特許第6385812号(P6385812)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝エネルギーシステムズ株式会社の特許一覧

特許6385812燃料棒と燃料集合体、および燃料棒の製造方法
<>
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000002
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000003
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000004
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000005
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000006
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000007
  • 特許6385812-燃料棒と燃料集合体、および燃料棒の製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6385812
(24)【登録日】2018年8月17日
(45)【発行日】2018年9月5日
(54)【発明の名称】燃料棒と燃料集合体、および燃料棒の製造方法
(51)【国際特許分類】
   G21C 3/20 20060101AFI20180827BHJP
   G21C 3/06 20060101ALI20180827BHJP
   G21C 21/02 20060101ALI20180827BHJP
【FI】
   G21C3/20 A
   G21C3/06 A
   G21C3/06 Z
   G21C3/06 L
   G21C21/02 N
【請求項の数】11
【全頁数】11
(21)【出願番号】特願2014-255181(P2014-255181)
(22)【出願日】2014年12月17日
(65)【公開番号】特開2016-114555(P2016-114555A)
(43)【公開日】2016年6月23日
【審査請求日】2017年7月18日
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】317015294
【氏名又は名称】東芝エネルギーシステムズ株式会社
(74)【代理人】
【識別番号】110001092
【氏名又は名称】特許業務法人サクラ国際特許事務所
(72)【発明者】
【氏名】小川 琢矢
(72)【発明者】
【氏名】松宮 浩志
(72)【発明者】
【氏名】鹿野 文寿
(72)【発明者】
【氏名】樋口 真一
(72)【発明者】
【氏名】小此木 一成
【審査官】 右▲高▼ 孝幸
(56)【参考文献】
【文献】 特表2014−526045(JP,A)
【文献】 米国特許出願公開第2014/0192949(US,A1)
【文献】 特開2012−233734(JP,A)
【文献】 特開2004−212372(JP,A)
【文献】 米国特許出願公開第2012/0087457(US,A1)
【文献】 特開昭63−142291(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21C 3/20
G21C 3/06
G21C 21/02
(57)【特許請求の範囲】
【請求項1】
長繊維強化炭化ケイ素複合材料を材料とする筒状に延びた被覆管と、
前記被覆管の2つの端部を塞いで前記被覆管とともに密閉空間を形成し長繊維強化炭化ケイ素複合材を材料とする2つの端栓と、
前記密閉空間内に収納され全体として棒状に延びた核燃料と、
前記被覆管および前記2つの端栓それぞれの前記密閉空間に面した内面全体に沿って広がるように設けられた気密層と、
を備え
前記気密層には、前記被覆管と前記端栓との接合部の内側の位置の角部において滑らかな曲面が形成されていることを特徴とする燃料棒。
【請求項2】
前記気密層は、前記内面全体にわたり前記内面に密着していることを特徴とする請求項1に記載の燃料棒。
