(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
近年、環境負荷低減の観点から、発電用ボイラ等の運転条件の高温・高圧化が世界的規模で進められている。過熱器管や再熱器管に使用される材料には、より優れた高温強度や耐食性が求められている。
【0003】
このような要求を満たす材料として、多量の窒素を含有させた種々のオーステナイト系耐熱合金が開示されている。
【0004】
例えば、特開昭62−133048号公報には、Nを0.05〜0.35%、Nbを0.05〜1.5%含む、高温強度に優れたオーステナイト鋼が開示されている。特開2000−256803号公報には、Nを0.05〜0.3%含み、かつNb(%)/Cu(%)を0.05〜0.2%とし、溶体化処理後の未固溶Nb量を0.04×Cu(%)〜0.085×Cu(%)とした、高温強度と延性に優れたオーステナイト系ステンレス鋼が開示されている。
【0005】
特開2000−328198号公報には、Nを0.05〜0.3%、Cuを2〜6%、並びにY、La、Ce及びNdのうちの1種又は2種以上を合計で0.01〜0.2%含み、かつMn、Mg、Ca、Y、La、Ce、Nd、Al、Cu、及びSの関係式で表される数値を特定の範囲とした、高温強度と熱間加工性に優れたオーステナイト系ステンレス鋼が開示されている。
【0006】
特開2003−268503号公報には、Nを0.005〜0.2%含み、かつ結晶粒度番号を7以上の細粒とすることにより、高温強度と耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管が開示されている。国際公開第2013/073055号には、Nを0.005〜0.3%含み、表層部が平均厚さ5〜30μmの高エネルギー密度の加工層で覆われた、高温強度と耐水蒸気酸化特性に優れたオーステナイト系ステンレス鋼が開示されている。
【0007】
特開2013−44013号公報には、Nを0.07〜0.13%含み、Mo、Wその他の合金元素によりオーステナイトバランスを調整した高温強度と時効後靱性に優れたオーステナイト系耐熱鋼が開示されている。特開2014−88593号公報には、Nを0.10〜0.35%、Taを0.25〜0.8%含む、高温強度と耐酸化性に優れたオーステナイト系ステンレス鋼が開示されている。
【0008】
国際公開第2009/044796号には、Nを0.03〜0.35%、並びにNb、V、及びTiのうちの1種又は2種以上を含む、高強度のオーステナイト系ステンレス鋼が開示されている。
【発明を実施するための形態】
【0015】
本発明者らは、上記の課題を解決するために詳細な調査を行った。その結果、以下に述べる知見が明らかになった。
【0016】
高Nを含有するオーステナイト系耐熱合金を使用した溶接継手において、使用中に発生したSIPH割れを詳細に調査した。その結果、(1)割れは溶融線近傍の粗粒な溶接熱影響部の結晶粒界に発生し、(2)その割れ破面上からは、Sの明瞭な濃化が検出された。さらに、(3)割れ近傍の粒内には、窒化物や炭窒化物が多量に析出していた。加えて、(4)使用したオーステナイト系耐熱合金の初期の結晶粒径が大きいほど、溶接熱影響部の結晶粒径も大きくなり、割れが発生しやすくなることが分かった。
【0017】
これらより、SIPH割れは、高温での使用中に粒内に多量の窒化物や炭窒化物が析出することに起因して、粒内が変形しにくくなることで、クリープ変形が粒界に集中する結果として開口に至ったものと考えられた。Sは、溶接中又は使用中に粒界に偏析し、粒界の結合力を低下させる。また、結晶粒径が大きいほど、単位体積当たりの結晶粒界の面積が減少する。結晶粒界は、窒化物や炭窒化物の核生成サイトとして機能する。そのため、結晶粒界が減少すると、窒化物や炭窒化物がより多量に粒内に析出しやすくなる。加えて、使用中に受ける外力、例えば溶接残留応力等に起因して生じるクリープ変形が、特定の粒界面により集中しやすくなる。そのため、母材の初期の結晶粒径が大きいほど、割れが生じやすくなると考えられた。特に650℃を超える高温では、析出物が短時間で析出することに加え、粒界偏析も早期に生じるため、問題が顕在化しやすくなると考えられた。
