(58)【調査した分野】(Int.Cl.,DB名)
前記主燃焼ゾーン内で燃焼させるために前記通路に入る実質的にすべての空気は、前記少なくとも1つのパネルを通過するか、または前記フランジと前記スリーブとの間から漏出する、
請求項5記載の燃焼器。
前記ライナから前記通路へ半径方向で外側に向かって延在する複数の共鳴器ボックスが設けられており、該共鳴器ボックスは、前記通路内の空気を該共鳴器ボックス内の内側容積部に流入させる開口部を含む、
請求項1記載の燃焼器。
前記フロー調整部材の上流で前記ライナから前記フロー調整部材の近接領域まで、半径方向で外側に向かって延在する複数の共鳴器ボックスが設けられており、該共鳴器ボックスは、該共鳴器ボックス内の内側容積部に空気を流入させる開口部を含む、
請求項1記載の燃焼器。
前記フロー調整部材はさらにフランジを有しており、前記フランジが前記フロースリーブと共に封止部を形成して、前記フランジと前記フロースリーブとの間からの漏出を実質的に防止するように、前記フランジは、前記フレームから延在し前記フロースリーブと半径方向でオーバラップして前記フロースリーブに近接しているが、前記フロースリーブとは結合されておらず、
前記主燃焼ゾーン内で燃焼させるために通路に入る実質的にすべての空気は、前記パネルを通過するか、または前記フランジと前記スリーブとの間から漏出する、
請求項11記載の燃焼器。
前記ライナから前記通路へ半径方向で外側に向かって延在する複数の共鳴器ボックスが設けられており、該共鳴器ボックスは、前記通路内の空気を該共鳴器ボックス内の内側容積部に流入させる開口部を含む、
請求項11記載の燃焼器。
前記フロー調整部材の上流で前記ライナから前記フロー調整部材の近接領域まで、半径方向で外側に向かって延在する複数の共鳴器ボックスが設けられており、該共鳴器ボックスは、該共鳴器ボックス内の内側容積部に空気を流入させる開口部を含む、
請求項11記載の燃焼器。
【発明を実施するための形態】
【0007】
有利な実施形態に関する以下の詳細な説明では、それらの実施形態の一部を成す添付の図面を参照するが、図面には、限定のためではなく例示のために、本発明を実施可能な特別な有利な実施形態が示されている。なお、他の実施形態を採用してもよいし、本発明の着想および範囲を逸脱することなく、変更を加えることができるのは自明である。
【0008】
図1には、本発明に従って構成されたガスタービンエンジン10が示されている。エンジン10には、圧縮機セクション12と、複数の燃焼器16から成る燃焼器アセンブリC
Aを備えた燃焼セクション14と、タービンセクション18とが含まれている。なお、本発明による燃焼器アセンブリC
Aは、好ましくは環状に配列された複数の燃焼器16から成り、これらの燃焼器16は、エンジン10内部の軸線方向を規定するエンジン10の長手軸L
Aを中心に配置されている。このような構成は一般に、「カン・アニュラ型燃焼器アセンブリ」と呼ばれる。
【0009】
圧縮機セクション12は吸入空気を取り込んで圧縮し、それらの空気の少なくとも一部分は、燃焼器16へ供給するために燃焼器シェル20へと案内される。燃焼器シェル20内の空気のことを、以下では「シェル空気」と称する。圧縮された空気の残りの部分は、エンジン10内の様々なコンポーネントを冷却するために、圧縮機セクション12から取り出すことができる。たとえば、圧縮された空気を圧縮機セクション12から逃がして、タービンセクション18内のコンポーネントへ供給することができる。
【0010】
圧縮空気が燃焼器シェル20から燃焼器16に入ると、この空気は燃料と混合され、主燃焼ゾーンC
Z内で着火されて高温燃焼ガスが発生し、このガスは個々の燃焼器16内を乱流として著しく高い速度で流れる。ついで各燃焼器16内の燃焼ガスは、個々のトランジションダクト22(
図1には1つのトランジションダクト22にしか示されていない)を通過してタ―ビンセクション18へ流れ、燃焼ガスはこのセクションで膨張し、そこからエネルギーが取り出される。燃焼ガスから取り出されたエネルギーの一部分は、タービンロータ24を回転させるために利用される。タービンロータ24は、長手軸L
Aに沿って軸線方向でエンジン10を貫通して延在する回転可能なシャフト26に平行に延在している。
【0011】
図1に示されているように、個々のエンジンセクション12,14,18を収容するために、エンジンケーシング30が設けられている。燃焼セクション14を取り囲むケーシング30の一部分は、燃焼器シェル20を規定するケーシング壁32から成り、つまり燃焼器シェル20によって、燃焼セクション14を取り囲むケーシング30の一部分中の内側容積部が規定される。
【0012】
次に
図2および
図3を参照しながら、
図1に示した燃焼器アセンブリC