【請求項3】
前記被覆管の内部には、前記核燃料が充填されていない上部プレナムが形成され、
前記気密層には、前記上部プレナムにおいて厚肉部が形成されていることを特徴とする請求項1または請求項2に記載の燃料棒。
【請求項4】
前記厚肉部は、積層構造であることを特徴とする請求項3に記載の燃料棒。
【請求項5】
前記厚肉部の構成材料は、前記被覆管の構成材料である炭化ケイ素複合材料よりも大きな中性子吸収断面積を有することを特徴とする請求項3または請求項4に記載の燃料棒。
【請求項6】
前記気密層は、少なくとも前記核燃料の溶融事故を除く所定の状態においては、熱膨張時に前記被覆管との間に剥離が生じない熱膨張係数を有する材料、または前記被覆管の構成材料である炭化ケイ素複合材料に比べて延性および破断ひずみが大きい材料の少なくともいずれかであることを特徴とする請求項1ないし請求項5のいずれか一項に記載の燃料棒。
【請求項7】
互いに間隔をあけて並列に配置され鉛直方向に延びた棒状の複数の燃料棒と、
前記複数の燃料棒の下部を結束し冷却材が流入可能に形成された下部タイプレートと、
前記複数の燃料棒の上部を結束し冷却材が流出可能に形成された上部タイプレートと、
を備える燃料集合体であって、
前記複数の燃料棒の少なくとも一本は、
長繊維強化炭化ケイ素複合材料を材料とする筒状に延びた被覆管と、
前記被覆管の2つの端部を塞いで前記被覆管とともに密閉空間を形成し長繊維強化炭化ケイ素複合材料を材料とする2つの端栓と、
前記密閉空間内に収納され全体として棒状に延びた核燃料と、
前記被覆管及び前記2つの端栓それぞれの前記密閉空間に面した内面の全体に沿って広がるように設けられた気密層と、
を具備し、
前記気密層には、前記被覆管と前記端栓との接合部の内側の位置の角部において滑らかな曲面が形成されていることを特徴とする燃料集合体
【請求項8】
長繊維強化炭化ケイ素複合材料を材料とする被覆管およびその両端を閉止する2つの端栓とこれらの内面に設けられた気密層と前記気密層内に収納される核燃料を有する燃料棒の製造方法であって、
接合時の前記端栓の温度が前記気密層の素材の気化温度よりも大きくなるように、前記気密層の素材の選定、接合方法の選定および接合条件を設定する条件設定ステップと、
前記被覆管および前記端栓の内側に前記気密層の材料を付する準備ステップと、
前記準備ステップの後に、前記核燃料を収納して前記被覆管と前記端栓とを組み立てる組立てステップと、
前記組立てステップの後に、前記被覆管と前記端栓とを接合する接合ステップと、
を有することを特徴とする燃料棒の製造方法。
【請求項9】
前記準備ステップにおいては、前記気密層の素材をコーティングすることにより行うことを特徴とする請求項8に記載の燃料棒の製造方法。
【請求項10】
少なくとも前記接合ステップは、大気圧より高い圧力のヘリウムガスの環境中にて実施されることを特徴とする請求項8または請求項9に記載の燃料棒の製造方法。
【請求項11】
前記準備ステップにおいて、前記被覆管と前記端栓との接合部の内側の位置に残った前記気密層の材料を付していない部分について、前記接合ステップにおいて、接合時に発生する熱を用いて近傍の前記気密層の素材を気化させ、蒸着により前記気密層を形成することを特徴とする請求項8ないし請求項10のいずれか一項に記載の燃料棒の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、燃料棒とそれを有する燃料集合体、および燃料棒の製造方法に関する。
【背景技術】
【0002】
燃料被覆管は、酸化ウラン等の燃料ペレットを収納する容器であり、燃料ペレットの核反応により発生する放射性の核分裂生成物ガス(FPガス)を管の外部に漏らさないように封じ込めるために用いられるものである。
【0003】
軽水炉においては、燃料被覆管の材料としてジルコニウム合金が用いられている。これは核反応を持続するために中性子の吸収が少ない、高温高圧水中での耐食性が優れている、および熱伝導率が高い等の好ましい特性を有しているためである。また、ジルコニウム合金からなる燃料被覆管に燃料ペレットを挿入した後は、同じくジルコニウム合金からなる端栓を燃料被覆管の端部と接合し、燃料ペレットを燃料被覆管内部に密閉する必要があり、たとえば電子ビーム溶接により端栓接合を行っている。
