【発明が解決しようとする課題】
【0016】
しかしながら、粉末層はいくつかの欠点を有する。主な欠点は、通常では僅かに0.1Hz〜1Hzというその低い動作速度である。動作速度は、交換流体および磁場をサイクル動作させることができる周波数である。低い周波数は、冷却の1ワット当たりで比較的大きな重い高価な解決策になる。より高い周波数で液状の交換流体を使用するときには、多孔質充填層AMRにわたる大きな圧力降下によって、周波数限界が生じる。圧力降下は、大きな粘性損失をもたらし、したがって、圧送損失をもたらす。気体の交換媒体の利用は圧力降下および粘性損失を減らすことができるが、気体の低い熱容量によって、利用可能な冷却力が制限される。
【0017】
粉末層の別の欠点は、達成できる最大充填密度が74%(六方最密充填(HCP)においては面心立方(FCC)も)であるという点であり、実際には、現実に達成できる充填密度は更に低い。磁気熱量材料によってせいぜい26%の磁場体積しか占められない。しかしながら、磁場利用度を最大にすることは、コスト要件およびサイズ要件を満たしてコンパクトな磁石を利用する商業的な解決策を得るために欠かせない。
【0018】
また、上述した“断熱温度変化”ABは、実際には、熱が伝えられる磁気熱量材料と直接に接触する交換流体の存在によって、断熱よりも小さい。したがって、
図2に示されるサイクルABCDは、同様に
図2に示されるサイクルAFCEに、より類似する。全体の温度変化ΔTに比べると、磁気熱量材料の変化はΔT−δTにすぎない。そのため、ΔS(冷却力に関連する)は、もはやDとAとの間のエントロピー差ではなく、むしろ、EとAとの間の更に小さいエントロピー差である。理想的なサイクルに更に近づけるため、交換流体と磁気熱量材料との間の熱容量比が最小にされる必要がある。これは、磁気熱量材料の充填密度を増大させることによって、交換流体の相対量を減らすことによって、または、磁気熱量材料の熱容量に対して交換流体の熱容量を下げることによって実現され得る。
【0019】
チャネルに基づく幾何学的形態は、AMRの充填密度を原理的に0%(磁気熱量材料なし)〜100%(チャネルなし)の任意の値に設定できるため、充填層の制限を回避する。材料の充填密度を増大させることにより、両方の冷却サイクルを最適化でき、すなわち、AFを望み通りにABに近づける(または、CDをCEに近づける)ことができ、同時に、有限サイズの規則的な(したがって、低圧)チャネルを維持しつつ、磁場利用度を最大にすることができる。
【0020】
同時に、規則的なチャネルは、圧力降下を減らし、したがって、粘性損失を減少させる。
【0021】
多くのチャネルに基づく幾何学的形態が論じられてきた(Tishin,“The magnetocaloric effect and its application”IOP出版2003、および、その中の引用文献)。
【0022】
しかしながら、商業的な冷却装置の課題は、適度に寸法付けられた磁石とコンパクトなAMRとを使用しつつ、AMRの低温端と高温端との間で高い温度勾配を実現することである。
【0023】
磁気熱量(および電気熱量)材料はそれらのキュリー温度Tc付近で最も高いΔTおよびΔSを示す(
図2cは、磁気熱量材料に関して〜293KでピークΔSを示す)が、転移の性質に応じて、最大値は、鋭く、あるいは、平坦で幅広い。最適なAMR(またはAER)の設計のためには、AMR(またはAER)の全長にわたって高いΔTおよびΔSを伴う材料を有することが重要である。したがって、複数の材料が使用され、その場合、それらの材料が動作する温度範囲に対してΔSおよびΔTが最適化される。効率的な設計に至るためには、適した磁気熱量材料の選択、および、AMR(またはAER)構造の詳細なモデリングが非常に重要である。
【0024】
同時に、AMR(またはAER)の全体の冷却力は、交換流体との同時熱交換と高温交換器および低温交換器とによってAMR(またはAER)が経ることができる1秒当たりのサイクル(ABCDまたはAFCE)数によって決まる。したがって、小さいコンパクトな解決策においては、高い動作周波数、すなわち、上述したサイクルABCD(またはAFCE)周りの高速動作が重要である。
【0025】
実際の冷却力(単位入力電力当たりの冷却力)は、損失に依存するとともに、冷媒の冷却容量のうちのどのくらいをAMR(またはAER)の磁気熱量材料から交換流体に解放できるか、その結果、AMR(またはAER)の低温端で実行して高温から低温へのブローにより低温交換器に解放できるか(または、ヒートポンプ用途に関しては、AMR(またはAER)の高温端で実行して低温から高温へのブローにより高温交換器に解放できるか)の指標である。
【0026】
理想的には、(単位入力仕事当たりの)実際の冷却力と冷却容量は同じでなければならない。しかしながら、(単位入力仕事当たりの)実際の冷却力と冷却容量との間の差は、多くの異なる寄与因子から構成される“全損失”と称される。交換流体中の熱の輸送に関連する損失は、本明細書中では、“HE損失”と称され、この損失は交換流体内の温度勾配と関連付けられる。AMRを通じた高温から低温への熱の逆流と関連する損失は、“逆流損失”と呼ばれる。冷媒材料中の局所的な熱流と関連する損失は“局所損失”と呼ばれる。ヒステリシスと関連する損失は“ヒステリシス損失”と呼ばれる。流体の圧送と関連する損失は、“粘性損失”と呼ばれ、流体中の粘性消散と関連付けられる。最適なAMRの設計は、損失全ての最小化を要する。