【0018】
この割れを防止するためには、析出強化や固溶強化によって粒内の変形抵抗を高める元素を減らすことが有効である。しかしながら、これらの元素は、高温でのクリープ強度確保の観点からは必須の元素である。そのため、割れの防止と高温でのクリープ強度確保とはトレードオフの関係にあり、これらを両立することは困難である。
【0019】
検討を重ねた結果、C:0.04〜0.15%、Si:0.05〜1%、Mn:0.3〜2.5%、P:0.04%以下、Cu:2〜4%、Ni:11〜16%、Cr:16〜20%、Nb:0.1〜0.8%、Ti:0.05〜0.35%、B:0.0005〜0.01%、Al:0.03%以下、及びO:0.02%以下を含むオーステナイト系耐熱合金において、SIPH割れを防止するためには、N含有量を0.015%以下、S含有量を0.0015%以下に厳密に管理するとともに、母材の初期粒径をASTM(American Society for Testing and Material:アメリカ材料試験協会)に規定される結晶粒度番号を2.0番以上とすることが有効であることを明らかにした。
【0020】
しかしながら、N含有量を過剰に低減し、あるいは結晶粒径を必要以上に細かくすると、母材のクリープ強度が所定の値を満足しなくなる。そのため、N含有量は0.001%以上、結晶粒径は結晶粒度番号で7.0番未満とする必要があることが分かった。加えて、加熱初期には固溶強化によりクリープ強度に寄与し、かつ長時間使用中にラーベス相として緩やかに析出するWを2〜5%含有させることが、耐SIPH割れ性を損なうことなく、所定のクリープ強度を満足させるために必要であることが判明した。
【0021】
ところで、これらの対策でSIPH割れは確かに防止できることが確認できたものの、検討を継続する中で別の問題が生じる可能性があることが判明した。
【0022】
前述のように、オーステナイト系耐熱合金は、溶接によって組み立てられることが多い。これらを溶接する場合、通常は溶加材料を使用する。しかし、小型の薄肉部品や、肉厚部品でも初層溶接や仮付け溶接においては、溶加材料を使用せずガスシールドアーク溶接する場合がある。この際、溶け込み深さが不十分であると、未溶融の突き合わせ面が欠陥として残存し、溶接継手において必要な強度が得られない。Sは、耐SIPH割れ性を低下させる一方で、溶け込み深さを増大させる効果を有する。そのため、耐SIPH割れ性の観点からS量を0.0015%以下に厳密に管理すると、溶け込み不良が発生する場合があることが分かった。
【0023】
溶け込み不良を防止するためには、単純には溶接入熱を大きくすれば良い。しかし、溶接入熱を大きくすると、溶接熱影響部の粗大化が助長され、母材の初期粒径を結晶粒度番号で2.0番以上にしてもSIPH割れを防止することができなくなった。
【0024】
検討した結果、溶け込み不良を安定して防止したい場合、Snを0.001〜0.02%の範囲で含有させることが有効であることを見いだした。これは、Snが溶接中の溶融池表面から蒸発しやすく、アーク中でイオン化することで、通電経路の形成に寄与してアークの電流密度を高めることによるものと考えられた。
【0025】
以上の知見に基づいて、本発明は完成された。以下、本発明の一実施形態によるオーステナイト系耐熱合金を詳述する。
【0026】
[化学組成]
本実施形態によるオーステナイト系耐熱合金は、以下に説明する化学組成を有する。以下の説明において、元素の含有量の「%」は、質量%を意味する。
【0027】
C:0.04〜0.15%