【0004】
一方、燃料被覆管の材料に炭化ケイ素長繊維により強化した炭化ケイ素複合材料を適用する研究開発が行われている。これはマトリックスが炭化ケイ素で、これを炭化ケイ素の長繊維で強化した材料であり、セラミックスにおいての課題であった脆性を改善している。これは複合材料では、マトリックスと繊維の界面が多数存在するためである。
【0005】
マトリックスにき裂が発生した場合、き裂は、マトリックス中を進展し、長繊維に到達する。長繊維に到達した亀裂は、マトリックスと長繊維の界面で一旦停止する。亀裂は、ここで方向を変えて、界面に沿って進展しながら伝搬する。このように、き裂の伝播方向は直線的ではなく特定の方向に偏向しながら進展するため、伝播距離が長くなる。また、繊維による架橋効果および引き抜き効果により、モノリシックセラミックスにはない応力緩和も生じ、き裂の進展速度は遅くなる。
【0006】
このようなき裂の偏向、架橋効果および引き抜きによる破壊抵抗の向上により、モノリシックセラミックスにおける最大の課題である脆性的な急速破断、その結果としての信頼性低下を抜本的に改善することが可能である。
【0007】
炭化ケイ素複合材料を適用する理由として、この他に、(1)炭化ケイ素複合材料がジルコニウム合金に比べて、水素吸収・脆化がない、(2)熱中性子吸収断面積が小さく熱中性子の吸収が小さい、(3)中性子による材料の劣化が小さい、(4)高温強度に優れている、(5)水中での腐食速度が小さい、(6)軽いため耐震性に優れている、(7)特に温度の上昇、水質環境の低下の可能性のあるシビアアクシデントにもある程度耐える、といった特徴がある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平5−232289号公報
【特許文献2】特開2013−210372号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
炭化ケイ素複合材料は、繊維とマトリクス界面での剥離や滑りにより擬延性を与え、モノリシックセラミックスの弱点である脆性を回避した材料である。このため、炭化ケイ素複合材料を燃料被覆管に適用した場合には、材料内部での剥離などの損傷を回避することは難しく、被覆管内部の核分裂生成物(FP)ガスの漏洩が危惧されるという課題があった。
【0010】
そこで本発明の実施形態は、上述した問題点を解決するためになされたもので、炭化ケイ素複合材料を燃料被覆管に適用した場合の気密性についての信頼性を向上させることを目的とする。
【課題を解決するための手段】
【0011】
上述の目的を達成するため、本実施形態に係る燃料棒は、長繊維強化炭化ケイ素複合材を材料とする筒状に延びた被覆管と、前記被覆管の2つの端部を塞いで前記被覆管とともに密閉空間を形成し長繊維強化炭化ケイ素複合材を材料とする2つの端栓と、前記密閉空間内に収納され全体として棒状に延びた核燃料と、前記被覆管および前記2つの端栓それぞれの前記密閉空間に面した内面全体に沿って広がるように設けられた気密層と、を備え、前記気密層には、前記被覆管と前記端栓との接合部の内側の位置の角部において滑らかな曲面が形成されていることを特徴とする。
【0012】
また、本実施形態に係る燃料集合体は、互いに間隔をあけて並列に配置され鉛直方向に延びた複数の棒状の燃料棒と、前記複数の燃料棒の下部を結束し冷却材が流入可能に形成された下部タイプレートと、前記複数の燃料棒の上部を結束し冷却材が流出可能に形成された上部タイプレートと、を備える燃料集合体であって、前記複数の燃料棒の少なくとも一本は、長繊維強化炭化ケイ素複合材を材料とする筒状に延びた被覆管と、前記被覆管の2つの端部を塞いで前記被覆管とともに密閉空間を形成し長繊維強化炭化ケイ素複合材を材料とする2つの端栓と、前記密閉空間内に収納され全体として棒状に延びた核燃料と、前記被覆管及び前記2つの端栓それぞれの前記密閉空間に面した内面全体に沿って広がるように設けられた気密層と、を具備し、前記気密層には、前記被覆管と前記端栓との接合部の内側の位置の角部において滑らかな曲面が形成されていることを特徴とする。
