【実施例】
【0165】
実施例1−生物学的応答性腎臓細胞の単離およびキャラクタリゼーション
成体雄ブタ(イノシシ)の貧血を伴う特発性進行性慢性腎疾患(CKD)の症例から、同年齢の正常なブタ腎臓組織と直接比較して細胞組成物の評価とキャラクタリゼーションを行うための、新鮮な腎臓患部組織が提供された。採取時間での腎臓組織の組織学的検査により、重篤なびまん性慢性間質性線維症および多巣性線維形成を伴う半月体形成性糸球体腎炎を特徴とする腎疾患であると確認された。臨床化学により、高窒素血症(血中尿素窒素および血清クレアチニンの上昇)、および軽度の貧血(ヘマトクリットの軽度の減少および低下したヘモグロビンレベル)である事が確認された。病気および正常の両方の腎臓組織由来の細胞が単離され、増殖されて、特性が明らかにされた。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図1に示されるように、ゴモリのトリクローム染色により正常な腎臓組織に比較して腎臓患部組織中の線維形成が強調される(矢印で示す青色染色)。キュビリン:メガリンを発現し、受容体媒介アルブミン輸送ができる機能性尿細管細胞が、正常および病気両方の腎臓組織から増殖する。エリスロポエチン(EPO)発現細胞は、また、培養物中に存在し、複数の継代中保持され、冷凍/解凍サイクルを受ける。さらに、分子分析により、正常および患部組織の両方由来のEPO発現細胞は、インビトロの低酸素性の条件に応答し、EPOおよびvEGF等の他の低酸素調節遺伝子標的のHIF1α駆動型誘導が起こる。細胞は、コラゲナーゼ+ディスパーゼの酵素消化によりブタ腎臓組織から単離され、また、単純な機械的消化および外植片培養を行うことにより、別の実験でも単離された。継代2で、EPO発現細胞含有外植片由来細胞培養を大気(21%)および可変の低酸素性(<5%)培養の両方の条件に供し、低酸素への暴露が、EPO遺伝子発現の上昇発現の結果をもたらすのかどうかを判定する。げっ歯類培養で述べるように(実施例3を参照)、正常なブタは、酸素依存性発現およびEPO遺伝子調節を示した。驚くべきことに、CKDブタの尿毒性/貧血状態(ヘマトクリット<34、クレアチニン>9.0)にもかかわらず、EPO発現細胞は、容易に単離され、組織から増殖し、EPO遺伝子の発現は、低酸素に調節されたままであった(Presnell et al.国際公開
第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図2に示すように)。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図3に示すように、増殖培養物中の細胞は、尿細管様構造へと自己組織化する能力を示した。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図4に示すように、培養細胞によるFITC複合化アルブミンの受容体媒介取込を観察することにより、培養物(継代3の)中の機能的尿細管細胞の存在が確認された。緑色ドット(細い白色の矢で示す)は、取り込まれたフルオレセイン複合化アルブミンを表し、これは、尿細管細胞特異的受容体、メガリンとキュビリンにより媒介され、機能的尿細管細胞によるタンパク質の再吸収を示す。青色染色(細い白色の矢で示す)は、Hoescht染色した核である。まとめると、これらのデータは、機能的尿細管および内分泌細胞は、CKDに激しく侵されている腎臓組織であっても、ブタ腎臓組織から単離、増殖できることを示唆している。さらに、これらの知見は、CKDの処置に対する自己細胞ベースの治療薬の進展を支援する。
【0166】
さらに、EPO産生細胞は、正常なヒト成人腎臓から酵素を使って単離された(上述の実施例1のように)。単離手続きにより、初期組織の場合よりも、単離後、比較的多くのEPO発現がもたらされた。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図6に示すように、培養中にヒトEPO産生細胞を維持し、EPO遺伝子発現を保持することが可能である。ヒト細胞を組織培養物処置プレーンプラスチックまたは一部の細胞外のマトリックス、例えば、フィブロネクチンまたはコラーゲンコートプラスチック上で培養/増殖し、全てのものが経時EPO発現を裏付けることが明らかになった。
【0167】
実施例2−特定生理活性腎臓細胞の単離および富化
腎臓細胞単離:簡単に述べると、10、2週齢雄Lewisラット腎臓のバッチを市販品納入業者(Hilltop Lab Animals Inc.)から入手し、約4℃のViaspan保存培地中に入れ一晩輸送した。本明細書記載の全ステップは、生物学的安全キャビネット(BSC)中で行い、無菌を保った。腎臓を、ハンクス平衡塩類溶液(HBSS)で3回洗浄してViaspan保存培地を洗い流した。3回目の洗浄後、残っている腎臓カプセル剤、ならびに残っている全ての間質組織が除去された。また、主要腎杯を顕微解剖技術を使って取り出した。次に、腎臓を無菌のメスを使って細かく分割してスラリーにした。その後、スラリーを50mlの遠心分離機のコニカルチューブに移し、秤量した。小検体をRNA分析用に集め、無菌の無RNアーゼ1.5ml微量遠心分離機チューブ中に入れ、液体窒素中で急速凍結した。凍結するとすぐに、−80℃フリーザーに移し、分析まで保存した。10個の若齢腎臓の組織重量は、約1グラムに相当する。バッチの重量に基づいて、消化培地を、1グラムの組織当たり20mlの消化培地になるように調節した。この手続き用消化緩衝液には、4ユニットのHBSS中ディスパーゼ1(Stem Cell Tech)、5mM CaCl
2(シグマ)含有300Units/mlのコラゲナーゼタイプIV(Worthington)を含めた。
【0168】
適切な容量の予熱した消化緩衝液をチューブに添加し、シールして、37℃のインキュベーター中のロッカーに20分間入れた。この第1消化ステップは、多くの赤血球を除き、残っている組織の消化を高める。20分後、チューブを取り出し、BSC中に入れた。組織をチューブの底に静置し、次に、上清を取り出した。残っている組織に、出発容量と等量の新しい消化緩衝液を補充した。追加の30分間、37℃インキュベーター中のロッカーにチューブを再度入れた。
【0169】
30分後、消化混合物を70μmセルストレーナー(BD Falcon)を使って等容量の中和緩衝液中に分注し(DMEMw/10%FBS)、消化反応を停止させた。その後、細胞懸濁液を300xgの遠心分離により5分間洗浄した。遠心分離後、ペレットをKSFM培地に再懸濁し、トリパンブルー色素排除を使った細胞計数および生存率評価用に検体を採取した。細胞数を計算するとすぐに、百万個の細胞をRNA分析用に集め、PBSで洗浄し、急速液体窒素中で凍結した。残った細胞懸濁液をKSFM培地で50mlにして、再度300xgの遠心分離により5分間洗浄した。洗浄後、KSFM 1ml当たり1千5百万細胞の濃度で細胞ペレットを再懸濁した。
【0170】