【0027】
磁気ヒートエンジンにおいて、大きな物理的構成要素は磁石である。したがって、(例えば、高い充填密度により)冷媒の単位体積当たりの磁場利用度を最大にすることは、コンパクトな解決策のためには欠かせない。
【0028】
一般に、本発明の目的となる課題は、最新技術の上述した欠点を克服すること、および、能動型再生磁気熱量エンジンまたは能動型再生電気熱量エンジンの性能を高めるAMR(またはAER)を提供することである。最終目標は、それぞれのエンジンを商業的に実現可能にすることである。
【0029】
特に、本発明は、以下を行なおうとする。
1.高性能複数材料AMRまたはAER装置のための材料選択基準を定めること。
2.最適なチャネルに基づく蓄冷器を特定すること。
3.損失(HE損失、局所損失、逆流損失、粘性損失)を最小にして、性能を最大にするとともに、印加される場の利用を最大にするために、チャネルに基づく蓄冷器にとって最適な幾何学的形態を定めること。
4.損失を最小にして製造に役立つように、アーキテクチャおよび幾何学的形態の機能強化を定めること。
5.最適なアーキテクチャの製造および機能強化のための方法を定めること。
【0030】
また、AMRまたはAERは、組み付けが容易でなければならず、十分な機械的強度、信頼性のある構造を有さなければならず、処理が容易な材料を備えなければならない。
【0031】
本発明はまた、AMR(またはAER)および能動型再生エンジンのサイズおよびコストを減少させることを目的とするとともに、自動化され高速で誤差が少ない製造プロセスを用いてAMR(またはAER)を製造することを目的とする。
【課題を解決するための手段】
【0032】
(発明の概要)
したがって、本発明は、冷却用途、ヒートポンプ用途、および、エネルギー回収用途において使用するための能動型再生磁気熱量エンジンまたは能動型再生電気熱量エンジンで用いる複数材料ブレードに関する。
【0033】
ブレードは、相異なる磁気熱量材料または電気熱量材料から作られた複数の要素から形成されるブレード本体を備え、このブレード本体は、その長手方向に沿って複数の要素に分割される。ブレードは、ブレード本体を貫通するとともにブレードの長手方向に沿って延びる複数の専用チャネルを更に備える。
【0034】
(材料の選択)
好ましくは、複数の要素のそれぞれは、好ましくはLaFeSi,LaFeSiCo,LaFeSiH,MnPFeAs,MnPFeSi,FeRh,MnAsSb,MnPFeGe,Gd,GdDy,CoMnSi,CoMnGe,およびGdSiGeから成るグループから選択される磁気熱量材料から作られ、該磁気熱量材料には1つ以上のドーパント(しばしば、材料系に関してTcを上げあるいは下げる)が更に設けられてもよく、また、磁気熱量材料は、特定の元素を様々な比率で有してもよく、その場合、各磁気熱量材料は異なるキュリー温度を有し、また、各磁気熱量材料は、その体積に対して20%以下の多孔率を有する。
【0035】
適した電気熱量材料としては、P(VDF−TrFE−クロロフルオロエチレン)、PLZT(8/65/35)、Pb(Mg1/2Nb2/3)O3−35PbTiO3(PMN−35PT))、BaTiO3、または、(NH4)2SO4が挙げられる。
【0036】
理想的なシステム(損失を無視する)において、平均低温側温度T
coldでは、冷媒から利用できる周期的な冷却エネルギーが、所定の印加された場Bに関して、T
cold・ΔS’
coldによって与えられる(ここで、ΔS’
coldは、
図2bのポイントD’とポイントA’との間(または、実際にはE’とA’との間)の絶対エントロピー差により与えられる)。
【0037】
平均T
coldから平均高温側温度T
hotにまで及ぶ再生冷却サイクルにおいて、冷却に寄与する蓄冷器の長さ部分は、〜ΔT
cold・Length/Spanであり、この場合、Spanは、(AMRまたはAERの高温端と低温端との間の)温度勾配T
hot−T
coldとして規定され、また、Lengthは、AMR(またはAER)の長さである。このことは、蓄冷器に入る交換流体が適切な温度プロファイルを有すると仮定すれば、簡単な幾何学的議論によって当業者により理想的なシステムに関して簡単に実証され得る。多層AMR(またはAER)の全体の(周期的な)蓄冷器冷却容量(単位J)の一次推定値は、‘理想的な’多層形態では、
ΔT
cold・ΔS
cold・T
cold・Length・Area・Density・Packing−Density/Span
に比例し、この場合、Lengthは蓄冷器の長さであり、Areaは蓄冷器の断面積であり、Densityは材料の密度であり、Packing−Densityは、活性冷媒、すなわち、磁気熱量材料または電気熱量材料を伴う体積%である。冷却容量と上記の方程式との間の比例定数は、0〜1の間で変化する場合がある(いくつかの特別な状況下では、比例定数が1よりも大きくなる可能性さえある)。蓄冷器全体に沿う直線的な温度プロファイルにおいて、比例定数は0.5である。