【0013】
また、本実施形態は、長繊維強化炭化ケイ素複合材を材料とする被覆管およびその両端を閉止する2つの端栓とこれらの内面に設けられた気密層と前記気密層内に収納される核燃料を有する燃料棒の製造方法であって、接合時の前記端栓の温度が前記気密層素材の気化温度よりも大きくなるように、前記気密層素材の選定、接合方法の選定および接合条件を設定する条件設定ステップと、前記被覆管および前記端栓の内側に前記気密層の材料を付する準備ステップと、前記準備ステップの後に、前記核燃料を収納して前記被覆管と前記端栓とを組み立てる組立てステップと、前記組立てステップの後に、前記被覆管と前記端栓とを接合する接合ステップと、を有することを特徴とする。
【発明の効果】
【0014】
本発明の実施形態によれば、炭化ケイ素複合材料を燃料被覆管に適用した場合の気密性についての信頼性を向上させることができる。
【図面の簡単な説明】
【0015】
図1】第1の実施形態に係る燃料集合体の構成を示す立断面図である。
図2】第1の実施形態に係る燃料棒の構成を示す立断面図である。
図3】第1の実施形態に係る燃料棒の製造方法の手順を示すフロー図である。
図4】第1の実施形態に係る燃料棒の製造途中の組立て後の状態を示す部分立断面図である。
図5】第1の実施形態に係る燃料棒の気密層の状態を説明する部分立断面図である。
図6】第2の実施形態に係る燃料棒の構成を示す部分立断面図である。
図7】第3の実施形態に係る燃料棒の構成を示す部分立断面図である。
【発明を実施するための形態】
【0016】
以下、図面を参照して、本発明の実施形態に係る燃料棒と燃料集合体、および燃料棒の製造方法について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。
【0017】
[第1の実施形態]
図1は、第1の実施形態に係る燃料集合体100の構成を示す立断面図である。燃料集合体100は、複数の燃料棒200、複数の支持格子101、下部タイプレート102、上部タイプレート103、およびチャンネルボックス104を有する。
【0018】
燃料棒200は、上下方向に延びる棒状であって、横断面上で格子状に配列されている。支持格子101は、燃料棒200の相互の間隔を保持するものであり、燃料集合体100の長手方向(上下方向)に複数配設されている。下部タイプレート102は、燃料棒200の下部を互いに結束し、上部タイプレート103は、燃料棒200の上部を互いに結束している。チャンネルボックス104は冷却材流路の確保の機能を有し、複数の燃料棒200が格子状に配列された全体の4つの外側側面を覆うように設けられている。
【0019】
図2は、燃料棒200の構成を示す立断面図である。燃料棒200は、核燃料201、被覆管202、2つの端栓203、および気密層210を有する。被覆管202は、図示しない炉心において燃料集合体100の長手方向に沿って、すなわち、上下方向に延びており、上端および下端にて開放されている。被覆管202の材料は、炭化ケイ素長繊維により繊維強化された炭化ケイ素複合材料である。核燃料201は、被覆管202内に内蔵され、全体として長手方向に延びている。核燃料201は、たとえば、焼結した酸化ウランの燃料ペレットを長手方向に積層したものである。核燃料201は、上部を、上部プレナム205に配置されたプレナムスプリング204により抑えられ上下方向の位置が固定されている。
【0020】
端栓203は、被覆管202の上端を閉止する上部端栓203aと、被覆管202の下端を閉止する下部端栓203bからなる。端栓203は、被覆管202と相まって密閉空間208を形成し、核燃料201より生ずる放射性物質を密閉空間208内に閉じ込める放射性物質の障壁をなしている。
【0021】
気密層210は、被覆管202、上部端栓203aおよび下部端栓203bそれぞれが密閉空間208に面した内面の全体に沿って広がるように設けられている。気密層210は、この内面全体にわたり、内面に密着している。気密層210は、たとえば、銅(Cu)、金(Au)、またはタングステン(W)などの金属の薄い層、あるいは窒化ホウ素(BN)などの薄い層としてもよい。
【0022】