Aの複数の燃焼器のうち1つの燃焼器16と、燃焼器16の燃焼ゾ―ンC
Zへシェル空気を供給するためのフロー調整部材40について説明する。なお、
図2および
図3には、ただ1つの燃焼器16とフロー調整部材40だけしか示されていないけれども、燃焼器アセンブリC
A内の残りの燃焼器16にも、
図2および
図3に示して説明するものと同様のまたは同一のフロー調整部材40が含まれる。
【0013】
燃焼器16には、フロースリーブ42とライナ48が設けられており、ライナ48は、高温作動ガスを発生させるために燃料とシェル空気とを混合して燃焼させる燃焼ゾーンC
Z(
図3参照)を規定する内側容積部材48Aを有している。さらに燃焼器16には、トランジションダクト22を含むトランジションアセンブリ50と、半径方向でトランジションダクト22の外側に延在する環状部材を含むトランジションリング54と、燃焼ゾーンC
Zに燃料を供給するための燃料噴射システム56(
図1参照)が設けられている。トランジションダクト22は、高温作動ガスをタービンセクション18へ供給するために、ライナ48と結合されており、つまり
図3に示されているように、トランジションダクト22は、燃焼器16から排出された高温燃焼ガスがタービンセクション18へと向かう流れ方向F
DCGに関して、ライナ48の下流に配置されている。この場合、高温燃焼ガスの流れ方向F
DCGによって軸線方向が規定される。なお、ここではライナ48とトランジションアセンブリ50をまとめて「流路構造F
PS」と称し、この流路構造F
PSによって、高温燃焼ガスを燃焼器16からエンジン10のタービンセクション18へと搬送する高温燃焼ガスの流路が規定される。
【0014】
さらに
図3を参照すると、図示の実施形態におけるフロースリーブ42は、一般に円柱状の部材から成り、この部材によって、燃焼ゾーンC
Zへ供給すべきシェル空気が通過して流れる通路60に対する外側の境界が規定される。フロースリーブ42は、このフロースリーブ42とライナ48との間に半径方向で通路60が規定されるように、半径方向でライナ48の外側に配置されている。フロースリーブ42は、燃焼器16の頭端部16Aのところでエンジンケーシング32に取り付けられた第1端部42A(
図1参照)と、第1端部42Aとは反対側の第2端部42Bとを有する。
【0015】
図示の実施形態の場合、燃料噴射システム56は、中央パイロット燃料噴射器と、このパイロット燃料噴射器の周囲に環状に配列された主燃料噴射器とを有している(
図1参照)。ただし本発明の着想および範囲を逸脱することなく、燃料噴射システム56がこれとは別の構成を有するようにしてもよい。パイロット燃料噴射器および主燃料噴射器はそれぞれ、エンジン10の動作中、燃焼ゾーンC
Zへ燃料を供給する。
【0016】
さらに
図2および
図3を参照すると、流路構造F
PSとフロースリーブ42との間において半径方向に、フロー調整部材40が配置されている。図示の実施形態の場合、フロー調整部材40は、トランジションリング54からフロースリーブ42に向かって延在する環状部材を有しており、この部材はフロースリーブ42の第2端部42Bに接近しているが、フロースリーブ42とは結合されていない。ここで述べておくと、フロー調整部材40を、トランジションリング54からではなく、流路構造F
PSの他のコンポーネントから延在させてもよい。たとえばフロー調整部材40を、
図6および
図7に示されている後述の実施形態のようにライナ48の一部分から、またはトランジションダクト22から、フロースリーブ42に向かって延在させてもよいし、あるいはフロー調整部材40を、
図5に示されている後述の実施形態のように、フロースリーブ42から流路構造F
PSに向かって延在させてもよい。
【0017】
フロー調整部材40は、通路60内に入るシェル空気の入口を規定するものであり、トランジションリング54に固定されそこから延在するフレーム70と、このフレーム70内に着脱可能に取り付けられた複数の交換可能なパネル72とを有している(ただし
図2においてパネル72の半径方向で内側に配置された構造が見えるように、
図2ではパネル72のいくつかが取り外されている)。本発明の1つの観点によれば、パネル72は、空気が通路60に至る途上でそれらのパネル72を通過して流れるように構成されている。この場合、各パネル72は、個々のパネル72を通過して流れる許容空気量をコントロールできるように、望ましい通気率をもたせて選択することができる。
図4を参照すると、パネル72は、それらのパネル72がフレーム70内に収容されるように、パネル72を通常は軸線方向にスライドさせることによって、フレーム70内に着脱可能に取り付けられる。この場合、フレーム70をトランジションリング54から外さずに、さらにはトランジションリング54をトランジションダクト22から外さずに、パネル72を取り外して交換することができる。