炭素(C)は、オーステナイト組織を安定にするとともに、微細な炭化物を形成して高温使用中のクリープ強度を向上させる。この効果を十分に得るためには、0.04%以上含有する必要がある。しかしながら、Cを過剰に含有すると、炭化物が多量に析出し、耐SIPH割れ性が低下する。そのため、上限は0.15%とする。C含有量の下限は、好ましくは0.05%であり、さらに好ましくは0.06%である。C含有量の上限は、好ましくは0.13%であり、さらに好ましくは0.12%である。
【0028】
Si:0.05〜1%
シリコン(Si)は、脱酸作用を有するとともに、高温での耐食性及び耐酸化性の向上に有効な元素である。この効果を十分に得るためには、0.05%以上含有する必要がある。しかしながら、Siを過剰に含有すると、組織の安定性が低下して、靱性及びクリープ強度の低下を招く。そのため、上限は1%とする。Si含有量の下限は、好ましくは0.08%であり、さらに好ましくは0.1%である。Si含有量の上限は、好ましくは0.5%であり、さらに好ましくは0.35%である。
【0029】
Mn:0.3〜2.5%
マンガン(Mn)は、Siと同様、脱酸作用を有する。Mnはまた、オーステナイト組織の安定化に寄与する。この効果を十分に得るためには、0.3%以上含有する必要がある。しかしながら、Mnを過剰に含有すると、合金の脆化を招き、さらに、クリープ延性が低下する。そのため、上限は2.5%とする。Mn含有量の下限は、好ましくは0.4%であり、さらに好ましくは0.5%である。Mn含有量の上限は、好ましくは2%であり、さらに好ましくは1.5%である。
【0030】
P:0.04%以下
リン(P)は、不純物として合金中に含まれ、溶接中に溶接熱影響部の結晶粒界に偏析して液化割れ感受性を高める。Pはさらに、長時間使用後のクリープ延性を低下させる。そのため、P含有量には上限を設けて0.04%以下とする。P含有量の上限は、好ましくは0.035%、さらに好ましくは0.03%である。P含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、P含有量の下限は、好ましくは0.0005%であり、さらに好ましくは0.0008%である。
【0031】
S:0.0015%以下
硫黄(S)は、Pと同様に不純物として合金中に含まれ、溶接中に溶接熱影響部の結晶粒界に偏析して液化割れ感受性を高める。Sはさらに、長時間使用中に結晶粒界に偏析して脆化を招き、耐SIPH割れ性を大きく低下させる元素である。本実施形態の化学組成の範囲においてこれらを防止するためには、S含有量を0.0015%以下にする必要がある。S含有量の上限は、好ましくは0.0012%、さらに好ましくは0.001%である。S含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。そのため、S含有量の下限は、好ましくは0.0001%であり、さらに好ましくは0.0002%である。
【0032】
Cu:2〜4%
銅(Cu)は、オーステナイト組織の安定にするとともに、使用中に微細に析出してクリープ強度の向上に寄与する。この効果を十分に得るためには、2%以上含有する必要がある。しかしながら、Cuを過剰に含有すると、熱間加工性の低下を招く。そのため、上限は4%とする。Cu含有量の下限は、好ましくは2.3%であり、さらに好ましくは2.5%である。Cu含有量の上限は、好ましくは3.8%であり、さらに好ましくは3.5%である。
【0033】
Ni:11〜16%
ニッケル(Ni)は、長時間使用時のオーステナイト相の安定性を確保するために必須の元素である。本実施形態のCr、W含有量の範囲でこの効果を十分に得るためには、Niを11%以上含有する必要がある。しかしながら、Niは高価な元素であり、多量の含有はコストの増大を招く。そのため、上限は16%とする。Ni含有量の下限は、好ましくは12%であり、さらに好ましくは13%である。Ni含有量の上限は、好ましくは15.5%であり、さらに好ましくは15%である。
【0034】
Cr:16〜20%