気密層210の材料選定においては、炭化ケイ素複合材料と近い熱膨張係数を有する材料としてもよい。炭化ケイ素複合材料と近い熱膨張係数を有する材料とすることによって、熱膨張差による応力の発生を抑制することができる。ここで、それぞれの材料の線膨脹係数は、SiCが4.0×10−6[1/K]、Cuが16.5×10−6[1/K]、Auが14.2×10−6[1/K]、Wが4.5×10−6[1/K]、BNが1×10−6[1/K]程度である。Wの線膨張係数がSiCの線膨脹係数にほぼ等しく、Cu、Au、およびBNの線膨脹係数はSiCの線膨脹係数とは互いにファクター4程度の比である。
【0023】
あるいは、延性に富み、破断ひずみが大きな材料を選定してもよい。延性に富み、破断ひずみが大きな材料を選定することにより、気密層の割れ発生のリスクを低く抑えることができる。一方、発生するひずみの値については、目安としては10%ひずみ程度以内に抑えることが望ましい。
【0024】
図3は、第1の実施形態に係る燃料棒の製造方法の手順を示すフロー図である。まず、被覆管202と端栓203との接合時に、図2中のJ部で示す部分の温度が、気密層210の素材の気化温度よりも大きくなるように、気密層210の素材の選定、接合方法の選定および接合条件を設定する(ステップS01)。
【0025】
次に、被覆管202、上部端栓203aおよび下部端栓203bのそれぞれの内側表面の上に気密層210を設ける(ステップS02)。気密層210は、たとえば、気密層210の材料を溶融させて、被覆管202、上部端栓203aおよび下部端栓203bのそれぞれの内側表面に塗布することでもよい。あるいは、被覆管202については、一方の端栓203、たとえば下部端栓203bのみを接続し、上部端栓203aが取り付けられる側の端部が開放された状態で、気密層210の材料を溶融状態で流し込んだ後に、流し出すことにより、表面に薄膜を塗布することでもよい。なお、被覆管202の内面に気密層210を形成するのは、端栓203の差し込み部分を除いた範囲とする。
【0026】
Cuなどの中性子吸収断面積の大きな材料の場合、過剰に中性子を吸収しないように、薄膜の厚みは、たとえば、数十ないし数百μm程度以内とすることが望ましい。上部端栓203aについては、上部端栓203aの内面側を、溶融した材料に浸漬させて後に、取出して溶融材を滴下、除去することによっても気密層210の形成が可能である。
【0027】
次に、核燃料201を収納し、被覆管202、上部端栓203aおよび下部端栓203bを組み立てる(ステップS03)。なお、ステップS02の段階で、すでに被覆管202と下部端栓203bとを組み立てている場合は、その組み立てた状態にさらに上部端栓203aを取付ける。最後に、内部をヘリウムガスに置換する。
【0028】
被覆管202と端栓203とを接合する(ステップS04)。接合は、たとえば、プラズマ接合を用いることができる。本ステップにおいては、正圧すなわち大気圧より高い圧力のヘリウムガスの環境のもとに作業を実施することが好ましい。
【0029】
図4は、燃料棒の製造途中の組立て後の状態を示す部分立断面図である。具体的には、図3のフロー図で示した燃料棒の製造方法の手順の中で、ステップS02において、被覆管202、上部端栓203aおよび下部端栓203bのそれぞれの内側表面の上に気密層210を設けた後に、ステップS03において、被覆管202、上部端栓203aおよび下部端栓203bを組み立てた段階の一方の端栓203の近傍の状態を示している。
【0030】
この段階では、被覆管202の内面の気密層の端部と、上部端栓203aあるいは下部端栓203b内面の気密層210との間に、図4に示すように、気密層210が形成されない未形成部214が存在する場合がある。
【0031】
この状態から、ステップS04で、たとえばプラズマ接合などの接合方法により、図4の接合部J1での端栓203と被覆管202の接合を行うと、接合時に発生する熱により、端栓203上の気密層素材を気化する。気化した気密層素材は、未形成部214の空隙にも蓄積されて、空隙だった部分にも気密層210が形成される。
【0032】