次に、5mlの腎臓細胞懸濁液を15ml遠心分離機コニカルチューブ(BDFalcon)中の5mlの30%(w/v)Optiprep(登録商標)に添加し、6回反転により混合した。これにより、15%(w/v)のOptiprep(登録商標)の最終混合物が形成された。反転後、チューブを1mL PBSで注意深く層状化した。チューブをブレーキなしで、800xgで15分間遠心分離した。遠心分離後、チューブを取り出し、混合勾配の先端に細胞バンドを形成した。また、赤血球、死細胞、および少しの小さな顆粒状の少ない細胞、少しのEPO産生細胞、少しの尿細管細胞、および少しの内皮細胞、等の小集団の生細胞を含むペレットも存在した。バンドを、ピペットで注意深く取り出し、別の15mlコニカルチューブに移した。吸引により勾配培地を取り出し、ペレットを1mlのKSFM中へ再懸濁した。次に、バンド細胞およびペレット細胞を再度組み合わせて、KSFMを使って少なくともの集めたバンド容量の3倍の希釈度にして再懸濁し、300xgの遠心分離で5分間洗浄した。洗浄後、細胞を20mlのKSFMに再懸濁し、細胞計数用検体を集めた。トリパンブルー色素排除を使った細胞数の計数が終わるとすぐ、RNA検体として百万個の細胞を集め、PBSで洗浄し、液体窒素中で急速凍結した。
【0171】
密度勾配分離を使って特定の生理活性腎臓細胞の生存率と培養能力を高めるための前培養「精製(Clean−up)」:不純物のない、生存可能な培養用細胞集団を得るために、「腎臓細胞単離」で上述のように、最初に細胞懸濁液を生成した。随意選択ステップとして、および初期調製物を精製する手段として、無菌の等張性緩衝液中に懸濁させた1億個もの全体細胞を、ストックの60%(w/v)イオジキサノール(従って、最終的に15%w/v Optiprep溶液が得られる)から室温で調製した等容量の30%Optiprep(登録商標)で完全に1:1とし、6回の反転により完全に混ぜ合わせる。混合後、1mlのPBS緩衝液を混合細胞懸濁液の上端に注意深く層状に加えた。その後、勾配チューブを注意深く遠心分離機に装填し、適性バランスを確保した。勾配チューブを800xg、25℃で15分間、ブレーキなしで遠心分離した。精製細胞集団(生存可能で、かつ機能的集合管、尿細管、内分泌、糸球体、および血管細胞を含む)は、1.025〜1.045g/mLの間の密度に対応する6%と8%(w/v)Optiprep(登録商標)の間に分配された。他の細胞および壊死組織片は、チューブの底部にペレット化された。
【0172】
腎臓細胞培養:1つにまとめた細胞バンドとペレットを、次に、DMEM(高ブドウ糖)/{5%(v/v)FBS、2.5μgEGF、25mgBPE、抗生物質/抗真菌剤を含む1XITS(インスリン/トランスフェリン/亜セレン酸ナトリウム培地補助剤)を含むKSFM}の50:50混合物150ml中に30、000細胞/cm
2の細胞濃度で、組織培養物処理トリプルフラスコ(Nunc T500)または等価物中に播種した。細胞を、加湿5%CO2インキュベーター中で2〜3日培養し、21%大気酸素レベルを細胞に与えた。2日後、培地を交換し、培養物をCO2/窒素ガスマルチガス加湿インキュベーター(Sanyo)から提供された2%酸素レベル環境中に24時間置いた。24時間のインキュベーション後、細胞を60mlの1X PBSで洗浄し、40mlの0.25%(w/v)トリプシン/EDTA(Gibco)で取り出した。取り出しに際し、細胞懸濁液を等容量の10%FBS含有KSFMで中和した。その後、細胞を300xgの遠心分離で10分間洗浄した。洗浄後、細胞を20mlのKSFM中に再懸濁し、50mlコニカルチューブに移して、細胞計数用検体を集めた。生存可能な細胞数がトリパンブルー色素排除を使って決定されるとすぐに、RNA検体として百万個の細胞を集め、PBSで洗浄後、液体窒素中で急速凍結した。細胞をPBSで再度洗浄し、300xgの遠心分離で5分間、集めた。洗浄した細胞ペレットをKSFM中に3千7百50万細胞/mlの濃度で再懸濁した。
【0173】
密度ステップ勾配分離を使った特定の生理活性腎臓細胞の富化:、主に腎臓尿細管細胞からなるが、他の細胞型(集合管、糸球体、血管、および内分泌細胞)小亜集団を含む培養腎臓細胞を、複数の濃度w/vのイオジキサノール(Optiprep)から作られた密度ステップ勾配を使って、それらの成分亜集団に分離した。採取前に、培養物を低酸素性環境中に24時間まで置き、勾配にかけた。無菌の15mLコニカルチューブ中で4つの異なる密度の培地を相互の上端の上に層状に導入することによりステップ勾配を形成し、最高密度の溶液を底部に配置し、最低密度溶液を上端に層状に導入した。細胞をステップ勾配の上端に加え、遠心分離し、これにより、集団をサイズと粒状性に基づき複数のバンドに分離させる結果を得た。
【0174】
簡単に述べると、KFSM培地を希釈剤として使用して、7、11、13、および16%Optiprep(登録商標)(60%w/vイオジキサノール)の密度を作った。例えば、50mlの7%(w/v)Optiprep(登録商標)に対し、5.83mlのストック60%(w/v)イオジキサノールを44.17mlのKSFM培地に添加し、反転により良く混合した。無菌の毛細血管に連結した無菌のL/S 16タイゴンチューブを備えたぜん動ポンプ(Master Flex L/S)を、2ml/分の流量に設定し、2mLの各4つの溶液を、最初に16%溶液、続いて13%溶液、11%溶液、そして7%溶液の順に、無菌のコニカル15mLチューブに加えた。最後に、7千5百万個の培養げっ歯類腎臓細胞含有2mL細胞懸濁液をステップ勾配の頂上に加えた(上述の「腎臓細胞培養」にあるようにして懸濁液が生成された)。重要なのは、ポンプが勾配溶液をチューブに送り始めると、液体が45°の角度でチューブの側面をゆっくり流れ落ちるようにして、適正な界面が各勾配の層の間に確実に形成されるように注意することである。細胞を負荷されたステップ勾配は、次に、800xgで20分間、ブレーキなしで遠心分離にかけられる。遠心分離後、チューブを各界面を乱さないように注意深く取り出した。5つの異なる細胞画分が得られた(4バンドおよびペレット)(B1〜B4、+ペレット)(
図1A、左コニカルチューブ参照)。各画分を無菌のディスポーザブルバルブピペットまたは5mlピペットを使って集め、表現型および機能性の観点から特徴付けした(Presnell et al.国際公開第2010/056328号の実施例10を参照)。げっ歯類腎臓細胞懸濁液をステップ勾配分画にかけると、尿細管細胞富化画分(および集合管由来の細胞を少し含む)は、1.062〜1.088g/mLの密度区分に分配された。対照的に、エクスビボ培養後に密度勾配分離を行った場合、尿細管細胞富化画分(および集合管由来の細胞を少し含む)は、1.051〜1.062g/mLの密度区分に分配された。同様に、単離直後に、げっ歯類腎臓細胞懸濁液がステップ勾配分画にかけられた場合、EPO産生細胞、糸球体有足細胞、および血管細胞(「B4」)富化画分は、1.025〜1.035g/mLの密度区分に分配された。対照的に、エクスビボ培