クロム(Cr)は、高温での耐酸化性及び耐食性の確保のために必須の元素である。Crはまた、微細な炭化物を形成してクリープ強度の確保にも寄与する。本実施形態のNi含有量の範囲でこの効果を十分に得るためには、Crを16%以上含有する必要がある。しかしながら、Crを過剰に含有すると、高温でのオーステナイト相の組織安定性が劣化してクリープ強度が低下する。そのため、上限は20%とする。Cr含有量の下限は、好ましくは16.5%であり、さらに好ましくは17%である。Cr含有量の上限は、好ましくは19.5%であり、さらに好ましくは19%である。
【0035】
W:2〜5%
タングステン(W)は、マトリックスに固溶することに加え、有害な金属間化合物相であるシグマ相の生成を遅延させるとともに、微細なラーベス相として析出し、高温でのクリープ強度や引張強さの向上に大きく寄与する。この効果を十分に得るためには、2%以上含有する必要がある。しかしながら、Wを過剰に含有すると、粒内の変形抵抗が高くなって耐SIPH割れ性が低下するとともに、クリープ強度が低下する場合がある。さらに、Wは高価な元素であり、多量の含有はコストの増大を招く。そのため、上限は5%とする。W含有量の下限は、好ましくは2.2%であり、さらに好ましくは2.5%である。W含有量の上限は、好ましくは4.8%であり、さらに好ましくは4.5%である。
【0036】
Nb:0.1〜0.8%
ニオブ(Nb)は、微細な炭窒化物として粒内に析出して、高温でのクリープ強度や引張強さの向上に寄与する。この効果を十分に得るためには、0.1%以上含有する必要がある。しかしながら、Nbを過剰に含有すると、炭窒化物が多量に析出して耐SIPH割れ性が低下するとともに、クリープ延性及び靱性の低下を招く。そのため、上限は0.8%とする。Nb含有量の下限は、好ましくは0.12%であり、さらに好ましくは0.15%である。Nb含有量の上限は、好ましくは0.7%であり、さらに好ましくは0.65%である。
【0037】
Ti:0.05〜0.35%
チタン(Ti)は、Nbと同様、微細な炭窒化物を形成して、高温でのクリープ強度や引張強さの向上に寄与する。この効果を十分に得るためには、0.05%以上含有する必要がある。しかしながら、Tiを過剰に含有すると、析出部が多量になって耐SIPH割れ性が低下するとともに、クリープ延性及び靱性が低下する。そのため、上限は0.35%とする。Ti含有量の下限は、好ましくは0.08%であり、さらに好ましくは0.12%である。Ti含有量の上限は、好ましくは0.32%であり、さらに好ましくは0.3%である。
【0038】
N:0.001〜0.015%
窒素(N)は、オーステナイト組織を安定にするとともに、マトリックスに固溶して、又は窒化物として析出して、高温強度の向上に寄与する。この効果を十分に得るためには、0.001%以上含有する必要がある。しかしながら、Nを過剰に含有すると、短時間使用時には固溶によって、長時間使用中には多量の微細窒化物が粒内に析出することによって、粒内変形抵抗が高くなり、耐SIPH割れ性が低下する。さらに、クリープ延性及び靱性が低下する。そのため、上限は0.015%とする。N含有量の下限は、好ましくは0.002%であり、さらに好ましくは0.004%である。N含有量は、上限の観点では、好ましくは0.015%未満であり、さらに好ましくは0.012%以下であり、さらに好ましくは0.01%以下である。
【0039】
B:0.0005〜0.01%
ボロン(B)は、粒界炭化物を微細に分散させることによってクリープ強度を向上させるとともに、粒界に偏析して粒界を強化する。この効果を十分に得るためには、0.0005%以上含有する必要がある。しかしながら、Bを過剰に含有すると、溶接中の溶接熱サイクルによって溶融境界近傍の溶接熱影響部にBが多量に偏析して粒界の融点が低下し、液化割れ感受性が高くなる。そのため、上限は0.01%とする。B含有量の下限は、好ましくは0.0008であり、さらに好ましくは0.001%である。B含有量の上限は、好ましくは0.008%であり、さらに好ましくは0.006%である。