なお、未形成部214での気密層210の形成のために、接合部J1近傍の気密層210は予め未形成部214への移行を考慮した厚みとしておく。また、この際、接合時の端栓203の温度が気密層210の素材の気化温度よりも大きくなるように、気密層素材の選定、接合方法の選定および接合条件の設定を行う。
【0033】
現行のジルコニウム合金製燃料被覆管の内部にはヘリウムガスが封入されている。上記の端栓近傍の気密層製造方法を高圧ヘリウムガス環境中にて実施することにより、ヘリウムガス封入を兼ねた気密層製造ができるという効果が得られる。
【0034】
図5は、気密層210の状態を説明する部分立断面図である。被覆管202と端栓203との接合は、被覆管202の端部近傍の内面と、端栓203の被覆管202への差し込み部の外面との接合部J2において接合する。接合は、例えばプラズマ接合などを用いることができる。なお、端栓203は、上部端栓203a(図2)の場合でも、下部端栓203b(図2)の場合でもよい。
【0035】
被覆管202の内面および端栓203の内面に予め気密層210を形成し、例えばプラズマ接合などの接合方法により、被覆管202の端部近傍の内面と端栓203の被覆管202への差し込み部の外面との接触部であるJ2部での被覆管202と端栓203との接合を行う際に、接合時に熱が発生する。被覆管202の端部近傍の内面に設けられた気密層210と、端栓203の内面に設けられた気密層210との境界において、この熱により気密層210の一部が溶融し、気密層210のこの境界部の内面に、滑らかな曲面が形成される。この境界部分は、通常、応力集中が発生する部分であるが、なめらかな曲面であるR部213が形成されることによって、応力集中が緩和される効果がある。
【0036】
なお、この際も、接合時のJ2部の温度が、気密層210の素材の溶融温度よりも大きくなるように、気密層210の素材の選定、接合方法の選定および接合条件設定を行う。ここで、各材料の溶融温度は、SiCの2700℃に対して、Cuが1080℃、Auが1060℃、Wが3400℃、およびBNが2900℃であり、CuおよびAuの溶融温度は、SiCの溶融温度より低い。
【0037】
以上のように、本実施形態により、被覆管202、上部端栓203aおよび下部端栓203bの内面に気密層210が残らず形成される。また、被覆管202と上部端栓203aの結合部、および被覆管202と下部端栓203bの結合部の内面は、曲面形状となることにより、応力集中が緩和される。このため、内圧を受けても、気密層210はその外側の被覆管202、上部端栓203aおよび下部端栓203bに支持され、かつ大きな局部的な応力集中もなく、構造健全性が確保され、気密機能が維持される。
【0038】
以上のように、炭化ケイ素複合材料を燃料被覆管に適用した場合の気密性についての信頼性を向上させることができる。
【0039】
[第2の実施形態]
図6は、第2の実施形態に係る燃料棒の構成を示す部分立断面図である。本実施形態は第1の実施形態の変形である。本第2の実施形態においては、気密層210は、常厚層211と厚肉層212を有する。厚肉層212は、上部プレナム205の周囲に配された部分の気密層である。常厚層211は、上部プレナム205の周囲以外の部分、すなわち上部プレナム205以外の部分の被覆管202および下部端栓203bの内側の部分に配された気密層である。常厚層211は、第1の実施形態と同様の厚さの気密層である。厚肉層212は、常厚層211よりも厚肉すなわち厚肉部となっている。
【0040】
ここで、厚肉層212の構成材料は、常厚層211の構成材料よりも中性子吸収断面積が大きな材料であってもよい。たとえば、被覆管202の炭化ケイ素複合材料に対して、厚肉層212の構成材料は、Cu、AuあるいはWなどの金属であってもよい。
【0041】
それぞれの中性子吸収断面積は、熱中性子に対して、SiCが0.08438barn(1barnは、10−24cm)に対して、Cuが3.786barn、Auが98.65barn、Wが18.15barn、およびBNが382.8barn程度である。例示した各元素の中性子吸収断面積はいずれもSiCの中性子吸収断面積よりオーダー的に大きい。
【0042】