養後に、密度勾配分離を行った場合は、EPO産生細胞、糸球体有足細胞、および血管細胞(「B4」)富化画分は、1.073〜1.091g/mLの密度の区分に分配された。重要なのは、培養物の低酸素性培養環境への暴露(約1時間〜約24時間の間)により、培養後に細胞の「B2」および「B4」画分への分配が高められたことである(低酸素は、採取およびステップ勾配手続きの前で、21%(大気)未満の酸素レベルとして定義される(バンド分布に対する低酸素効果についてのさらなる詳細は、実施例3で提供される))。
【0175】
各バンドを3x容量のKSFMで希釈し、よく混合し、300xgで5分間遠心分離することにより洗浄した。ペレットを2mlのKSFM中に再懸濁し、生存可能な細胞をトリパンブルー色素排除および血球計を使って計測した。百万個の細胞をRNA検体として集め、PBSで洗浄し、液体窒素中で急速凍結した。尿毒性および貧血雌ラットに対する移植調査のために、B2およびB4由来の細胞を使用した。これらのラットは、Charles River Laboratoriesで2段ステップ5/6腎摘出術法により生成された。エリスロポエチンとvEGFの酸素調節発現、糸球体マーカーの発現(ネフリン、ポドシン)、および血管マーカーの発現(PECAM)を含むB4の特性は、定量リアルタイムPCRにより確認された。「B2」画分の表現型は、E−カドヘリン、N−カドヘリン、およびアクアポリン−2.の発現により確認された。Presnell et al.国際公開第2010/056328号の
図49aと49bを参照。
【0176】
従って、ステップ勾配戦略の使用は、EPO産生細胞(B4)の希少な集団の富化のみでなく、機能的尿細管細胞(B2)が相対的に富化された画分を生成する手段も可能とする(Presnell et al.国際公開第2010/056328号の
図50と51を参照)。ステップ勾配戦略は、また、EPO産生および尿細管細胞の、赤血球、細胞壊死組織片、および他の潜在的に望ましくない細胞型、例えば、大きな細胞凝集物および特定の型の免疫細胞からの分離を可能とする。
【0177】
ステップ勾配手続きは、採用された特定の密度については、細胞成分の良好な分離を得るためにチューニングが必要な場合がある。好ましい勾配チューニング手法には、1)勾配の底の高密度(例えば、16〜21%Optiprep)から、勾配の上端の相対的に低密度(例えば、5〜10%)までの連続的密度勾配を機能させることが含まれる。連続的勾配は、任意の標準的密度勾配溶液(フィコール、パーコール、ショ糖、イオジキサノール)を使って、標準的な方法(Axis Shield)に従って調製できる。対象の細胞を連続勾配に加え、800xGで20分、ブレーキなしで遠心分離する。類似のサイズと粒度の細胞は、一緒に勾配中に分離する傾向があり、その結果、勾配の相対的位置が測定でき、さらに、その位置の溶液の比重も、測定できる。従って、その後で、特定条件下で密度勾配を全体にわたるその能力に基づいて、特定の細胞集団の単離に焦点を合わせた確定したステップ勾配を得ることができる。不健康−対−健康組織由来細胞を単離する場合、または、異なる種由来の特定細胞を単離する場合に、このような最適化が、採用される必要がありうる。例えば、最適化がイヌのおよびヒト両方の腎臓細胞培養物に対して行われ、ラットで同定された特異的B2およびB4亜集団を他の種から単離可能であることを確実にした。げっ歯類B2およびB4亜集団の単離用最適勾配は、7%、11%、13%、および16%(w/v)Optiprepから構成される。イヌのB2およびB4亜集団の単離用最適勾配は、7%、10%、11%、および16%(w/v)から構成される。ヒトB2およびB4亜集団単離用最適勾配は、7%、9%、11%、16%(w/v)から構成される。この結果、培養げっ歯類、イヌ、およびヒト腎臓細胞のB2およびB4に対する局在化密度範囲は、表2.1に示される。
【0178】
実施例3−勾配前の低酸素培養が、バンド分布、組成、および遺伝子発現に影響する
プロトタイプB2およびB4の分布および組成に与える酸素条件の効果を測定するために、勾配ステップの前に、異なる種由来の新規腎臓(neokidney)細胞調製物を種々の酸素条件に暴露した。ラット細胞単離および培養開始のための標準的手順を使って、上述のように、げっ歯類新規腎臓増強(NKA)細胞調製物(RK069)を形成した。21%(大気)酸素条件下で2〜3日間、全てのフラスコを培養した。培地を交換し、半分のフラスコを2%酸素に設定された酸素制御インキュベーターに再配置し、一方、残りのフラスコを追加の24時間の間、21%酸素条件に保持した。次に、上述の標準的な酵素による採取法を使って、各セットの条件から細胞を採取した。標準的手続きに従ってステップ勾配を調製し、「正常酸素圧」(21%酸素)および「低酸素性の」(2%酸素)培養物を別々に採取し、並行してステップ勾配に適用した(
図2)。両条件で4バンドおよびペレットが生成されたが、勾配全体の細胞の分布は、21%と2%酸素培養バッチで異なっていた(表1)。特に、B2の収率は、低酸素で増加し、同時にB3が減少した。さらに、低酸素性培養細胞から生成された勾配中でB4特異的遺伝子(例えば、エリスロポエチン)の発現が増加した(Presnell et al.国際公開第2010/056328号の
図73を参照)。
【0179】
上述のように、イヌ細胞単離および培養に関する標準的手順(げっ歯類単離および培養手順に類似の)を使って、イヌのNKA細胞調製物(DK008)を形成した。全てのフラスコを21%(大気)酸素条件下で4日間培養した後、フラスコのサブセットを低酸素(2%)環境に24時間移したが、一方、サブセットのフラスコを、21%で維持した。続けて、各セットのフラスコから回収し、同じステップ勾配供した(
図3)。ラットの結果(実施例1)と同様に、低酸素性培養イヌ細胞は、大気圧酸素培養イヌ細胞とは異なり、勾配全体に分配された(表3.1)。再度、B2の収率は、勾配の前の低酸素性暴露により増加し、同時にB3への分配は減少した。
【0180】
上のデータは、勾配前の低酸素への暴露が、B2の成分ならびに特定の分化細胞(エリスロポエチン産生細胞、血管細胞、および糸球体細胞)のB4への分配を高めることを示す。従って、上述の低酸素性培養、それに続く密度勾配分離は、種全体にわたる「B2」と「B4」細胞集団の生成の有効な方法である。
【0181】
実施例4−ヒト腎臓からの尿細管/糸球体細胞の単離
全体にわたり記載されている酵素を使った単離方法により、正常なヒト腎臓組織から尿細管および糸球体細胞を単離し、増殖した。上述の勾配方法により、尿細管細胞画分を培養後、エクスビボで富化した。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図68に示すように、表現型特性は単離および増殖中、維持された。標識アルブミンの取込により評価された尿細管細胞機能は、また、繰り返された継代後も維持され、冷凍保存された。Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図69は、尿細管富化および尿細管枯渇集団が3Dダイナミック培養により培養される場合、尿細管マーカー、カドヘリン発現の有意な増加が尿細管富化集団で認められた。このことにより、細胞が3Dダイナミック環境で培養される場合、尿細管細胞の富化が、初期の富化を越えて維持できることが確認される。