【0040】
Al:0.03%以下
アルミニウム(Al)は、脱酸作用を有する。しかしながら、Alを過剰に含有すると、合金の清浄性が劣化して熱間加工性が低下する。そのため、上限は0.03%とする。Al含有量の上限は、好ましくは0.025%であり、さらに好ましくは0.02%である。下限は特に設ける必要はないが、極度の低減は製鋼コストの増大を招く。そのため、Al含有量の下限は、好ましくは0.0005%であり、さらに好ましくは0.001%である。なお、本発明においては、Alは酸可溶Al(sol.Al)を意味する。
【0041】
O:0.02%以下
酸素(O)は、不純物として合金中に含まれ、溶接中の溶け込み深さを増大する効果を有する。しかしながら、Oを過剰に含有すると、熱間加工性が低下するとともに、靱性や延性が劣化する。そのため、上限は0.02%とする。O含有量の上限は、好ましくは0.018%であり、さらに好ましくは0.015%である。下限は特に設ける必要はないが、極度の低減は製鋼コストの増大を招く。そのため、O含有量の下限は、好ましくは0.0005%、さらに好ましくは0.0008%である。
【0042】
本実施形態によるオーステナイト系耐熱合金の化学組成の残部は、Fe及び不純物である。ここでいう不純物とは、耐熱合金を工業的に製造する際に、原料として利用される鉱石やスクラップから混入する元素、又は製造過程の環境等から混入する元素を意味する。
【0043】
本実施形態によるオーステナイト系耐熱合金の化学組成は、上記のFeの一部に代えて、Snを含有しても良い。Snは選択元素である。すなわち、本実施形態によるオーステナイト系耐熱合金の化学組成は、Snを含有していなくても良い。
【0044】
Sn:0〜0.02%
スズ(Sn)は、溶融池から蒸発してアークの電流密度を増大させることによって、溶接時の溶け込み深さを増大させる効果を有する。Snを少しでも含有すればこの効果が得られるが、0.001%以上含有すれば、この効果が顕著に得られる。しかしながら、Snを過剰に含有すると、溶接中の溶接熱影響部の液化割れ感受性及び使用中のSIPH割れ感受性が高くなる。そのため、上限は0.02%とする。Sn含有量の下限は、さらに好ましくは0.0015%であり、さらに好ましくは0.002%である。Sn含有量の上限は、好ましくは0.018%であり、さらに好ましくは0.015%である。
【0045】
本実施形態によるオーステナイト系耐熱合金の化学組成はさらに、上記のFeの一部に代えて、下記の第1群から第3群のいずれかの群から選択される1種以上の元素を含有しても良い。下記の元素は、すべて選択元素である。すなわち、下記の元素は、いずれも本実施形態によるオーステナイト系耐熱合金に含有されていなくても良い。また、一部だけが含有されていても良い。
【0046】
より具体的には、例えば、第1群から第3群までの群の中から1つの群だけを選択し、その群から1種以上の元素を選択しても良い。この場合、選択した群に属するすべての元素を選択する必要はない。また、第1群から第3群の中から複数の群を選択し、それぞれの群から1種以上の元素を選択しても良い。この場合も、選択した群に属するすべての元素を選択する必要はない。
【0047】
第1群 V:0〜0.5%
第1群に属する元素は、Vである。Vは、析出強化によって合金のクリープ強度を向上する。
【0048】
V:0〜0.5%
バナジウム(V)は、NbやTiと同様、炭素又は窒素と結合して微細な炭化物又は炭窒化物を形成して、クリープ強度の向上に寄与する。Vを少しでも含有すればこの効果が得られる。しかしながら、Vを過剰に含有すると、析出物が多量になって耐SIPH性及びクリープ延性が低下する。そのため、上限は0.5%とする。V含有量の下限は、好ましくは0.01%であり、さらに好ましくは0.03%である。V含有量の上限は、好ましくは0.45%であり、さらに好ましくは0.4%である。