【0018】
図2〜
図4に示した実施形態によれば、パネル72は複数の孔74を有しており、パネル72を通過して通路60に入るシェル空気は、これらの孔74を通過する。本発明の1つの観点によれば、通路60に至る途上で個々のパネル72を通過して流れる許容空気量をコントロールできるように、望ましい孔の構成をもたせて各パネル72を選択することができる。個々のパネル72を通過する許容空気量を制御するために、たとえば孔74のサイズ、形状、配置および/または配向を変更することができる。なお、図示の実施形態におけるパネル72は、通常は円形の孔7を有しているけれども、空気を通過させることのできる別の構成を備えたパネルを用いてもよく、たとえば楕円形の孔、スロット、メッシュパネル、穿孔パネル、またはワイヤが封入された圧延された薄板パネルを用いてもよい。さらにここで述べておくと、フロー調整部材40に含まれるパネル72がすべて、同じ孔の構成を備えていなくてもよい。つまり、これらのパネル72のうちの1つまたは複数のパネルが、残りのパネル72とは異なる孔の構成を有するようにしてもよい。
【0019】
図2および
図3に示されているように、フロー調整部材40はさらにフランジ78を有しており、これはフレーム70から延在し、半径方向でフロースリーブ42と重なり合っている。フランジ78は、フロースリーブ42の第2端部42Bに接近しているが、フロースリーブ42とは結合されておらず、フランジ78とフロースリーブ42とが共働して、それらの間の漏れを実質的に防ぐための封止部が形成されるように構成されている。したがって、主燃焼ゾーンC
Z内で燃焼させるために通路60に入るシェル空気の少なくとも大部分は、パネル72における孔74を通過するけれども、主燃焼ゾーンC
Z内で燃焼させるために通路60に入る実質的にすべてのシェル空気は、パネル72における孔74を通過するか、または、フランジ78とフロースリーブ42の第2端部42Bとの間で漏出する。なお、1つまたは複数のパネル72を交換すべき場合に、フランジ78を容易に取り外せるように、フランジ78をボルトでフレーム70に締結するのが好ましい。
【0020】
引き続き
図2および
図3を参照すると、燃焼器16にはさらに複数の共鳴器ボックス80が設けられており、これらはライナ48から半径方向で外側に通路60に向かって延在している。
図2および
図3の実施形態の場合、共鳴器ボックス80は、通路60へ向かうシェル空気の流れ方向F
DSAに関して、フロー調整部材40の下流に配置されている(
図3参照)。ただし、
図5に示されている後述の実施形態のように、シェル空気の流れ方向F
DSAに関して、フロー調整部材40の上流に配置してもよい。
【0021】
共鳴器ボックス80には開口部82が設けられており(
図2参照)、これによって通路60内の空気の一部分を、共鳴器ボックス80内の内側容積部84に流すことができる。ついで共鳴器ボックス80の内側容積部84における空気は、ライナ48に形成された開口部86を介して、ライナ48の内側容積部材48Aに流入する(
図3参照)。共鳴器ボックス80に入って通過するシェル空気の一部分の流れにより、当業者には明らかであるように、燃焼器内16内の振動が減衰する。
【0022】
エンジン10の動作中、上述のように圧縮機セクション12から燃焼器シェル20に流れ込んだシェル空気は、燃焼器シェル20からフロー調整部材40のパネル72に設けられた孔74を通過して、通路60に入る。ここで判明したのは、燃焼器16内のいくつかのコンポーネントたとえばフィードパイプ、支持脚部など(図示せず)が、1つまたは複数のパネル72に対応する位置において、通路60内へ搬送される有効シェル空気量に影響を及ぼす可能性がある、ということである。したがって本発明によれば、各パネル72を通過する許容シェル空気量をコントロールして、各パネル72を介して通路60にほぼ均等なシェル空気量を流入させるように構成できるよう、望ましい通気率をもたせてパネル72各々を選択することができる。パネル72を介して通路60中へ流入するほぼ均等なシェル空気流量を発生させることが有利である理由は、このようにすることで、主燃料噴射器各々に対し実質的に等しい空気流パターンが得られるからであり、その結果、いっそう強く集束されて制御された燃焼ガスが各燃焼器16内に生成されるようになるからである。
【0023】