いま、上部プレナム205にUOの燃料ペレットがあるものとした場合の中性子吸収効果は、UOの吸収断面積に原子数密度とペレットの体積を乗じたものとなる。上部プレナム205に燃料ペレットがないことによる中性子吸収効果の減少分を、気密層で補償することを考える。たとえば、厚肉層212で補償する場合、厚肉層212の材料の吸収断面積に原子数密度と厚肉層212の体積を乗じた結果が、厚肉層212による中性子吸収効果となるので、この値がUOの燃料ペレットがあるものとした場合の中性子吸収効果に等しければ、UOの燃料ペレットによる効果を補償したことになる。
【0043】
たとえば、UO燃料ペレットの径を0.96cm、UOの中性子吸収断面積を1.12barnとし、被覆管内径を0.98cmとした場合、それぞれの中性子吸収断面積を考慮した厚肉層212の厚さの目安は、たとえば、Cuの場合は約570μm、Auの場合は約30μm、Wの場合は約150μm、BNの場合は約3μm程度である。
【0044】
このように上部プレナム205における気密層を厚くすることにより、この部分の被覆管202および厚肉層212による中性子吸収が他の部分よりも強いことになる。これにより、上部プレナム205などの、当該燃料棒200内にウランなどの中性子吸収体が無い箇所においても、その分の中性子吸収を被覆管202および厚肉層212による中性子吸収で補償し、上部プレナム205に隣接する燃料棒の出力スパイクを抑制できる効果が有る。
【0045】
[第3の実施形態]
図7は、第3の実施形態に係る燃料棒の構成を示す部分立断面図である。本第3の実施形態は、第2の実施形態の変形である。本第3の実施形態においては、気密層210は、常厚層221および追加層222を有する。
【0046】
常厚層221、被覆管202、上部端栓203aおよび下部端栓203bの内面側の全体にわたり設けられており、その厚さは、第2の実施形態における常厚層211と同程度である。追加層222は、上部プレナム205の周囲に配された常厚層221の内側表面にさらに設けられており、上部プレナム205においては、気密層210は、2層構造の厚肉部となっている。
【0047】
追加層222の構成材料は、常厚層221の構成材料よりも中性子吸収断面積が大きな材料であってもよい。たとえば、被覆管202の炭化ケイ素複合材料に対して、追加層222の構成材料は、Cu、AuあるいはWなどの金属であってもよい。
【0048】
たとえば、Cuを追加層222として用いるCuライナを採用する場合を考える。Cuは、過去におけるジルコニウム被覆管での使用実績に加え、運転中でも延性の保持が期待できる。Cuの融点は約1000℃であり、400〜480℃で焼鈍される。運転時間が長くなると、ライナ金属は中性子照射を受けることでその延性が失われるが、Cuは前記のような焼鈍の特性のため、照射脆化と同時に焼鈍が起こり、延性の回復が期待される。なお、約1000℃でライナが溶融するような事故時を考慮すると、たとえば、Wなどを追加層222に加えて密閉性の低下を防止し追加層222を維持することでもよい。
【0049】
このように構成することによって、第2の実施形態と同様に、この部分の中性子吸収が他の部分よりも強いことになり、これにより隣接する燃料棒付近にウランなどの中性子吸収体が無い場合でもその分を補償し、隣接する燃料棒の出力スパイクを抑制できる効果がある。
【0050】
[その他の実施形態]
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。また、各実施形態の特徴を組み合わせてもよい。さらに、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0051】
100…燃料集合体、101…支持格子、102…下部タイプレート、103…上部タイプレート、104…チャンネルボックス、200…燃料棒、201…核燃料、202…被覆管、203…端栓、203a…上部端栓、203b…下部端栓、204…プレナムスプリング、205…上部プレナム、208…密閉空間、210…気密層、211…常厚層、212…厚肉層、213…R部、214…未形成部、J1、J2…接合部、221…常厚層、222…追加層
図1
図2
図3
図4
図5
図6
図7