【0049】
第2群 Co:0〜2%、Mo:0〜5%
第2群に属する元素は、Co及びMoである。これらの元素は、合金のクリープ強度を向上する。
【0050】
Co:0〜2%
コバルト(Co)は、NiやCuと同様にオーステナイト生成元素であり、オーステナイト組織の安定性を高めてクリープ強度の向上に寄与する。Coを少しでも含有すれば、この効果が得られる。しかしながら、Coは極めて高価な元素であり、多量の含有はコストの増大を招く。そのため、上限は2%とする。Co含有量の下限は、好ましくは0.01%であり、さらに好ましくは0.03%である。Co含有量の上限は、好ましくは1.8%であり、さらに好ましくは1.5%である。
【0051】
Mo:0〜5%
モリブデン(Mo)は、マトリックスに固溶して高温でのクリープ強度や引張強さの向上に寄与する。Moを少しでも含有すれば、この効果が得られる。しかしながら、Moを過剰に含有すると、粒内の変形抵抗が高くなって耐SIPH割れ性が低下するとともに、有害な金属間化合物相であるシグマ相の生成を促進し、クリープ強度が低下する場合がある。さらに、Moは高価な元素であり、多量の含有はコストの増大を招く。そのため、上限は5%とする。Mo含有量の下限は、好ましくは0.01%であり、さらに好ましくは0.03%である。Mo含有量の上限は、好ましくは4.8%であり、さらに好ましくは4.5%である。
【0052】
第3群 Ca:0〜0.02%、Mg:0〜0.02%、REM:0〜0.2%
第3群に属する元素はCa、Mg、及びREMである。これらの元素は、合金の熱間加工性を改善する。
【0053】
Ca:0〜0.02%
カルシウム(Ca)は、製造時の熱間加工性を改善する。Caを少しでも含有すれば、この効果が得られる。しかしながら、Caを過剰に含有すると、酸素と結合して合金の清浄性を著しく低下させ、かえって熱間加工性が低下する。そのため、上限は0.02%とする。Ca含有量の下限は、好ましくは0.0005%であり、さらに好ましくは0.001%である。Ca含有量の上限は、好ましくは0.01%であり、さらに好ましくは0.005%である。
【0054】
Mg:0〜0.02%
マグネシウム(Mg)は、Caと同様、製造時の熱間加工性を改善する。Mgを少しでも含有すれば、この効果が得られる。しかしながら、Mgを過剰に含有すると、酸素と結合して合金の清浄性を著しく低下させ、かえって熱間加工性が低下する。そのため、上限は0.02%とする。Mg含有量の下限は、好ましくは0.0005%であり、さらに好ましくは0.001%である。Mg含有量の上限は、好ましくは0.01%であり、さらに好ましくは0.005%である。
【0055】
REM:0〜0.2%
希土類元素(REM)は、CaやMgと同様、製造時の熱間加工性を改善する。REMを少しでも含有すれば、この効果が得られる。しかしながら、REMを過剰に含有すると、酸素と結合して合金の清浄性を著しく低下させ、かえって熱間加工性が低下する。そのため、上限は0.2%とする。REM含有量の下限は、好ましくは0.0005%であり、さらに好ましくは0.001%である。REM含有量の上限は、好ましくは0.15%であり、さらに好ましくは0.1%である。
【0056】
「REM」とはSc、Y及びランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種又は2種以上の元素の合計含有量を指す。また、REMは一般的にミッシュメタルに含有される。このため例えば、合金にミッシュメタルを添加して、REMの含有量が上記の範囲となるようにしても良い。
【0057】
[組織]
結晶粒度番号:2.0番以上7.0番未満
本実施形態によるオーステナイト系耐熱合金は、結晶粒径がASTM E112に規定される結晶粒度番号で2.0番以上7.0番未満である組織を有する。
【0058】
