。よって、集熱管2が第3部分2cを具備する場合には、境界E
2が、集熱器1の実質的な出口に相当する。
【0047】
図3は、集熱管2内における反射鏡3に近い領域R
1を示している。符号R
1Aは、第1部分2aにおける領域R
1を示し、符号R
1Bは、第2及び第3部分2b、2cにおける領域R
1を示している。
【0048】
本実施形態の温度検知部12aは、領域R
1B内に配置されており、具体的には、第2部分2bにおける領域R
1内に配置されている。この温度検知部12aは、境界E
2上または境界E
2付近に配置する事が望ましい。この場合、温度センサ12は、集熱管2内の熱媒体6の最高温度に近い温度を計測する事ができる。なお、温度検知部12aを、第3部分2cにおける領域R
1内に配置した変形例については後述する。
【0049】
温度センサ12の形状は、
図3に示すように、棒状または線状でかつ屈曲している事が望ましい。これにより、領域R
1B内に位置する温度センサ12の長さを、温度センサ12の外径に比べて充分に長くする事ができる。その結果、温度センサ12に対する集熱管2の温度の影響を低減する事ができる。また、温度センサ12は集熱管2及び保温材8を貫通しているが、温度センサ12が集熱管2を貫通している部分はシールされている。これにより、熱媒体6が集熱管2から流出する事を防止する事ができる。
【0050】
図3の温度センサ12は、温度センサ12の信号線を含めて図示されている。本実施形態の温度検知部12aは集熱管2内に設置されているため、温度センサ12の信号線が、集熱管2の回転移動に伴い移動する。この場合、信号線の断線等の不具合が発生する事が懸念される。
【0051】
そこで、本実施形態では、温度センサ12の信号線を、温度検知部12aの付近の配管11から、集熱管2が回転しても移動しない配管11まで、配管11の表面(より詳細には、保温材8の表面)を這うように敷設する。この場合、信号線は、配管11の各屈曲部分の付近において、張り詰めた状態ではなく、充分なたわみを有する状態で敷設される。これにより、配管11の屈曲部分等における信号線の断線等の不具合を防止する事が可能となる。上述の最初の屈曲部分11bは、このような屈曲部分の一例である。このような屈曲部分は例えば、配管11のボールジョイント部分等に存在する。
【0052】
集熱管2と透明管4は例えばそれぞれ、金属製とガラス製である。この場合、集熱管2及び透明管4の温度上昇に伴い、集熱管2と透明管4との熱伸び差が発生する。本実施形態の太陽熱集熱システムにおいては、この熱伸び差による集熱管2及び透明管4の破損を防止するための構造上の工夫がなされているが、その図示は省略した。
【0053】
図4は、第1実施形態の太陽熱集熱システム内の熱媒体温度の例を示すグラフである。
【0054】
図4の縦軸は、集熱管2の領域R
1内の熱媒体6の温度を示す。
図4の横軸は、集熱管2の領域R
1内の点のY座標を示す。
【0055】
図4のグラフにおいて、熱媒体6の温度は、第1部分2aにおいてY座標の増加に伴い上昇する。理由は、熱媒体6が集熱器1により加熱されるからである。また、熱媒体6の温度は、第3部分2cにおいてもY座標の増加に伴い少し上昇する。理由は、熱媒体6が集熱器1の出口E
1から排出されてもなお、第3部分2cでは熱媒体6が太陽光線S
1、S
2により放熱量よりも大きく加熱(受熱)されるからである。そして、熱媒体6の温度は、第2部分2bにおいて一定になるか、ゆるやかな減少傾向に転じる。理由は、熱媒体6の加熱が終了するが、熱媒体6の放熱が保温材8により抑制されるためである。
【0056】
符号T
0は、本実施形態における熱媒体6の許容上限温度を示す。本実施形態の許容上限温度T
0は、例えば制御部15内に予め定められている。
図4は、熱媒体6の温度が、第1部分2aにおいて許容上限温度T
0を越えていく様子を示している。この場合、本実施形態の温度センサ12により計測される熱媒体6の温度は、許容上限温度T
0を越える事となる。
【0057】
そこで、本実施形態の制御部15は、温度センサ12により計測された熱媒体6の温度と、制御部15内に予め定められた許容上限温度T
0とに基づいて、熱媒体6の加熱を制御する。
【0058】
具体的には、制御部15は、熱媒体6の計測温度が許容上限温度T
0よりも低い場合には、反射鏡3が太陽を追尾するように集熱器1の回転を制御する。この場合、反射鏡3の中心軸が太陽光線S