当業者に自明であるように、共鳴器ボックス80は、特定の音響周波数を抑圧するように調整されている。燃焼器16内には、限られた個数の共鳴器ボックス80のためのスペースしかないので、最もリスクが高い周波数だけが抑圧のために選択され、その際、共鳴器の調整は、個々の共鳴器ボックス80各々の内側容積部84内の内部圧力の調整、および内側容積部84のサイズの選定によって行われ、さらにライナ48内に形成される開口部86のサイズ設定によっても行われる。この実施形態の場合、共鳴器ボックス80は、通路60内へ流入するシェル空気の流れ方向F
DSAに関して、フロー調整部材40の下流に配置されているので、各共鳴器ボックス80が設計された調整パラメータに従い機能できるように、ほぼ均等なシェル空気量の圧力を共鳴器ボックス80各々に供給することができる。
【0024】
これらのことに加え、フレーム70をトランジションリング54から外さずに、さらにトランジションリング54をトランジションダクト22から外さずに、パネル72をフロー調整部材40から取り外すことができるので、パネル72の交換に関して効率が高まる。これらのパネル72は、個々のパネル72の損傷により、または上述のように通気率調整のために、交換可能である。
【0025】
しかも、この実施形態によるフロー調整部材40は、トランジションアセンブリ50と、つまりトランジションリング54と結合されているが、フロースリーブ42またはライナ48とは結合されていないので、熱成長量が異なることに起因してこれらの個々のコンポーネントに発生する内部応力が低減され、またはその発生が回避される。つまりエンジン10の動作中、フロースリーブ42、ライナ48、およびトランジションダクト54は、それぞれ異なるように熱膨張および熱収縮する可能性がある。これは少なくとも部分的に、ライナ48の内側容積部材48Aにおいて規定される主燃焼ゾーンC
Z内に高温燃焼ガスが発生することに起因する。したがって、高温燃焼ガスをエンジン10のタービンセクション18へ搬送するライナ48とトランジションダクト54は、エンジン動作中、高温燃焼ガスに直接晒されないフロースリーブ42よりも著しく高い温度に達する。さらにフロースリーブ42とライナ48とトランジションダクト54は、熱膨張係数がそれぞれ異なる材料から形成されている場合もある。フロースリーブ42とライナ48とトランジションダクト54の熱膨張係数と動作温度がそれぞれ異なることから、エンジン動作中、それらのコンポーネントの熱膨張および熱収縮の率と量がそれぞれ異なったものとなる可能性がある。本発明のこの実施形態によるフロー調整部材40は、トランジションアセンブリ50とは結合されているが、フロースリーブ42またはライナ48とは結合されていないので、さもなければそれぞれ異なる率と量で熱膨張するそれらのコンポーネントに起因する内部応力によって、それらのコンポーネント相互間の引き合い/押し合いが生じてしまうけれども、本発明によればこのような内部応力は実質的に低減または回避される。
【0026】
シェル空気がフロー調整部材40を通過して通路60に入ると、フロースリーブ42の第2端部42Bから燃焼器16の頭端部16Aへ向かう流れ方向F
DSAで、つまりタービンセクション18から圧縮機セクション12へ向かう方向で、通路60を通過して空気が流れる。通路60の一方の端部にある燃焼器16の頭端部16Aに空気が到達すると、空気はおおよそ180°方向転換して、燃焼器16の頭端部16Aから離れる方向で、つまり圧縮機セクション12からタービンセクション18へ向かう方向で、燃焼ゾーンC
Z内に流入する。空気は、噴射システム56により供給される燃料と混合されて燃焼し、既述のように高温作動ガスが発生する。
【0027】
次に
図5を参照すると、この図には、本発明の別の実施形態によるフロー調整部材140が例示されている。図中、
図1〜
図4を参照してこれまで述べてきた構造と類似の構造には、同じ数字に100を加えた参照符号が用いられている。ただしここで
図5に関しては、
図1〜
図4を参照しながらこれまで説明してきた燃焼器16のコンポーネントとは異なる燃焼器116のコンポーネントについてのみ、説明することにする。
【0028】
この実施形態によれば、フロー調整部材140は、フロースリーブ142の第2端部142Bから流路構造F
PSに向かって延在しているが、流路構造F
PSとは結合されていない。したがって、
図1〜
図4の実施形態を参照しながらこれまで説明してきたような熱成長の問題は、この実施形態によるフロー調整部材140によって低減または回避されることになる。
【0029】
さらにこの実施形態によるフロー調整部材140は、複数のパネル172を支持するフレームも有している(この実施形態では図示せず)。
図1〜
図4の実施形態を参照しながらこれまで説明してきたように、望ましい通気率をもたせて、これらのパネル172をそれぞれ選択することができる。
【0030】
次に
図6および