本実施形態によるオーステナイト系耐熱合金を用いた溶接構造物において、その溶接熱影響部に十分な耐SIPH割れ性を付与するためには、溶接による熱サイクルを受けても溶接熱影響部の結晶粒径が過度に粗大にならないように、溶接前の組織の結晶粒径を、ASTM E112に規定される結晶粒度番号で2.0番以上の細粒とする必要がある。しかしながら、結晶粒径が7.0番以上の細粒となると、必要なクリープ強度が得られない。そのため、結晶粒径を2.0番以上7.0番未満とする。
【0059】
上記の結晶粒径を有する組織は、上記の化学組成の合金を適切な条件で熱処理することで得られる。この組織は例えば、上記の化学組成の合金を熱間加工や冷間加工で所定の形状に成形した後、1000〜1250℃の温度で3〜60分間保持した後水冷する固溶化熱処理を実施することによって達成される。固溶化熱処理の保持温度が高いほど、また、保持時間が長いほど、結晶粒径が大きくなる(結晶粒度番号が小さくなる)。固溶化熱処理は、1150〜1250℃の温度で3〜45分間保持した後水冷することがより好ましく、1170〜1240℃の温度で3〜30分間保持した後水冷することがさらに好ましい。
【0060】
以上、本発明の一実施形態によるオーステナイト系耐熱合金を説明した。本実施形態によれば、優れた耐割れ性及び高温強度が安定して得られるオーステナイト系耐熱合金が得られる。
【実施例】
【0061】
以下、実施例によって本発明をより具体的に説明する。本発明は、これらの実施例に限定されない。
【0062】
表1に示す化学組成を有するA〜Lの材料を実験室溶解して鋳込んだインゴットを、1000〜1150℃の温度範囲で熱間鍛造及び熱間圧延し、厚さ20mmの板とした。この板をさらに冷間圧延して厚さ16mmにした。この板を1200℃で所定時間保持した後水冷する固溶化熱処理を実施した。固溶化熱処理の後、機械加工によって厚さ14mm、幅50mm、長さ100mmの板に成形した。また、この板とは別に、固溶化熱処理した板から組織観察用の試料を採取して、ASTM E112に準拠して組織の結晶粒径を測定した。なお、材料Aについては、固溶化熱処理の保持時間を3〜30分の範囲で変化させ、結晶粒径の異なる材料を作製した。
【0063】
【表1】
【0064】
[溶接施工性]
上記で作製した板の長手方向に沿って、
図1に示す開先加工を施した。開先加工を施した板同士を突き合わせ、ガスタングステンアーク溶接法によって、各代符につき2継手ずつ、突き合わせ溶接を行って溶接継手を作製した。溶接は、溶加材料を用いず、入熱量は5kJ/cmとした。
【0065】
得られた溶接継手のうち、2継手とも溶接線の全長にわたって裏ビードが形成されたものを、溶接施工性が良好であるとして合格とした。合格の継手のうち、全長にわたって裏ビードの幅が2mm以上であったものを「良」と判定し、一部でも幅が2mm未満の部分があったものを「可」と判定した。また、2継手のうち一部でも裏ビードが形成されない部分があったものは「不可」と判定した。
【0066】
[耐溶接割れ性]
初層のみ溶接した上記の溶接継手を、JIS G 3106(2008)に規定のSM400B相当の市販の鋼板(厚さ30mm、幅200mm、長さ200mm)の上に、JIS Z 3224(2010)に規定の被覆アーク溶接棒ENi6625を用いて四周を拘束溶接した。その後、JIS Z 3334(2011)に規定のSNi6625該当のティグワイヤを用いて、入熱10〜15kJ/cmでTIG溶接により開先内に積層溶接を行って、各代符につき2継手ずつ溶接継手を作製した。
【0067】
各代符の溶接継手の一方に、700℃×500時間の時効熱処理を行った。溶接ままの溶接継手及び時効熱処理を施した溶接継手の各5カ所から、観察面が継手の横断面(溶接ビードと垂直な断面)になるように試料を採取した。採取した試料を鏡面研磨、腐食した後、光学顕微鏡によって検鏡し、溶接熱影響部における割れの有無を調査した。5個の試料のすべてで割れが観察されなかった溶接継手を「良」、1個の試料で割れが観察された溶接継手を「可」として、合格と判断した。2個以上の試料で割れが観察された溶接継手を「不可」と判断した。