【0038】
この議論は、冷却用途に限定されず、ヒートポンプ用途およびエネルギー回収用途のために使用されるヒートエンジンに関しても適用できる。
【0039】
材料特性を上記の方程式から導き出すことにより(また、密度を無視することにより)、単にΔTΔSである、磁気熱量(または電気熱量)材料の性能指数がもたらされる。実用的な装置では、特に経済的観点から、印加される場の大きさが重要であり、また、更なる改良は、印加される場に対してこの値を正規化する。簡単にするため、材料に関するΔSおよびΔTの両方のピーク値をとると、性能指数を使用して様々な材料を比較できる。磁気熱量材料にとって重要な成果のいくつかが以下の表にまとめられている。
【表1】
【0040】
一般に、高い性能指数が、低い性能指数よりも好ましいが、磁気熱量(または電気熱量)効果のヒステリシス、または、速度、または、寿命、あるいは、成形特性などの考慮すべき事項は、より低い性能指数を有する材料の選択をもたらす場合がある。
【0041】
最大エントロピー差ΔSおよび最大ΔTは、キュリー温度(または、キュリー温度付近)で生じる。増大するあるいは減少するキュリー温度を有する複数の材料が正しい方法でカスケード接続されると、それらの材料は、ブレードの高温端と低温端との間の温度勾配によって規定される温度をトレースすることができる。そのような適した材料がブレードの長手方向に沿う様々な温度ポイントで使用されると、磁場(または電場)が周期的に印加され且つ交換された流体がブレードを通じて周期的に圧送されるときに、全体の温度勾配をかなり増大させることができる。また、キュリー温度を考慮するだけでは不十分である。複数の要素の蓄冷器冷却容量を蓄冷器の長手方向に沿って最大にする必要がある。また、複数の要素は、ゆっくりと増加する蓄冷器冷却容量を有さなければならず、その増加率は、AMR(またはAER)のスパンに比例するとともに、冷却サイクルを駆動するために必要とされる入力仕事に比例する。
【0042】
先の蓄冷器方程式を局所パラメータに関して表わすと、蓄冷器の複数の要素のうちの所定の要素の冷却容量は、その要素に関して、
ΔT
cold,EL・ΔS
cold,EL・T
cold,EL・Length
EL・Area
EL・Density
LOC・Packing−Density
EL/Span
EL
として定義される。ここで、T
cold,EL、ΔS
cold,EL、および、ΔT
cold,ELは、要素中の局所材料の局所低温度、エントロピー、および、‘断熱’温度変化であり、Length
ELは要素の長さであり、Area
ELは要素の断面積であり、Density
LOCは、要素中の局所材料の密度であり、Packing−Density
ELは局所材料充填密度(全体積に対する活性冷媒の体積%)であり、Span
ELは要素のスパンである。各要素のスパンの合計は、蓄冷器のスパンである。蓄冷器の各要素の冷却容量は、その特定の要素に沿って定められる局所的な温度勾配に比例する割合で増大する。温度勾配が蓄冷器全体に沿って一定である場合には、各要素の局所的な温度勾配は等しい。いずれの場合でも、蓄冷器全体のスパンは、複数の要素のスパンの合計である。
【0043】
冷却容量の計算のために、ΔSおよびΔTの絶対値が全ての状況で使用されることに留意されたい。これは、この文書の全体にわたって当てはまると理解される。
【0044】
なお、実際には、多くの場合、面積、密度、および、充填密度は複数の要素において同じまたは類似するが、長さは、要素間でかなり異なることができ、したがって、要素の冷却容量を調整するために使用され得る有用なパラメータである。
【0045】
要素間の境界では、隣りの要素が異なるキュリー温度を有する異なる材料から作られる場合、したがって、相異なるΔSおよびΔT特性を有する場合、理想的には冷却容量間の滑らかな移行が求められる。これは、個々の要素の長さを調整することによって、あるいは、適切な材料またはキュリー温度を選択することによって実現できる。
【0046】
それにもかかわらず、相異なるTcを有する要素間の変化は不連続であり、また、準連続的な冷却容量だけしか得られず、それにより、変化は、隣り合う要素同士の直ぐ間で30%を超えない(上下両方の場の変化に関して)。そのことは、ブレード本体に沿う2つの要素間の境界における冷却容量が30%以内であることを意味する。したがって、要素境界における一の要素から他の要素への冷却容量の変化は、30%を下回る。1つの要素内の冷却容量の最小値は、要素の2つの端部のうちのいずれかに位置する。
【0047】
鋭く変化するΔSおよびΔTの曲線(例えば、
図2cの一次タイプ材料で見出されるような曲線)は、多くの相異なる材料の使用を必要とし、また、準連続的な冷却容量を確保するために各要素において更に短い長さスケールが求められる。
【0048】
複数の要素のそれぞれにおける温度勾配が可能な限り密接に適合されれば、局所的な温度勾配が要素間でもたらされず、それにより、蓄冷器内の局所損失が最小限に抑えられる。しかしながら、平坦な温度勾配の領域を蓄冷器の端部に有することが望ましい場合もある。
【0049】