【0182】
実施例5−フローサイトメトリーによるEPO産生細胞のさらなる分離
上述の実施例2で記載の腎臓細胞の同じ培養集団をフローサイトメトリー分析に供し、前方散乱および側方散乱を調査した。小さくて、顆粒がより少ないEPO産生細胞集団は識別可能であり(8.15%)、また、フローサイトメーターの選別能力を使って、小さくて、顆粒がより少ない集団のポジティブセレクションにより分離される(Presnell et al.国際公開第2010/056328号(参照によりその全体が本明細書に組み込まれる)の
図70を参照))。
【0183】
実施例6−自己免疫糸球体腎炎患者検体から単離された腎臓細胞の未分画混合物のキャラクタリゼーション
腎臓細胞の未分画混合物を上述のように自己免疫性糸球体腎炎患者検体から単離した。腎臓組織から単離、増殖された腎臓細胞の特定亜集団の不偏の遺伝子型組成を決定するために、定量リアルタイムPCR(qrtpcr)分析(Brunskill et al.、前出、2008)を採用し、細胞亜画分中の細胞型特異的および経路特異的遺伝子発現パターンの差異を特定した。表6.1に示すように、HK20は、自己免疫性糸球体腎炎患者検体である。表6.2は、qRTPCR測定の結果の基づき、HK20から生成された細胞は、糸球体細胞が欠乏していることを示す。
【0184】
実施例7−巣状分節性糸球体硬化症の症例から単離された治療に適する腎臓生理活性細胞集団の遺伝的プロファイリング
腎臓組織から単離、増殖された腎臓細胞の特定亜集団の不偏の遺伝子型組成を決定するために、定量リアルタイムPCR(qrtpcr)分析(Brunskill et al.、前出、2008)を採用し、細胞亜画分中の細胞型特異的および経路特異的遺伝子発現パターンの差異を特定した。糸球体の大部分が破壊されている巣状分節性糸球体硬化症(FSGS)の症例由来の、ヒト調製物HK023をB4画分の糸球体細胞の存在に関し、採取時に評価した。簡単に述べると、未分画(UNFX)培養物を生成し(Aboushwareb et al.、前出、2008)、標準的生検方法を使って腎臓から採取した(4)コア生検をそれぞれ相互に独立に維持した。UNFXエクスビボでの(2)継代後、細胞を採取し、密度勾配法(実施例8のように)に供し、げっ歯類、イヌ、および他のヒト検体で行った研究に基づいて、内分泌、血管、および糸球体細胞が富化されていると解っている亜画分B4を含む亜画分を生成した。
【0185】
1.063〜1.091g/mLの浮遊密度を有する細胞の異なるバンドと思われるHK023の各独立UNFX検体からB4画分を別々に集めた。RNAを各検体から単離し、ポドシン(糸球体細胞マーカー)およびPECAM(内皮細胞マーカー)の発現を定量リアルタイムPCRにより調べた。重篤FSGSの生検由来検体から予期されるように、画分中のポドシン(+)糸球体細胞の存在に関し一貫性がなく、検体の2/4でポドシン検出不可であった。対照的に、PECAM+血管細胞は、生検で惹起された培養物の4/4のB4画分で一貫して存在した。従って、B4画分は、重篤な疾患状態のヒト腎臓からの場合であっても、1.063〜1.091g/mL密度範囲で単離できる。
【0186】
さらに、表7.2に示すように、ヒト検体(HK018)は、密度勾配遠心分離後のqRTPCRでは、ポドシン(糸球体のマーカー)が検出されなかった。
【0187】
実施例8−蛍光活性化セルソーター(FACS)を使った生存可能な腎臓細胞型の富化/枯渇
蛍光活性化セルソーター(FACS)を使って、1つまたは複数の単離腎臓細胞を富化でき、および/または単離した1次腎臓組織から1つまたは複数の特定の腎臓細胞型を枯渇できる。
【0188】
試薬:70%エタノール;洗浄緩衝液(PBS);50:50腎臓細胞培地(50%DMEM(高グルコース)):50%ケラチノサイト−SFM;トリパンブルー0.4%;標的腎臓細胞集団、例えば、腎臓内皮細胞のためのCD31および腎臓糸球体細胞のためのネフリン、に対する一次抗体。対応するアイソタイプ特異的蛍光二次抗体;染色緩衝液(PBS中0.05%BSA)。
【0189】
方法:生物学的安全キャビネット(BSC)を標準的手順で洗浄後、1次単離または培養細胞由来の腎臓細胞の単一細胞懸濁液をT500T/C処理フラスコに取り出し、腎臓細胞培地に再懸濁させて、氷上に置く。次に、トリパンブルー色素排除法を使って細胞数と生存率を測定する。例えば、異種起源の集団からの糸球体細胞または内皮細胞の腎臓細胞富化/枯渇に対しては、10〜50e6個の少なくとも70%の生存率の生細胞を得る。腎臓細胞の異種起源の集団を、次に、出発濃度1μg/0.1mlの染色緩衝液/1x10
6細胞(必要に応じ力価)の、標的細胞型特異的一次抗体で染色した。標的抗体は、例えば、CD31PE(腎臓内皮細胞特異的)と複合化できるが、例えば、ネフリン(腎臓糸球体細胞特異的)と複合化できない。
【0190】
その後、30分間、光から保護された4℃の氷上で細胞を染色した。30分のインキュベーション後、細胞を300xgで5分間遠心分離して、洗浄した。次に、複合化アイソタイプ特異的二次抗体の必要性に応じ、PBSまたは染色緩衝液中にペレットを再懸濁した。細胞を蛍光色素複合化一次抗体で標識する場合は、10e7細胞当たり2mlのPBS中に細胞を再懸濁し、FACS ariaまたは等価な細胞選別機で処理する。細胞を蛍光色素複合化抗体で標識しない場合は、1μg/0.1ml/1e6細胞の出発濃度のアイソタイプ特異的蛍光色素複合化二次抗体で細胞を標識する。
【0191】
次に、30分間、光から保護された4℃の氷上で細胞を染色する。30分のインキュベーション後、細胞を300xgで5分間遠心分離して、洗浄した。遠心分離後、ペレットを5e6/ml(PBS)の濃度でPBSに再懸濁し、12x75mm当たり4mlを無菌のチューブに移す。
【0192】
FACs Ariaをメーカーのインストラクション(BDFACs Ariaユーザーマニュアル)に従って、生細胞無菌選別用に準備する。検体チューブをFACs Ariaに装填し、データ取込開始後、PMT電圧を調整する。ゲートを特定の波長を使った蛍光の強度により腎臓の特異的細胞型を選択するように設定する。別のゲートを、陰性集団を選択するように設定する。所望のゲートを陽性標的集団および陰性集団を包含するように設定するとすぐに、メーカーのインストラクションに従って、細胞が選別される。
【0193】
陽性の標的集団を、1つの15mlコニカルチューブの集め、陰性集団を1mlの腎臓細胞培地を入れた別の15mlコニカルチューブに集める。収集後、各チューブからの検体を、フローサイトメトリーにより分析し、純度を測定する。集めた細胞を300xgで5分間の遠心分離により洗浄し、ペレットを腎臓細胞培地に再懸濁し、さらなる分析と実験に備える。
【0194】
実施例9−磁気細胞選別を使った腎臓細胞型の富化/枯渇
1つまたは複数の単離された腎臓細胞を富化でき、および/または1つまたは複数の特定の腎臓細胞型を単離1次腎臓組織から枯渇できる。
【0195】