図7を参照すると、そこには本発明の他の実施形態によるフロー調整部材240,340が例示されている。図中、
図1〜
図4を参照してこれまで述べてきた構造と類似の構造には、
図6では同じ数字に200を加えた参照符号が、
図7では300を加えた参照符号が、それぞれ用いられている。ただしここで
図6および
図7に関しては、
図5を参照した上述の燃焼器116のコンポーネントとは異なる燃焼器216,316のコンポーネントについてのみ、説明することにする。また、
図6および
図7では見やすくするため、燃料噴射システム256は取り除かれている。
【0031】
この実施形態によれば、フロー調整部材240,340が個々のライナ248,348に有効に取り付けられるように、ただしフロースリーブ242,342とは結合されないように、フロー調整部材240,340がライナ248,348の延長部E
Pからフロースリーブ242,342に向かって延在している。したがって、
図1〜
図4の実施形態を参照しながらこれまで説明してきたような熱成長の問題は、この実施形態によるフロー調整部材240,340によって低減または回避されることになる。
【0032】
さらに、これらの実施形態による共鳴器ボックス280,380は、個々の通路260,360へ流入するシェル空気の流れ方向F
DSAに関して、個々のフロー調整部材240,340の上流で、ライナ248,348から半径方向で外側に延在している。これらの実施形態による共鳴器ボックス280,380それぞれに供給されるシェル空気量は、上述の
図1〜
図5の実施形態のようには個々のフロー調整部材240,340によって精密にコントロールできないけれども、これらの実施形態による共鳴器ボックス280,380それぞれに供給されるシェル空気の量は、フロー調整部材を設けなかった場合よりは精密にコントロールすることができる。
【0033】
この実施形態によるフロー調整部材240,340は、複数のパネル272,372を支持するフレーム270,370も有している。
図1〜
図4の実施形態を参照しながらこれまで説明してきたように、望ましい通気率をもたせて、これらのパネル272,372をそれぞれ選択することができる。
【0034】
次に
図8を参照すると、この図には、本発明の別の実施形態によるフロー調整部材440が例示されている。図中、
図1〜
図4を参照してこれまで述べてきた構造と類似の構造には、同じ数字に400を加えた参照符号が用いられている。ただしここで
図8に関しては、
図1〜
図4を参照した上述の燃焼器16のコンポーネントとは異なる燃焼器416のコンポーネントについてのみ、説明することにする。また、
図8では見やすくするため、燃料噴射システム456は取り外されている。
【0035】
この実施形態によれば、フロー調整部材440がライナ448に有効に取り付けられるように、ライナ448の延長部E
Pから軸線方向に延在し周方向に間隔をおいて配置されたサポートスピンドルS
Sが、フロー調整部材440に設けられている。なお、サポートスピンドルS
Sを、本発明の着想および範囲を逸脱することなく、流路構造F
PSにおいてライナ448とは異なるコンポーネントから延在させることができる。サポートスピンドルS
Sは、フロースリーブ442に隣接するフロー調整部材440のフレーム470を、共鳴器ボックス480の上流で構造的に支持する。上述の実施形態と同様に、フロー調整部材440は、流路構造F
PSとフロースリーブ442のうちの一方とだけしか結合されておらず、つまりこの実施形態では、フロー調整部材440はライナ448と結合されているが、フロースリーブ442とは結合されていない。したがって、
図1〜
図4の実施形態を参照しながらこれまで説明してきたような熱成長の問題は、この実施形態によるフロー調整部材440によって低減または回避されることになる。
【0036】
なお、
図2〜
図4および
図6〜
図8に示したフロー調整部材40,240,340,440は、流路構造F
PSから延在し、
図5に示したフロー調整部材140は、フロースリーブ142から延在しているけれども、これらの実施形態をこれとは逆に構成してもよく、その場合、
図2〜
図4および
図6〜
図8に示したフロー調整部材40,240,340,440を、フロースリーブ42,242,342,442から延在させることができ、
図5に示したフロー調整部材140を、流路構造F
PSから延在させることができる。
【0037】
これまで本発明の特別な実施形態について例示して説明してきたけれども、当業者に自明のとおり、本発明の着想および範囲を逸脱することなく、それらとは異なる様々な変更や変形を行うことができる。したがって添付の特許請求の範囲においては、本発明の範囲内にあるそのような変更や変形すべてをカバーすることを意図している。