また、局所的な温度勾配(場の増大時または場の減少時のいずれか)は、相異なるTc、したがって相異なるΔT曲線を有する2つの材料間の界面で生じ得る。これは、より一層の逆流を局所的に引き起こす場合があり、あるいは、支配的な温度勾配に抗する熱の前方流を局所的に引き起こす場合がある。任意の能動型再生磁気熱量エンジンの性能に支障を来すエントロピーを発生させるそのような局所的な温度勾配を回避するため、ΔT曲線が、界面で可能な限り密接に適合されなければならない。しかしながら、
図2cが示すように、所定の温度での上下の場におけるΔT曲線が全く異なる可能性があり、したがって、そのような適合は、望ましいが、完全に可能ではない。そのため、相異なる材料間で低熱伝導率のセパレータを使用できる。これらのセパレータは、冷却力に対する全逆流損失の割合に殆ど影響を与えない(逆流がそうであるように、冷却力がスペーサの全長と共に直線的に減少するため)が、‘局所損失’エントロピーの発生を減少させる。
【0050】
本発明は、複数材料ブレードの複数の要素のための材料選択基準に向けられ、それにより、高い(ガドリニウムよりも大きい)性能指数を有する材料が利用されるとともに、冷却容量がAMR(またはAER)の長手方向に沿って最大にされるようになっている。また、冷却容量は、隣り合う要素同士の直ぐ間で準一定(30%以内、および、好ましくは更に低い)でなければならず、蓄冷器のスパンと入力仕事とに比例する割合で蓄冷器の長手方向に沿って増大し、その場合、任意の要素における最も低い冷却容量が2つの端部のうちの一方に位置する。
【0051】
また、優先順位にしたがって、キュリー温度は、AMR(またはAER)の長手方向に沿って低温から高温へ向けて増大しなければならず、冷却容量は、材料界面で適合されなければならず(上下両方の場の変化に関して)(材料Tc、充填密度、密度、および、要素長さの正しい選択により)、材料界面でのΔT曲線間の差(上下両方の場の変化に関して)が最小限に抑えられなければならない。上述した材料選択基準は、平行プレート(
図4)、平行プレートの積層体、90°回転を伴う平行プレートの積層体(
図3)、有孔プレート(
図9)、有孔プレートの積層体(
図8)、および、インボリュート型(
図16)およびその向上された変形(本明細書中に記載される)を含むがこれらに限定されない全てのチャネルアーキテクチャ(以下で更に詳しく説明する)に適用される。
【0052】
更に、本発明は、相異なる材料の要素間の局所損失を最小にするとともに、局所的な逆流を最小にするように寸法付けられるAMR(またはAER)構造における局所損失を減少させるためにここに存在するスペーサに向けられる。全体的な温度勾配(スパン/長さ)を考慮するのではなく、局所的な温度勾配を用いて、スペーサが寸法付けられる(50μm〜1000μm範囲の好ましい厚さを有する)。そのようなスペーサは、低熱伝導率材料(好ましくは0.01〜2W/mK)から作られるべきであり、また、開口多孔質構造またはチャネルを完全に塞がないように形成された構造のいずれかを通じた隣り合う要素間での交換流体の流れを可能にする。磁気熱量材料の上記の配置は、本発明に係る全てのチャネルに基づくアーキテクチャにおいて有効である。
【0053】
好ましくは、複数の要素のそれぞれは、0.1W/mK〜30W/mK、好ましくは0.1W/mK〜10W/mK、より好ましくは0.1W/mK〜5W/mK、より好ましくは0.1W/mK〜2W/mKの範囲内の熱伝導率を有する。複数の要素の低い熱伝導率は、AMR(またはAER)におけるいわゆる逆流損失を最小にする。逆流損失は、磁気熱量エンジンまたは電気熱量エンジンで利用されるときにブレードの高温端からブレードの低温端に必然的に流れる熱である。低い熱伝導率を得るためには、適した材料が使用されなければならない。また、複数の要素がそれぞれ、例えば相異なる磁気熱量材料の押出結合粉末から作られるときには、熱伝導率が低い結合剤が使用されるのが好ましい。結合剤は、磁気熱量材料の熱伝導率よりも低いか、またはせいぜい等しい熱伝導率を有するようになっているのが好ましい。
【0054】
上述した材料(およびそれらの変形)は、大きな磁気熱量効果と高い性能指数とを示すように選択することができ、低い熱伝導率を有し、また、適切な長さスケールで製造できる。材料は、所望の温度範囲のキュリー温度Tcを有する。材料は、再生サイクルでもたらされる全体の温度勾配を増大させるために、ブレードの長手方向に沿って相異なるキュリー温度を要素に与えるのに適している。また、これらの材料の冷却容量は、最適な解決策を与えるべく適合され得る。
【0055】
(アーキテクチャおよび幾何学的形態)
ブレード本体を貫通する専用チャネルを伴うアーキテクチャは、充填層AMRで生じる高い圧力損失を回避するのに役立つ。先進のAMR(またはAER)構造の目的は、損失を最小限に抑えつつ最大の冷却を行なうことである。上述した基準にしたがって材料を選択すると、AMR(またはAER)の冷却能力が最大になる。しかしながら、損失を最小にするには、更なる検討が必要である。
【0056】
AMR(またはAER)システムの損失は、所定量の冷却を達成するために必要とされる入力仕事の量を増大させ、したがって、AMR装置の効率が低下する。損失を最小にするためには、AMR(またはAER)のアーキテクチャの正確な寸法設定が求められる。
【0057】