試薬:70%エタノール、洗浄緩衝液(PBS)、50:50腎臓細胞培地(50%DMEM(高グルコース)):50%ケラチノサイト−SFM、トリパンブルー0.4%、操作緩衝液(PBS、2mM EDTA、0.5%BSA)、リンス緩衝液(PBS、2mM EDTA)、洗浄溶液(70%v/vエタノール)、Miltenyi FCRブロッキング試薬、いずれかのIgGアイソタイプに特異的なMiltenyiマイクロビーズ、標的抗体、例えば、CD31(PECAM)もしくはネフリン、または二次抗体。
【0196】
方法:生物学的安全キャビネット(BSC)を標準的手順で洗浄後、1次単離または培養由来の腎臓細胞の単一細胞懸濁液を得て、腎臓細胞培地に再懸濁する。細胞数および生存率をトリパンブルー色素排除法により測定する。
【0197】
異種起源の集団から、例えば、糸球体細胞または内皮細胞腎臓細胞の富化/枯渇のためには、少なくとも70%の生存率の少なくとも10e6〜4e9個の生細胞が得られる。
【0198】
最良の分離を行える富化/枯渇手法は、対象標的細胞に基づいて決定される。10%未満の標的出現頻度の細胞の富化、例えば、ネフリン抗体を使った糸球体細胞、に対しては、Miltenyi autoMACSのPOSSELDS(高感度モードのダブルポジティブ選択(double positive selection))、または同等の計器プログラムが使われる。10%超の標的出現頻度の細胞の枯渇に対しては、Miltenyi autoMACSのDEPLETES(高感度モードの枯渇(depletion))、または同等の計器プログラムが使われる。
【0199】
15mlのコニカル遠心分離チューブに0.05%BSAを含む1μg/10e6細胞/0.1ml PBSを加えることにより、生細胞を標的特異的一次抗体、例えば、糸球体細胞のためのネフリン腎生検ポリクローナル抗体、で標識し、続けて、4℃で15分のインキュベーションを行う。
【0200】
標識後、細胞を洗浄して、10e7細胞当たり1〜2mlの緩衝液を加え、続けて、300xgで5分間遠心分離することにより非結合一次抗体を除去する。洗浄後、アイソタイプ特異的二次抗体、例えば、0.05%BSA含有1μg/10e6/0.1ml PBSのニワトリ抗ウサギPEを添加し、続いて、4℃で15分のインキュベーションを行う。
【0201】
インキュベーション後、細胞を洗浄し、10e7細胞当たり1〜2mlの緩衝液を加え、続けて、300xgで5分間遠心分離することにより非結合一次抗体を除去する。上清を取り出し、細胞ペレットを再懸濁した10e7全体細胞当たり60μlの緩衝液中に再検索後、10e7全体細胞当たり20μlのFCRブロッキング試薬を添加し、これをよく混合する。
【0202】
20μlのダイレクトMACSマイクロビーズ(例えば、抗PEマイクロビーズ)を添加、混合し、4℃で15分のインキュベーションを行う。
【0203】
インキュベーション後、標識容量の10〜20xの緩衝液を添加し、300xgで5分間、懸濁液を遠心分離することにより細胞を洗浄し、細胞ペレットを10e8細胞当たり500μl〜2mlの緩衝液に添加して再懸濁する。
【0204】
メーカーのインストラクションに従い、autoMACSシステムを洗浄し、autoMACSを使った磁気細胞分離のための準備をする。新規無菌収集チューブを出口の下に置く。autoMACS細胞分離プログラムを選択する。選別では、POSSELDSプログラムを選ぶ。枯渇に対しては、DEPLETESプログラムを選ぶ。
【0205】
標識細胞を取込ポートに挿入後、プログラムを開始する。
細胞選別または枯渇の後に、検体を集め、使用まで氷上に置く。
枯渇または選別された検体の純度をフローサイトメトリーで検証する。
【0206】
実施例10−正常および慢性疾患腎臓組織から治療可能性のある細胞を単離、増殖できる
本調査の目的は、ハイコンテントアナリシス(HCA)によりヒトNKA細胞の機能的特性解析を行うことにあった。ハイコンテントイメージング(HCI)は、多くの検体全体に対し、2つ以上の蛍光プローブ(多重処理)を使って、複数の細胞下イベントの同時画像処理を提供する。ハイコンテントアナリシス(HCA)は、ハイコンテントイメージングで捕捉された複数の細胞パラメーターの同時定量測定を提供する。簡単に述べると、未分画(UNFX)培養物を生成し(Aboushwareb et al.、前出、2008)、標準的生検手順を使って、進行性慢性腎疾患(CKD)および3つの非CKDヒト腎臓を含む5つのヒト腎臓から採取したコア生検とは独立に維持する。UNFXのエクスビボによる(2)継代後、細胞を採取し、密度勾配法(実施例2のように)に供し、亜画分B2、B3、および/またはB4を含む亜画分を生成する。
【0207】
表10.1にまとめたように、ヒト腎臓組織を非CKDおよびCKDヒトドナーから入手した。
図4は、HK17とHK19検体の病理組織学的特徴を示す。エクスビボ培養物を全ての非CKD(3/3)およびCKD(5/5)腎臓から生成した。対象領域(ROI)を規定するヒトNKA細胞のアルブミン輸送のハイコンテントアナリシス(HCA)を
図5(ヒトNKA細胞中のアルブミン輸送のHCA)に示す。非CKDおよびCKD腎臓由来NKA細胞のアルブミン輸送の定量比較を
図6に示す。
図6で認められるように、アルブミン輸送は、CKD由来NKA培養物に易感染性ではない。尿細管富化B2および尿細管細胞枯渇B4亜画分の間のマーカー発現の比較分析を
図7(CK8/18/19)に示す。
【0208】
尿細管富化B2および尿細管細胞枯渇B4亜画分の間の比較に基づくアルブミン輸送の機能分析を
図8に示す。亜画分B2が近位の尿細管細胞中で富化され、その結果、アルブミン輸送機能の増加を示す。
【0209】
アルブミン取込:24ウエル、コラーゲンIVプレート(BD Biocoat(登録商標))中で培養密度に成長させた細胞の培地を18〜24時間の間、フェノールレッド不含で、無血清の1X抗真菌性/抗生物質および2mMグルタミン含有低グルコースDMEM(pr−/s−/lgDMEM)で置換した。アッセイ直前に、細胞を洗浄し、pr−/s−/lgDMEM+10mM HEPES、2mMグルタミン、1.8mM CaCl2、および1mM MgCl2を使って30分間インキュベートした。細胞を25μg/mLローダミンコンジュゲート化ウシアルブミン(Invitrogen)に30分間暴露し、 氷冷PBSで洗浄してエンドサイトーシスを停止させ、25μg/mL Hoechst核染料含有2%パラホルムアルデヒドで直ちに固定した。阻害実験に対しては、1μM受容体関連タンパク質(RAP)(Ray Biotech、Inc.、Norcross GA)をアルブミン添加の10分前に添加した。BD Pathway(登録商標)855ハイコンテントバイオイメージャー(Becton Dickinson)を用いて顕微鏡画像処理および分析を行った(Kelley et al.Am J Physiol Renal Physiol.2010 Nov;299(5):F1026−39.Epub Sep 8、2010、を参照)。
【0210】