1と平行に維持されるため、反射光S
2が集熱管2の位置に集光され続ける。よって、集熱管2内の熱媒体6は、高効率で加熱される。
【0059】
一方、制御部15は、熱媒体6の計測温度が許容上限温度T
0よりも高い場合には、反射鏡3が太陽の追尾を停止し、反射鏡3の向きを集熱管2に反射光S
2を集光しない向きに設定するように集熱器1を制御する。この場合、反射鏡3の中心軸は、太陽光線S
1と非平行に設定される。
【0060】
制御部15は、熱媒体6の計測温度がT
0よりも低い温度からT
0よりも高い温度に上昇した場合には、反射光S
2が集熱管2の位置に集光されなくなる角度まで反射鏡3を回転駆動させる。その結果、熱媒体6の単位流量当たりの加熱量が太陽追尾時に比べて減少し、熱媒体6の温度が低下する。制御部15は、熱媒体6の計測温度がT
0よりも高い温度からT
0よりも低い温度に下降した場合には、太陽の追尾を再開させる。
【0061】
なお、温度センサ12は、熱媒体6の温度を計測すると、計測された熱媒体6の温度を含む第1信号を制御部15に出力する。また、制御部15は、温度センサ12から第1信号を受信すると、第1信号に含まれる熱媒体6の温度に基づいて、熱媒体6の加熱を制御するための第2信号を集熱器1に出力する。本実施形態の第2信号は、集熱器1の回転に関する指令を含んでいる。温度センサ12と制御部15はそれぞれ、第1及び第2信号出力部の例である。
【0062】
なお、温度センサ12と制御部15は例えば、第1信号を処理する1台以上の装置を介して接続されていてもよい。同様に、制御部15と集熱器1は、第2信号を処理する1台以上の装置を介して接続されていてもよい。
【0063】
ここで、本実施形態の温度感知部12aを、最初の屈曲部分11bよりも上流に配置する利点について説明する。さらには、本実施形態の温度感知部12aを、反射鏡3に近い領域R
1内に配置する利点についても説明する。
【0064】
熱媒体6の流量が充分に大きい場合には、熱媒体6が充分に撹拌されるため、集熱管2の断面(管軸方向に垂直な断面)における熱媒体6の温度分布は一様に近くなる。一方、熱媒体6の流量が小さい場合には、熱媒体6は充分には撹拌されないため、集熱管2の断面における熱媒体6の温度分布は非一様になる。この場合、集熱管2の断面において、熱媒体6の温度は、反射鏡3に近い領域R
1でより高くなり、反射鏡3から遠い領域R
2でより低くなる。
【0065】
しかしながら、熱媒体6は、配管11の屈曲部分において撹拌される。よって、熱媒体6の流量が小さい場合においても、配管11の最初の屈曲部分11bよりも下流の熱媒体6の温度分布は一様に近くなる。一方、配管11の最初の屈曲部分11bよりも上流の熱媒体6の温度分布は非一様になる。
【0066】
よって、温度感知部12aを最初の屈曲部分11bよりも下流に配置すると、熱媒体6の計測温度が許容上限温度T
0より低い場合であっても、最初の屈曲部分11bより上流における熱媒体6の温度が一部で局所的に許容上限温度T
0よりも高い場合がある。この場合、この部分で熱媒体6の性状が劣化する。
【0067】
そのため、本実施形態の温度感知部12aは、最初の屈曲部分11bよりも上流に配置されている。これにより、熱媒体6が最初の屈曲部分11bにおいて撹拌される前の温度を計測する事が可能となる。
【0068】
さらに、本実施形態の温度感知部12aは、反射鏡3に近い領域R
1内に配置されている。理由は、集熱管2内の熱媒体6は、反射鏡3に近い領域R
1で局所的に高温になり、その性状が劣化する可能性が高いからである。よって、本実施形態によれば、温度感知部12aを領域R
1内に配置する事により、熱媒体6の性状が劣化する可能性が高い部分で熱媒体6の温度を計測する事が可能となる。
【0069】
さらに、本実施形態の温度感知部12aは、領域R
1内において、第2部分2bと第3部分2cとの境界E
2付近に配置されている。理由は、集熱管2内の熱媒体6は、領域R
1内の境界E
2付近において最も高温になる可能性が高いからである。よって、本実施形態によれば、温度感知部12aを領域R
1内の境界E
2付近に配置する事により、熱媒体6の性状が劣化する可能性が最も高い部分で熱媒体6の温度を計測する事が可能となる。
【0070】
本実施形態の温度感知部12aは、熱媒体6が高温になる可能性の高い位置に配置する事が望ましい。理由は、この位置の熱媒体6の温度を許容上限温度T