既に概説したように、AMR(またはAER)と関連する主要な損失のいくつかは、HE損失、逆流損失、粘性損失、局所損失、および、ヒステリシス損失である。逆流損失は、熱伝導率が低い冷媒を使用することによって最小にすることができ、局所損失を最小にするために複数材料ブレードにおいてスペーサを使用することができ、また、低ヒステリシス材料の使用は、ヒステリシス損失を最小にする。チャネルアーキテクチャは、一般に粘性損失を減らす。しかしながら、チャネルAMR(またはAER)システムにおける支配的な損失は、HE損失 −熱を冷媒から交換流体へ、したがって熱交換器へ伝える間における流体の温度勾配と関連付けられる− である。
【0058】
例えば、マイナスの断熱温度変化後に、高温流体が冷たい冷媒に直面して、急速な熱交換が起こる(
図2aのステップCE)。その後、流体が高温から低温にブローされて、より熱い流体がより冷たい材料へ向けて押し進められ、それにより、熱が流体から材料に伝えられ、したがって、冷媒材料が加熱される(
図2aのステップEA)。熱伝達の速度は、完全な(あるいは望ましい)冷媒熱交換のためにそれが要する時間を決定する(これは、通常、システムの最大動作周波数を制限する)。壁に隣接する流体は冷媒と熱平衡状態にあるが、チャネルの中心の流体は更に暖かい。したがって、低温ブローの初めは別として、AMRの低温端から出る流体の平均温度は、AMRの低温端よりも暖かい。流体チャネル内の温度勾配は、冷媒の冷却容量のうちのどのくらいを実際に低温交換器で利用できるのかを決定する。これは、より暖かい流体の存在が、交換流体の全体の冷却容量を低下させるからである。冷却容量のこの低下はHE損失と呼ばれる。類似の効果が高温ブローで生じる。
【0059】
所定の一定した平均スパンを有するAMRにおいて、ある長さのチャネルにわたる圧力降下(または粘性損失)を固定すると、冷媒から液体への(あるいはその逆への)熱伝達速度はチャネル直径に伴って増減する(すなわち、チャネル直径が減少するにつれて熱伝達が減少する)。HE損失もまた、チャネル直径が減少するにつれて低下するが、熱伝達速度よりも(より高いスケーリングの累乗の)速い速度で低下する。チャネル直径を減少させることにより、HE損失を任意の少ない量に調整できる。しかしながら、熱伝達の速度も低下しており、したがって、動作周波数の上限が制限される。熱伝達速度は、流体から冷媒に(あるいはその逆に)伝えられている1秒当たりの熱量である。熱伝達速度の減少を補償するために、冷媒の量を減らすことによって(例えば、より薄いプレートを使用して)移動されるべき熱量を減少させることができる。
【0060】
しかしながら、冷媒の量を減らすと、AMR(またはAER)における冷媒に対する液体の充填比率が減少し、それにより、CEがCDから逸れて、全体の充填密度が減少する。同時に、小さい冷媒長さスケールを作り上げることが更に困難となる。
【0061】
したがって、AMRは、目標動作周波数(1Hz〜20Hzの範囲内)のため、粘性損失(AMR長さ、交換流体物理特性、および、流速、ならびに、チャネル直径によって決定される)、逆流損失(長さ、スパン、冷媒および流体の熱伝導率、液体および冷媒の体積によって決定される)、および、HE損失(チャネル幅、交換流体の特性、流速、冷媒のΔSおよびΔT、液体および冷媒の体積、ならびに、AMRの長さ&スパンによって決定される)の合計が最小限に抑えられるように寸法付けられるべきである。好ましい解決策は、これらの3つの損失が比較できる(互いの10の因数内の)サイズをもつようにする。1つの要素内の平行プレートチャネル(インボリュートを含む)において、最適なプレート厚さは、50μm〜1500μm、または、より好ましくは60μm〜700μm、または、より好ましくは70μm〜700μm、より好ましくは70μm〜350μmの範囲内でなければならない。チャネル間隔は、5μm〜100μm、または、より好ましくは10μm〜75μm、または、更に好ましくは15μm〜60μmの範囲内でなければならない。
【0062】
有孔プレートにおいて、穿孔間の最適な距離は、60μm〜2000μm、または、より好ましくは80μm〜1000μm、または、より好ましくは100μm〜650μmの範囲内でなければならない。穿孔直径は、10μm〜150μm、または、より好ましくは15μm〜110μm、または、更に好ましくは20μm〜85μmの範囲内でなければならない。
【0063】
与えられた値は、粘性損失、逆流、および、HE損失の間の釣り合いを達成する。
【0064】
与えられた長さスケールは、幾分、使用される磁気熱量材料に依存する。
【0065】
複数材料ブレードの第1の例では、複数の要素のそれぞれが複数のプレートによって形成され、複数のプレートは互いの上に積み重ねられる。また、ブレード本体における複数の要素のそれぞれは、その隣り合う要素に対して回転され、好ましくは90°回転される。この配置は、交換流体の混合を助長し、すなわち、専用チャネルにわたる温度均一性を高め、能動型再生磁気熱量エンジンで使用されるときにHE損失を減少させる。また、この配置は、ブレードの長手方向に沿う連続的に平行なチャネルが必要とされないため、組み立て製造全体の信頼性を高める。正確な平行組み立てが必要とされる長さは、ブレード全体の長さではなく、単一の要素の長さに減少される。好ましくは、プレートは、良く知られたインクジェット印刷技術、ステンシル印刷またはスクリーン印刷、フォトリソグラフィ、あるいは、ドットシステムまたはジェットシステムによる直接塗布によって好ましくは印刷された少なくとも1つのスペーサによって互いから分離され、複数のプレート間の間隔が複数の専用チャネルを形成する。