結論として、HCAは、細胞レベルデータを与え、他のアッセイでは検出できない集団動力学、すなわち遺伝子またはタンパク質発現を示すことができる。アルブミン輸送(HCA−AT)機能の測定のための定量化可能なエクスビボHCAアッセイを利用して、ヒト腎臓尿細管細胞をヒトNKAプロトタイプの成分として特徴付けることができる。HCA−ATは、比較に基づく細胞機能の評価を可能とし、アルブミン輸送コンピテント細胞がヒトCKD腎臓由来NKA培養物中に保持されることを示した。また、NKA培養物、B2およびB4の特定の亜画分は、高められたアルブミン輸送活性を有する尿細管細胞富化画分であるB2とは、表現型と機能が異なることも示された。ヒトCKD由来B2細胞亜集団は、インビボでの効力を立証した(上述)げっ歯類B2細胞と表現型的に、また機能的に類似である。
【0211】
実施例11−腎臓再生の予測因子としてのマーカー発現
この調査は、治療的生理活性1次腎臓細胞亜集団で処理した5/6腎摘出ラットにおける腎臓再生の予測因子としての幹細胞および前駆細胞マーカー発現に関する。根底にあるNKA処置が腎機能を改善するメカニズムは、特徴付けられつつある。NKA処置の作用機序に関する我々の調査は、細胞−細胞シグナル伝達、生着、および線維化経路に関する。本調査は、NKA処置が、−おそらく、動員腎臓幹細胞の動員による−器官固有の再生能力をどのようしてに高めることができるかについてに焦点を絞った。我々は、NKA処置5/6NXラットで観察された生存の延長および腎機能の改善は、特定の幹細胞マーカー分子の発現に関連していると仮定する。
【0212】
この調査では、CKDラット5/6腎摘出術モデルを使い、分子アッセイを採用して特定された、治療的生理活性1次腎臓細胞集団での直接注射に対し応答した、ラット5/6腎摘出腎臓内の常在性幹細胞および前駆細胞の動員を評価する。この細胞ベース治療は、主要幹細胞マーカーCD24、CD133、UTF1、SOX2、LEFTY1、およびNODALの転写物およびタンパク質の両方のレベルの上方制御に特異的に関連していることが観察された。上方制御は、注射の1週間後までに検出され、注射後12週までにピークに達した。幹細胞および前駆細胞マーカーの活性化は、未処理腎摘出対照に比べて、生存の増加と血清バイオマーカーの有意な改善に関連していた。
【0213】
材料および方法
ラット由来1次腎臓細胞集団の単離:前述のように、ラットから1次腎臓細胞集団の単離を行った(Aboushwareb et al.、前出、2008;Presnell et al.、2009 FASEB J 23:LB143)。
【0214】
インビボ調査の設計と分析:1次腎臓細胞集団の単離(Presnell et al.Tissue Eng Part C Methods.2010 Oct 27.[印刷板に先行のEpub版])および5/6腎摘出CKDげっ歯類モデルの1次腎臓細胞亜集団の生理活性を評価したインビボ調査(Kelley et al.前出、2010)の詳細記載。慢性腎疾患げっ歯類モデルにおいて、1次腎臓細胞の尿細管細胞富化亜集団が、生存を改善し、腎臓機能を強化することは、別のところで報告した。この調査では、ラット由来死体解剖時の組織を単離し、B2(NKA#1)またはB2+B4混合物(NKA#2)で処置し、腎摘出(Nx)および疑似手術された非腎摘出ラット(対照)と比較した。
図9および11ならびに表11.1では、NKA#1とNKA#2処置ラット由来のデータをプールした。毎週および死体解剖前に調査ラットから採取した血液検体の分析により全身性データを得た。
【0215】
表11.1は、疑似手術処置動物(対照)、n=3を示す;nx対照(Nx)、n+3;B2細胞(NKA#1)で処置した動物、n=7;B2+B4細胞(NKA#2);n=7、に対する生存データを示す。調査の終了時点(23〜24週)で、Nx動物のどれも残っていなかった。NKA処置動物は、未処置Nx対照に比較して、優れた生存割合であった。
【0216】
RNA単離、cDNA合成およびqRT−PCR:RNAを、最適切削温度(OCT)凍結培地中に埋め込んだ組織から以下のようにして単離した:組織ブロックを室温下に置き、OCT超過分を除き、次に、組織をPBS中に入れ、解凍させて、残されているOCTを取り除き、組織をPBSで3回洗浄した後、大まかに切断して、微量遠心チューブに分注した。次に、分注組織を乳棒を使って微粉砕し、RNAをRNeasy Plus Miniキット(Qiagen、Valencia CA)を使って、抽出した。RNAの健全性を分光光度計を使って測定し、Super Script(登録商標)VILO(登録商標)cDNA合成キット(Invitrogen、Carlsbad CA)を使って、1.4μgに匹敵する多量のRNAからcDNAを生成した。cDNA合成後、200μlのdiH
2O(脱イオン水)を添加し、最終容量を240μlにすることにより、各検体を1:6に希釈した。ABIのカタログにあるプライマーとプローブおよびABI−Prism7300リアルタイムPCRシステム(Applied Biosystems、Foster City CA)を使って、定量リアルタイムPCR(qRT−PCR)により標的転写物の発現レベルを調査した。TaqMan(登録商標)Gene Expression Master Mix(ABI、Cat#4369016)を使って増幅を行い、ペプチジルプロリル異性化酵素B(PPIB)を内在性対照として利用した。
qRT−PCR反応:10μl Master Mix(2X)、1μlプライマーおよびプローブ(20X)、9μlcDNA、反応当たりの全容量:20μl。TaqMan(登録商標)プライマーおよびプローブを使って、各反応を以下のように設定した。
【0217】
ウェスタンブロット:OCT凍結培地に包埋した凍結全腎臓組織をタンパク質試料捕集に利用した。上述のようにOCTを除き、50mMトリス(pH8.0)、120mM NaCl、0.5%NP40、およびプロテアーゼ阻害剤混合物(Roche Applied Science、Indianapolis IN)を含む緩衝液に揺動を加えながら室温で全組織の溶解を15分間行い、続けて、13,000RPMで10分間の遠心分離を行った。全上清液を集め、タンパク質濃度をBradfordアッセイにより測定した。検体当たり30μgのタンパク質を、NuPAGE(登録商標)Novex 10%Bis−Tris Gel(Invitrogen)の各ウエルに添加して、SDSPAGE Gelを行った。ゲルを200Vで40分間、MES泳動バッファー(Invitrogen)中で電気泳動を行った。その後、タンパク質をI−Blotsystem(Invitrogen)を使ってニトロセルロース膜に移し、0.1%Tween−20(TBS−T)(シグマ、St.Louis、MO)含有トリス緩衝食塩水中に溶解した15mLの4%w/v低脂肪乳を使い、室温で2時間ブロッキングした。下記の抗体(それぞれ、2%w/v低脂肪乳を含む5mL TBS−Tで希釈)で、膜を°室温下、一晩検出した:(抗ヒトLefty−A LongおよびShort isoform(R&D systems MAB7461);抗ヒト、マウスおよびラットCD133(Abcam AB19898);抗ヒトおよびマウスUTF1(Millipore MAB4337);抗ヒトNODAL(Abcam AB55676);抗ヒトおよびラットCDH11(OBカドヘリン)(Thermo Scientific MA1−06306);抗ラットCD24(Becton Dickinson))。膜を3回/各10分TBS−Tで洗浄し、次に、2%w/v低脂肪乳(1:60、000)を含むTBS−Tで希釈した適切なHRPコンジュゲート二次抗体(Vector Labs PI−2000;PI−1000)を使って、室温で1.5時間検出した。膜をTBS−Tで3回/各10分洗浄し、続けて、diH