【0068】
[クリープ破断強さ]
耐溶接割れ性試験で合格した溶接ままの溶接継手から、溶接金属が平行部の中央となるように丸棒クリープ破断試験片を採取した。母材の目標破断時間が約1000時間となる700℃、186MPaの条件でクリープ破断試験を行った。母材破断し、かつ、その破断時間が母材の破断時間の90%以上(すなわち、900時間以上)となるものを「合格」とした。
【0069】
[性能評価結果]
性能評価結果を表2に示す。表2には、各代符のオーステナイト系耐熱合金の結晶粒度番号を併せて示す。
【0070】
【表2】
【0071】
代符A−1〜A−4のオーステナイト系耐熱合金を母材とする溶接継手は、化学組成が適切であり、母材の初期粒径が結晶粒度番号で2.0番以上7.0番未満であった。これらの溶接継手は、初層溶接において幅が2mm以上の裏ビードが全長にわたり形成され、良好な溶接施工性を有していた。また、母材の厚さが14mmと比較的厚かったにもかかわらず、時効熱処理を施した場合でも溶接熱影響部に割れが生じず、優れた耐割れ性を有していた。さらに、高温のクリープ破断強度も十分であった。
【0072】
代符B及びCのオーステナイト系耐熱合金を母材とする溶接継手は、化学組成が適切であり、母材の初期粒径が結晶粒度番号で2.0番以上7.0番未満であった。これらの溶接継手は、裏ビードの幅が一部狭い部分があったものの、許容できる範囲であった。また、これらの溶接継手は、優れた耐割れ性、及び高温クリープ強度を有していた。
【0073】
代符D〜Gのオーステナイト系耐熱合金を母材とする溶接継手は、化学組成が適切であり、母材の初期粒径が結晶粒度番号で2.0番以上7.0番未満であった。これらの溶接継手は、初層溶接において幅が2mm以上の裏ビードが全長にわたり形成され、良好な溶接施工性を有していた。これらの溶接継手では、母材の化学組成がSnを含有したため、良好な溶接施工性が安定して得られたと考えられる。また、これらの溶接継手は、優れた耐割れ性、及び高温クリープ強度を有していた。
【0074】
代符A−5のオーステナイト系耐熱合金を母材とする溶接継手は、時効熱処理後にSIPH割れと考えられる割れが発生した。これは、代符A−5のオーステナイト系耐熱合金の結晶粒径が、粗粒すぎたためと考えられる。
【0075】
代符A−6のオーステナイト系耐熱合金を母材とする溶接継手は、優れた耐割れ性を有していたものの、クリープ破断時間が目標を下回った。これは、代符A−6のオーステナイト系耐熱合金の結晶粒径が、細粒すぎたためと考えられる。
【0076】
代符Hのオーステナイト系耐熱合金を母材とする溶接継手は、良好な溶接施工性を有していたものの、時効熱処理後にSIPH割れと考えられる割れが発生した。これは、代符Hのオーステナイト系耐熱合金のS含有量が多すぎたためと考えられる。
【0077】
代符Iのオーステナイト系耐熱合金を母材とする溶接継手は、溶接まま及び時効熱処理後に、それぞれ液化割れ及びSIPH割れと考えられる割れが発生した。これは、代符Iのオーステナイト系耐熱合金のSn含有量が多すぎたためと考えられる。
【0078】
代符J及びKのオーステナイト系耐熱合金を母材とする溶接継手は、時効熱処理後にSIPH割れと考えられる割れが発生した。これは、代符J及びKのオーステナイト系耐熱合金のN含有量が多すぎたため、粒内に炭窒化物が過剰に析出したためと考えられる。これらの溶接継手では、母材のS含有量を低減し、かつ結晶粒径を規定の範囲に制御したにもかかわらず、SIPH割れを防止することができなかった。
【0079】
代符Lのオーステナイト系耐熱合金を母材とする溶接継手は、優れた溶接施工性と耐溶接割れ性を有していたものの、クリープ破断時間が目標を下回った。これは、代符Lのオーステナイト系耐熱合金に含有されるW量が下限を下回ったためと考えられる。