【0066】
前述した良く知られた技術を使用することにより、また、その結果として製造コストを低減することにより、商業的解決策が実現可能になる。また、製造は、更に簡単に、高速に、より再現可能にもなる。製造プロセスにおいてそのような商用オフザシェルフ(COTS)機器を利用することができ、また、多くの製造ステップを自動化できる。
【0067】
また、本発明は、能動型再生磁気熱量エンジンで用いる複数材料ブレードに関する。ブレードは、相異なる磁気熱量材料から作られた複数の要素から形成されるブレード本体を備え、ブレード本体はその長手方向に沿って複数の要素に分割される。ブレードは、ブレード本体を貫通するとともにブレードの長手方向に沿って延びる複数の専用チャネルを更に備える。ブレードの複数の要素のそれぞれは、複数の要素がインボリュート型のブレード本体を形成できるように湾曲形状を有する。
【0068】
冷却装置において、本発明に係るブレードは、単位量の冷却力を与えることができる。複数のブレードを組み合わせることにより、装置の効率を低下させることなく冷却力を高めることができる。ブレードの組み合わせは、例えば、回転磁気システムとして実現することができ、この場合、ブレードは、円形状に配置されて、磁場によって回転される。上述したように、磁場利用度は重要である。立方ブレードが円形状に互いに密集されると、充填密度、従って磁場利用度が理想的とならない。しかしながら、ブレード本体またはブレード本体を形成する要素のインボリュート構造は、回転磁気システムにおいて複数のブレードを一定のチャネル幅をもって完全な放射状の幾何学的形態で互いに密集させることができる可能性を与える。それは、複数のブレードを完全な円形状に組み付けることができることを意味し、その場合、個々のブレード間、および、ブレードの要素内のプレート間の一定の間隔を維持できる。この配置は、30%良好な場の利用度をもたらす。それに対応して、より小さいより安価な磁石を使用できる。
【0069】
流体が流れることができる専用チャネルによって、より低い多孔率を有する磁気熱量材料を使用できる。材料の多孔率は、一般に、分布した孔によってもたらされるとともに、材料の特性である。多孔率は、磁気熱量材料の全体積に対する磁気熱量材料中の空隙(孔)の体積として理解され得る。それとは対照的に、磁気熱量材料中に積極的に形成される専用チャネルは、多孔であると見なされない。
【0070】
また、本発明は、能動型再生磁気熱量エンジンまたは能動型再生電気熱量エンジンで用いる複数材料ブレードに関する。ブレードは、相異なる磁気熱量材料から作られた複数の要素から形成されるブレード本体を備え、ブレード本体はその長手方向に沿って複数の要素に分割される。ブレードは、ブレード本体を貫通するとともにブレードの長手方向に沿って延びる複数の専用チャネルを更に備える。専用チャネルに対して垂直なブレード本体の断面は、多孔率が異なる複数の領域を所定の方向に沿って有し、隣り合う領域の界面で多孔率が少なくとも10%だけ急峻に変化する。
【0071】
多孔率が高い領域は、例えば、それが開口構造であれば、複数の専用チャネルとしての役目を果たすことができ(また、これらはスペーサのように機能することもできる)、その場合、多孔率が低い領域は、より密度が高い磁気熱量材料から作られる。しかしながら、多孔率が高い材料に加えて専用チャネルを設けることができる。多孔率が高い領域は、交換流体のための混合構造として機能することもできる。多孔質領域の混合機能は、能動型再生磁気熱量エンジンでブレードが使用されるときに、HE損失を減らす。多孔率が高い領域は、柔軟なスポンジ状構造として形成することができ、このスポンジ状構造はそれらの形状を適合させて変更することができる。このようにして、多効率が高い領域は、要素の製造において引き起こされる任意の不均一性を補償できる。多孔率が高い領域および多孔率が低い領域は、複数の各要素ごとに同じように配置させることができ、あるいは、各要素ごとに異なるように配置させることができる。
【0072】
材料の多孔率を測定するために、いくつかの知られた方法、例えば、光学的方法(すなわち、材料の面積に対して顕微鏡下で見える孔の面積を求める)、湿潤方法(すなわち、孔を優先的に湿らせる流体に真空下で多孔質サンプルを浸漬させる)、水飽和方法(すなわち、孔容積は、浸漬後に残された水の全体積に等しい)、または、水蒸発方法(すなわち、孔容積は、水の密度を考慮すると、飽和サンプルの重量から乾燥サンプルの重量を引いたものに等しい)を使用できる。
【0073】
磁気熱量材料の任意の孔は、専用チャネルのようにブレード本体の全体を通じて延びず、通常はかなり短い。普通の孔は、一般に、0.01μm〜10μm程度の長さであり、また、直径もかなり小さく、すなわち、0.01μm〜50μm程度である。専用チャネルとは対照的に、孔は、磁気熱量材料中に無作為に分布される。