2Oで10分の洗浄を2回行った。ブロットをECL Advance化学発光試薬(GE Healthcare Life Scien
ces、Piscataway NJ)を使って発色させ、ChemiDoc(登録商標)XRS分子イメージャーおよびQuantity One(登録商標)ソフトウェア(BioRad、Hercules CA)を使って可視化した。
【0218】
結果:5/6NXラットの常在性幹細胞および前駆細胞の動員を評価するための分子アッセイを開発、使用して、NKA処置に対するこれらのマーカーの経時応答を調査した。主要幹細胞マーカーCD24、CD133、UTF−1、SOX−2、LEFTY、およびNODALのmRNA転写物およびタンパク質両方のレベルの上方制御に特異的に関連することが認められた。上方制御は、注射後1週までに検出され、注射後12週までにピークに達した。幹細胞および前駆細胞マーカーの活性化は、未処置5/6NX対照動物に比べて、生存の増加と血清バイオマーカーの有意な改善(すなわち、腎臓濾過の改善)に関連していた。
【0219】
図9は、5/6NXラットのNKAによる処置後の宿主組織中のSOX2のmRNAの発現を示す。SOX2mRNA発現の経時分析により、移植後12週までに、NKA処置群でNx対照よりも1.8倍のSOX2 mRNAの増加が認められた。移植後24週までに、Nx対照に比べNKA処置群でSOX2 mRNA発現の2.7倍の増加が観察された。(1週:対照(疑似)、Nx(対照)、および処置NKAに対し各n=3)(12週:対照(疑似)およびNx(対照)に対しn=1;処置NKAに対しn=4)(24週:対照(疑似)およびNx(対照)に対しn=1;処置NKAに対しn=4)。* は、p値=0.023または0.05未満を示す。
【0220】
図10は、疑似対照(対照)、Nx対照(Nx)、およびラット処置NKA#1およびNKA#2の処置後1、12および24週でのCD24、CD133、UTF1、SOX2、NODALおよびLEFTYの発現の経時変化を示すウェスタンブロットである。OCT凍結培地に包埋した凍結全腎臓組織(各検体に対しN=1)をタンパク質試料捕集のために利用した。負荷された全質量のタンパク質によりレーンを正規化した。NKA処置組織中のCD133、UTF1、NODAL、LEFTYおよびSOX2タンパク質レベルを全ての時点で、対照またはNxラットに比較して、評価した。
【0221】
図11は、再生応答指数(RRI)の経時変化を示す。個別タンパク質発現の濃度測定分析(
図10)を使って、再生マーカータンパク質発現の定量的指数、または再生応答指数(RRI)を生成した。バンド強度を各ウェスタンブロットから、ImageJv1.4ソフトウェア(NIH)を使って計算し、値を各タンパク質の単位面積当たりに正規化した。各時点に対するウェスタンブロット分析に使用した5つのマーカーを集計して、疑似、Nx、およびNKA処置群に対し、平均強度を決定した。プロットは、1、12、および24週の時点から生成される平滑化ラインフィットと共にXY散布図を示す。各群の平均強度を時間に対してプロットし、幹細胞マーカータンパク質発現の宿主組織応答における傾向を強調した。各検体に対し同じ分散を仮定して、標準的な両側スチューデントt−検定を使って統計的分析を行った。95%の信頼区間(p値<0.05)を使って、統計的有意性を求めた(処置NKA群n=2;対照(疑似)群n=1;Nx(対照)群n=1)。疑似対照動物では、RRIは、90.47から処理後24週の81.89まで、わずかな減少のみ示す。対照的に、5/6Nx対照由来の腎臓は、基本的に逆の応答を示し、処置後1週の82.26から動物の死亡時点である処置後18週の140.56までRRIが増加する。NKA処置動物では、RRIは、処置後1週の62.89から処置後12週の135.61に急速に増加し、処置後24週までに112.61まで低下する。
【0222】
NKA処置は、幹細胞マーカーCD24、CD133、UTF−1、SOX−2およびNODALの宿主組織中の転写物およびタンパク質の両方のレベルの上方制御に関連していることが観察された。上方制御は、処置後1週までに検出され、処置後12週までにピークに達した。宿主組織中の幹細胞および前駆細胞マーカーの全体活性化は、未処置腎摘出対照に比べて、生存の増加(1)および臨床関連血清バイオマーカーの改善と関連していた。
【0223】
NKA処置に応答した常在性幹細胞および前駆細胞集団の動員は、損傷腎臓組織および器官構造の再生による5/6NX動物の腎臓機能の回復に寄与する可能性がある。従って、この調査で使用した分子アッセイは、CKDに対する生体組織工学および再生医学療法を評価するための直接的で、迅速かつ予測的な再生結果アッセイを提供する可能性がある。
【0224】
実施例12−マイクロRNA含有1次腎臓細胞由来エキソソーム
我々は、再生結果を得る機序を解明するためのインビボ調査の設計に繋げるために、特定のエキソソーム由来miRNAと、標的細胞における機能的に関連した結果とをインビトロで関連付けるよう努めてきた。
【0225】
方法:馴化培地の再生治癒応答に関連したシグナル伝達経路に与える効果について、商業的に利用可能は細胞:HK−2(ヒト近位尿細管細胞株)、1次ヒト腎臓糸球体間質細胞(HRMC)、およびヒト臍帯内皮細胞(HUVEC)を使って調査を行った。ヒトおよびラット1次腎臓細胞培養物(UNFX)由来馴化培地中のエキソソーム由来RNA含有物を、既知miRNAを検出するように設計したPCRベースアレイにより選別した。低酸素は、エキソソーム排出(shedding)に影響すると報告されている;そのため、培養群を、培地採集の前の24時間の間、低酸素(2%O
2)に暴露した。エキソソームをFACSにより細胞性壊死組織片と分離した。
【0226】
図12は、UNFX馴化培地の調製と分析に対する模式図を示す。
【0227】
結果:UNFX馴化培地は、再生治癒応答に関連したシグナル伝達経路に影響することが明らかになった;これらの応答は、非馴化培地を使った対照では観察されなかった。特に、NFκB(免疫応答)および上皮間葉転換(線維化応答)がHK−2細胞で低下し、PAI−1(線維化応答)がHRMC細胞で低下し、さらに、血管新生がHUVECで促進された。UNFX馴化培地由来エキソソーム含有物のPCRアレイ選別による予備的データは、UNFXがUNFX馴化培地に対する観察された応答と一致するmiRNA配列を含むエキソソームを産生することを示している。
【0228】