0よりも低く制御すれば、この位置以外の多くの位置の熱媒体6の温度も許容上限温度T
0よりも低く制御する事ができるからである。本実施形態によれば、熱媒体6が高温になる可能性の高い位置に温度感知部12aを配置する事で、太陽熱集熱システム全体における熱媒体6の性状の劣化を防止する事が可能となる。
【0071】
また、本実施形態によれば、熱媒体6の流量が小さい場合を考慮して温度感知部12aを配置する事で、熱媒体6の流量が小さい場合だけに限らず、熱媒体6の流量が大きい場合の熱媒体6の性状の劣化も防止する事が可能となる。理由は、熱媒体6の流量が大きい場合には、熱媒体6の流量が小さい場合よりも、熱媒体6の温度分布が一様に近いためである。
【0072】
図5は、第1実施形態の変形例の集熱器1の構造を示す断面図である。
図5は、集熱管2の管軸方向(Y方向)に平行な断面を示している。
【0073】
本変形例の温度検知部12aは、第2部分2bにおける領域R
1内ではなく、第3部分2cにおける領域R
1内に配置されている。この場合にも、温度検知部12aは、第2部分2bと第3部分2cとの境界E
2付近に配置する事が望ましい。
【0074】
なお、温度検知部12aを第3部分2cに配置する事には、温度検知部12aを第2部分2bに配置する場合に比べて、熱媒体6の温度上昇をより上流、即ち、より低い温度の場所で検知できるため、安全性が高いという利点がある。一方、温度検知部12aを第2部分2bに配置する事には、温度検知部12aを第3部分2cに配置する場合に比べて、温度センサ12の施工が容易であるという利点がある。なお、温度検知部12aを境界E
2上に配置する場合には、これら両方の利点を享受する事が可能である。また、第2部分2bの周りに保温材8が存在していても、第2部分2bにて熱媒体6の温度低下がわずかながらあるため、境界E
2より下流よりも境界E
2上の方が検知リスクが小さい。
【0075】
以上のように、本実施形態の温度センサ12は、集熱器1から加熱器14へと向かう熱媒体6の温度を、集熱器1から加熱器14へと向かう配管11の最初の屈曲部分11bよりも上流で計測する。よって、本実施形態では、熱媒体6が最初の屈曲部分11bにおいて撹拌される前の温度を計測する事で、熱媒体6の温度が局所的に高温になった事を検知する事ができる。よって、本実施形態によれば、この検知結果に基づいて熱媒体6の加熱を制御する事で、熱媒体6の性状が劣化する事を効果的に防止する事が可能となる。
【0076】
なお、本実施形態の制御部15は、1つの温度センサ12による熱媒体6の計測温度が許容上限温度T
0を越えた場合、その温度センサ12が配置された集熱管2の反射鏡3による追尾動作だけを停止し、反射鏡3の向きを集熱管2に反射光S
2を集光しない向きに設定してもよいし、太陽熱集熱システム内のすべての反射鏡3による追尾動作を停止し、反射鏡3の向きを集熱管2に反射光S
2を集光しない向きに設定してもよい。後者のような制御を採用する理由は、ある集熱管2内の熱媒体6の温度が高い場合には、その他の集熱管2内の熱媒体6の温度も同じ程度に高い事が予想されるからである。
【0077】
また、本実施形態では、すべての集熱管2が温度センサ12を具備しているが、代わりに1本の集熱管2のみが温度センサ12を具備していてもよい。この場合、本実施形態の制御部15は、この温度センサ12による熱媒体6の計測温度が許容上限温度T
0を越えた場合、太陽熱集熱システム内のすべての反射鏡3による追尾動作を停止し、反射鏡3の向きを集熱管2に反射光S
2を集光しない向きに設定する。
【0078】
1本の集熱管2のみが温度センサ12を具備する構成は、太陽熱集熱システムの製造コストが安価という利点を有する。一方、すべての集熱管2が温度センサ12を具備する構成は、熱媒体6の温度を精密に制御でき、安全性が高いという利点を有する。また、本実施形態では、2本以上の一部の集熱管2のみが温度センサ12を具備していてもよい。
【0079】
また、本実施形態の配管11は、複数本の分岐管11bに分岐しているが、分岐のない形状を有していてよい。また、本実施形態の太陽熱集熱システムは、フレネル型やタワー型でもよい。
【0080】
(第2実施形態)
図6は、第2実施形態の太陽熱集熱システムの構成を示す模式図である。
【0081】
本実施形態の制御部15は、第1実施形態と同様に、温度センサ12により計測された熱媒体6の温度に基づいて、熱媒体6の加熱を制御する。ただし、本実施形態の制御部15は、