【0074】
磁気熱量材料の多孔率が低くなればなるほど、複数の要素のそれぞれの充填密度を高めることができる。充填密度は、複数の要素のうちの1つの全体積、すなわち、専用チャネルの容積を含む体積に対する磁気熱量材料の割合として定義される。
【0075】
最大量の交換流体が、磁気熱量材料ではなく専用チャネルを通じて流れることが望ましい。このとき、複数の要素の磁気熱量材料に関して、より高い密度を得ることができる。専用チャネルにおいては、より低い圧力損失および粘性損失が更に存在する。
【0076】
好ましくは、要素間の多孔質スペーサは、その体積に対して25%よりも大きい多孔率を有する多孔質材料であり、多孔質材料は、好ましくは、コラーゲン・グリコサミノグリカン、コラーゲン発泡体、ポリテトラフルオロエチレン発泡体、スポンテックス、および、ヒドロキシアパタイトセラミックのうちの少なくとも1つである。この場合、スペーサは、交換流体のための混合構造としての役目を更に果たすことができるとともに、HE損失を減少させるのに役立つ。また、スペーサはプレートの不均一性に適合することもでき、したがって、プレートの平坦性要件が減少される。
【0077】
複数材料ブレードの更なる例では、複数の要素のそれぞれが有孔プレートによって形成され、その場合、有孔プレートの複数の穿孔が複数の専用チャネルを形成する。
【0078】
この例は、十分に微細な穿孔の形成という問題をもたらすが、より厚いプレートを使用して、上述した製造限界を克服できるようにする。この場合、1つの要素を、同じキュリー温度Tcを有する1つの(または複数の)有孔プレートと見なすことができる。
【0079】
平行プレート形態において、最も好ましいプレート厚は90μm〜400μmの範囲内である。これらの寸法は、ある材料においては、正確にあるいは確実に形成することが難しい場合がある。有孔プレートを使用すると、プレート厚を(1桁だけ)かなり大きくすることができ、また、上限は、先に概説した冷却容量を最大にするために必要な“長さ”に関連する材料選択基準によって決定される。
【0080】
好ましくは、複数の穿孔が複数の円形の、および/または角度を成す孔であり、複数の孔のそれぞれの直径または幅は、10μm〜150μm、好ましくは15μm〜110μm、または、より好ましくは20μm〜85μmの範囲内である。隣り合う孔間の距離は、60μm〜2000μm、好ましくは80μm〜1000μm、または、より好ましくは80μm〜600μm、または、随意的には100μm〜650μmの範囲内である。与えられた長さスケールは、この場合も先と同様、幾分、使用される磁気熱量材料に依存する。しかしながら、好ましい値は、能動型再生磁気熱量エンジンにおいて、最も低いHE損失を達成するとともに、プレートから交換流体への最良の熱伝達を実現する。
【0081】
(向上)
HE損失の最小化は、スペーサ、プレート、または、穿孔に関して、製造の比較的小さい長さスケールを必要とする。特定の冷媒材料において、そのような小さい長さスケールの製造には問題がある。
【0082】
交換流体を混合するために特別に設計された混合構造を専用チャネルで使用すると、本発明の複数材料ブレードが能動型再生磁気熱量エンジンで利用されるときに、HE損失が減少する。交換流体の混合は、圧力損失の増大がHE損失の減少よりも速くないように行なわれなければならない。混合構造の付加は、専用チャネルにわたって温度均一性を高めるので、また、最も重要なことには、流れが最も速いチャネルの中心で温度均一性を高めるので、HE損失をかなり減らすことができる。また、チャネルの中心での温度の均一化は、より高い温度勾配を壁で必要とし、それにより、熱伝達速度が更に増大するとともに、動作周波数を高めることができる。
【0083】
専用チャネルに疎水性コーティング層を付加すると(混合構造ありまたはなしで)、交換流体がチャネルを通じて推し進められるときに交換流体と磁気熱量材料との間に滑り境界状態を生じさせることができる。したがって、HE損失を、交換流体の単位体積当たり10〜20%(あるいはそれ以上)減らすことができる。疎水性コーティング層の下側に薄いガラスまたはプラスチックまたは同様の層を更に加えて、疎水性コーティング層の滑らかさを高めることができる。滑らかさは、滑り境界状態の発生を助長する。
【0084】
一般に、ブレードのHE損失を減らすことによる主な結果として、専用チャネルサイズ、穿孔サイズ、または、スペーササイズを絶対的に増大させることができ、それにより、製造プロセスが簡略化される。そのような寸法を増大させると、所定レベルのHE損失において、圧力損失およびポンプ損失を減らすこともできる。
【0085】
あるいは、HE損失を一定レベルに維持しつつ製造を助けるために、ブレード本体を形成するそれぞれの要素内の複数の要素の長さスケール(プレート厚または穿孔間の間隔)を増大させることもできる。
【0086】
最後に、HE損失を増大させることなく動作周波数を高めることもできる。
【0087】
そのようなHE損失減少は、いくつかの方法で達成できる。
【0088】
好ましくは、少なくとも複数のプレートのそれぞれに表面テクスチャが流体混合構造として設けられ、および/または、疎水性コーティング層が複数のプレートのそれぞれに設けられ、好ましくはガラス層またはプラスチック層が各疎水性コーティング層の下側に設けられる。表面テクスチャの付加は、ブレードが能動型再生磁気熱量エンジンで使用されるときに専用チャネルにおける温度均一性を高め、また、HE損失を減少させる。疎水性コーティング層は、その表面と交換流体との間に滑り境界状態を形成することによりHE損失を減少させる。ガラス層またはプラスチック層は、コーティング層が付着される前にプレートの滑らかさを高めることができる。コーティング層も同様に更に滑らかにすることができ、したがって、より効果的である。
【0089】
好ましくは、表面テクスチャは、インクジェット印刷技術により印刷され、または、複数のプレートに接着される砂もしくは同等の砂状粗材料から形成される。両方の解決策は、実現するのが簡単であり、必要な機械的安定性を伴う低コストな解決策である。
【0090】
好ましくは、対称ブレーカーが流体混合構造として複数の孔またはチャネルのそれぞれに挿入され、および/または、複数の孔のそれぞれの内壁は、流体混合構造としての役目を果たす粗面を有し、および/または、複数の孔のそれぞれの内壁には、好ましくはガラス層またはプラスチック層の上にある疎水性コーティング層が設けられる。
【0091】
混合構造は、能動型再生磁気熱量エンジンにおいて交換流体を混合させるためのものであり、専用チャネル内の交換流体の温度均一性を高める。その結果、HE損失が減少される。また、疎水性コーティング層はHE損失を減少させるのに役立つ。これは、チャネル表面と交換流体との間に滑り状態が形成されるからである。
【0092】
あるいは、そのような対称ブレーカー、粗面、または、疎水性滑り層によって、HE損失を増大させることなく磁気熱量材料に応じて製造を更に容易にし得る更に大きな孔を許容することができる。
【0093】
全ての例では、能動型再生磁気熱量エンジンにおいて複数の要素の界面での局所的な温度勾配を補償するために、複数の要素のうちの隣り合う要素間にセパレータが設けられるのが好ましい。
【0094】
複数材料ブレードの本発明は、電気熱量材料にも適用できる。AMR変換に関して概説された最適な設計原理は、電気熱量エンジン変換にも同様に適用できる(しかし、結果として得られる幾何学的形態の一部は異なる)。
【0095】
ヒートエンジンで用いる複数材料ブレードの本発明は、ヒートポンプ、廃熱からのエネルギー回収、ならびに、冷凍および冷却を対象とした(ヒートエンジンを使用する)用途に適用できる。
【0096】
(製造)
本発明は、更に、能動型再生磁気熱量エンジンまたは能動型再生電気熱量エンジンで用いる複数材料ブレードを製造するための方法に関する。方法は、相異なる磁気熱量材料または電気熱量材料から作られた複数の要素からブレード本体を形成するステップであって、複数の要素がブレード本体の長手方向に沿って配置される、ステップを備える。方法は、ブレード本体を貫通するとともにブレード本体の長手方向に沿って延びる複数の専用チャネルを形成するステップと、複数の専用チャネルのそれぞれに流体混合構造および/または疎水性コーティング層を設けるステップとを更に備える。
【0097】
方法は、能動型再生磁気熱量エンジンにおけるAMRとして使用され得るとともに、特にシステムにおけるHE損失を更に減少させる複数材料ブレードの製造を実現する。
【0098】
本発明は、更に、能動型再生磁気熱量エンジンまたは能動型再生電気熱量エンジンで用いる複数材料ブレードを製造するための方法に関する。方法は、相異なる磁気熱量材料または電気熱量材料から作られる複数の要素からブレード本体を形成するステップであって、複数の要素がブレード本体の長手方向に沿って配置されるステップを備える。また、方法は、ブレード本体を貫通するとともにブレード本体の長手方向に沿って延びる複数の専用チャネルを形成するステップを更に備え、複数の要素のそれぞれは、インクジェット印刷技術(または、ステンシル/スクリーン印刷、フォトリソグラフィ、もしくは、ドットシステムまたはジェットシステムによる直接塗布)によって印刷される少なくとも1つのスペーサによって互いから分離される複数のプレートを互いの上に積み重ねるとともに、複数のプレートを一緒にクランプし、および/または接着することによって形成され、複数のプレートのそれぞれは、磁気熱量材料または電気熱量材料から作られたサブプレートをフレーム内で一列に並べて、サブプレートにストリップおよび/またはドットを加えるとともに、複数のプレートを形成するべく一列に並べられたサブプレートとフレームとを焼成することによって形成される。方法は、自動化された低コストな製造プロセスに適合する。費用競争力のある商業的に実現可能な再生エンジンが可能になる。
【0099】
方法は、製造ステップ、特に、この文書に記載される複数材料ブレードの任意の有利な構造および特性を形成するあるいは実現するステップを更に備えることができる。複数材料ブレードの異なる例および構造を更に組み合わせて、有利な特徴の組み合わせを得ることができる。例えば、インボリュート型のブレード構造を得るために、全ての上述した複数材料ブレードを湾曲形状に形成できる。
【0100】
以下、添付図面を参照して、本発明を更に詳しく説明する。