図6に示すように、配管11を流れる熱媒体6の流量を変化させる事により、熱媒体6の単位流量当たりの加熱量を制御する。熱媒体6の流量は、ポンプ13の出力を調整する事により制御可能である。
【0082】
具体的には、制御部15は、熱媒体6の計測温度が許容上限温度T
0よりも低い場合には、熱媒体6の流量を第1の流量に調整する。一方、制御部15は、熱媒体6の計測温度が許容上限温度T
0よりも高い場合には、熱媒体6の流量を第1の流量よりも大きい第2の流量に調整する。
【0083】
このように、制御部15は、熱媒体6の計測温度がT
0よりも低い温度からT
0よりも高い温度に上昇した場合には、熱媒体6の流量を増加させる。その結果、集熱器1による熱媒体6の加熱量が同じでも、熱媒体6の流量が増加した分、熱媒体6の単位流量当たりの加熱量が減少する事により、熱媒体6の温度が低下する。制御部15は、熱媒体6の計測温度がT
0よりも高い温度からT
0よりも低い温度に下降した場合には、熱媒体6の流量を減少させる。
【0084】
なお、温度センサ12は、熱媒体6の温度を計測すると、計測された熱媒体6の温度を含む第1信号を制御部15に出力する。また、制御部15は、温度センサ12から第1信号を受信すると、第1信号に含まれる熱媒体6の温度に基づいて、熱媒体6の単位流量当たりの加熱量を制御するための第2信号をポンプ13に出力する。本実施形態の第2信号は、ポンプ13の出力に関する指令を含んでいる。なお、制御部15とポンプ13は、第2信号を処理する1台以上の装置を介して接続されていてもよい。
【0085】
本実施形態の温度センサ12は、第1実施形態と同様に、集熱器1から加熱器14へと向かう熱媒体6の温度を、集熱器1から加熱器14へと向かう配管11の最初の屈曲部分11bよりも上流で計測する。よって、本実施形態では、熱媒体6が最初の屈曲部分11bにおいて撹拌される前の温度を計測する事で、熱媒体6の温度が局所的に高温になった事を検知する事ができる。よって、本実施形態によれば、この検知結果に基づいて熱媒体6の加熱を流量調整により制御する事で、熱媒体6の性状が劣化する事を効果的に防止する事が可能となる。
【0086】
なお、流量調整による熱媒体6の温度制御には、太陽の追尾停止及び反射鏡3の向きの制御による熱媒体6の温度制御に比べて、一般に、より短時間で熱媒体6の温度を低下させる事ができるという利点がある。理由は、反射鏡3の回転駆動は、一般に急速ではないためである。
【0087】
一方、太陽の追尾停止及び反射鏡3の向きの制御による熱媒体6の温度制御には、流量調整による熱媒体6の温度制御に比べて、一般に、熱媒体6の温度を低下させる事が可能な温度差が大きいという利点がある。
【0088】
なお、本実施形態の熱媒体6の流量は、ポンプ13の出力を調整する代わりに、例えば配管11上のバルブ(図示せず)の開度を調整する事で制御してもよい。
【0089】
また、本実施形態の配管11は、複数本の分岐管11bに分岐しているが、分岐のない形状を有していてよい。また、本実施形態の太陽熱集熱システムは、フレネル型やタワー型でもよい。
【0090】
また、第1実施形態の制御を実行可能な構成と、第2実施形態の制御を実行可能な構成とを、同じ太陽熱集熱システムに設けてもよい。この場合、この太陽熱集熱システムは、両者の実施形態の利点を享受する事が可能となる。
【0091】
以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定する事を意図したものではない。本明細書で説明した新規なシステム及び方法は、その他の様々な形態で実施する事ができる。また、本明細書で説明したシステム及び方法の形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行う事ができる。添付の特許請求の範囲及びこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。
【符号の説明】
【0092】
1:集熱器、2:集熱管、2a:第1部分、2b:第2部分、2c:第3部分、
3:反射鏡、4:透明管、5:支柱、6:熱媒体、7:真空、8:保温材、
11:配管、11a:分岐管、11b:屈曲部分、
12:温度センサ、12a:温度感知部、
13:ポンプ、14:加熱器、15:制御部、16:被加熱流体