図13A〜Cは、UNFX培養物由来馴化培地が、再生結果に関連する可能性のある複数の細胞プロセスにインビトロで影響することを示す。NFkBシグナル伝達は、腎疾患のプロセスの主要炎症性メディエーターとして提案されており(Rangan et al.、2009.Front Biosci 12:3496−3522;Sanz et al.、2010.J Am Soc Nephrol 21:1254−1262)、また、腫瘍壊死因子(TNF)により活性化されうる。HK−2細胞は、非馴化培地(左)またはUNFX馴化培地(右)で、37℃、1時間プレインキュベートされ、その後、10ng/mlのTNFαのある場合とない場合で活性化が行われた。
【0229】
図13Aは、UNFX馴化培地がNF−kBのTNF−α媒介活性化を弱めることを示す。NFkB活性化は、RelA/p65免疫蛍光染色(緑)により測定した。Hoechst対比染色核(青)およびファロイジン染色繊維状アクチン(赤)がRelA/p65核局在化(白色矢印)の評価を容易にする。
【0230】
図13Bは、UNFX馴化培地が、HUVEC細胞培養物の血管新生促進作用を増やすことを示す。HUVEC細胞(ウエル当たり100,000個)を、0.5%BSA添加培地200中に入れた重合マトリゲルの上に重ねて入れた。非馴化培地(左)またはUNFX馴化培地(右)を添加し、細胞組織化応答を、画像キャプチャを使って3〜6時間の間、目視によりモニターした。細胞遊走(白色矢頭)、整列化(黒色矢頭)、尿細管形成(赤色矢頭)、および閉じ多角形の形成(アスタリスク)の細胞組織化に対し印を付けた。UNFX馴化培地は、非馴化培地に比べて、より多くの尿細管および閉じ多角形を誘導し、培地中に血管新生促進因子が存在することを示唆している。
【0231】
図13Cは、UNFX馴化培地が、上皮細胞中の線維形成経路を弱めることを示す。HK−2細胞は、インビトロで形質転換増殖因子(TGF)に暴露した場合、上皮の特性を失い、間葉表現型を獲得し、腎臓の線維形成の進行に関連する上皮間葉転換(EMT)を再現する(Zeisberg et al.2003Nat Med9:964−968)。HK−2細胞を、非馴化培地(CTRL)、10ng/mlTGFβ1(TGFβ1)含有非馴化培地、または10ng/mlTGFβ1(TGFβ1+CM)含有UNFX馴化培地中で72時間培養した。細胞のCDH1(上皮のマーカー)、CNN1(間葉マーカー)およびMYH11(間葉マーカー)を定量RT−PCRによりアッセイした。馴化培地は、CDH1、CNN1、およびMYH11遺伝子発現により測定して、TGFβ1誘導EMTの程度を低減させる。エラーバーは、3回の反復実験の平均標準誤差(SEM)を表す。
【0232】
図13Dは、そのまま放置すれば、細胞外マトリックスタンパク質の進行性蓄積につながる可能性がある、TGFβ1およびプラスミノーゲン活性化因子阻害剤−1(PAI−1)により形成される陽性のフィードバックループを示す(Seo et al.、2009.Am J Nephro l30:481−490)。
【0233】
図14A〜Bは、糸球体間質細胞における線維形成経路の減弱を示す。対照(CTRL)または5ng/mlTGFβ1の添加の有る場合(+)と無い場合(−)のUNFX馴化培地(UNFX CM)中で、HRMCを24時間培養した。PAI−1のウェスタンブロット分析は、UNFX CMが、TGFβ1誘導PAI−1タンパク質レベルの増加を弱めることを示す。β−アクチンは、ローディング・コントロールとして示される。ヒト腎臓糸球体間質細胞(HRMC)は、5ng/ml TGFb1の存在下(+)、増加したレベルのPAI−1を発現する。ヒト生理活性腎臓細胞由来馴化培地(CM)との共培養は、TGFb1誘導されたPAI−1タンパク質発現を低下させる。mRNAレベルでのPAI−1発現のCMによる変化は生じない(データは示さず)。
【0234】
図14Bは、ラット生理活性腎臓細胞由来CMには、培養HRMC誘導(+)および非誘導(−)に与える、TGFb1と類似の効果があったことを示す。遠心分離後採集したCM上清(枯渇ラットCM)は、PAI−1発現の低下に関し有効性が低く、PAI−1タンパク質の観察された減弱化の原因のCM成分は、ラット生理活性腎臓細胞による小胞分泌に関連している可能性があることを示唆している。
【0235】
図15は、UNFX由来馴化培地が、分泌小胞を含むことを示す。
図15Aは、分泌小胞(エキソソームを含む)を示し、これは、細胞質由来内部成分(緑)を包含する二相脂質構造(赤)である。ホスファチジルセリン(青三角形)は、小胞生合成中に細胞外の空隙中に暴露される膜の成分である(Thery et al.、2010.Nat Rev Immunol 9:581−593)。
【0236】
PKH26およびCFSEは、それぞれ、分泌小胞の脂質膜および細胞質を標識し(Aliotta et al.、2010.Exp Hematol 38:233−245)、一方、アネキシンVはホスファチジルセリンに結合する。
【0237】
図15B〜Cは、FACS選別を示す。UNFX馴化培地をPKH26、CFSE、およびAPCコンジュゲートアネキシンVで標識し、蛍光支援細胞選別(FACS)により選別した。分泌小胞を表すトリプルポジティブ粒子を集め、トリゾール試薬を使って全体RNAを抽出した。市販の利用可能なRT−PCRベースアレイを使って、既知の配列に対しマイクロRNA含量物を選別した。
【0238】
表12.1は、治療結果が予想されるマイクロRNAを含む分泌小胞を示す。UNFX細胞は、既知のmiRNA配列を含むエキソソームを放出する。UNFX馴化培地は、機能的に関連するヒト細胞株の再生応答に影響を与える。検出miRNAと観察された再生応答の間の原因と効果の関係は、鋭意調査中であるが、現在までに得られた結果から、UNFX細胞が、miRNAの標的細胞と組織へのエキソソーム媒介輸送による治療に関連するパラクリン効果をもたらす可能性があることが示唆される。
【0239】
このデータは、生理活性腎臓細胞培養由来分泌小胞が、TGFb1/PAI−1フィードバックループにより誘導されるPAI−1を弱める成分を含むという結論を支持する。
【0240】
マイクロアレイおよびRT−PCR分析:Lewisラット由来未分画(UNFX)生理活性腎臓細胞を、基本培地(DMEMおよびKSFMの50:50混合物;血清または補充薬品なし)中で、低酸素条件(2%O2)下、24時間培養した。馴化培地を集め、100,000xg、4℃、2時間の条件で超遠心分離を行い、分泌小胞(例えば、微小胞、エキソソーム)をペレット化した。得られたペレットから全体RNAを抽出し、既知マイクロRNA種に対し、リアルタイムRT−PCRによりアッセイした(ラットマイクロRNAゲノムV2.0PCRアレイ;Qiagen#MAR−100A)。下記のmiRNAを検出可能である。
【0241】
実施例13−生理活性腎臓細胞由来パラクリン因子
この調査では、我々は、インビトロ細胞ベースアッセイを採用し、生理活性腎臓細胞がプラスミノーゲン活性化因子阻害剤−1(PAI−1)等のメディエーターにより線維形成を調節できると思われるパラクリン機序を調査した。
【0242】
材料と方法:馴化培地を、生理活性腎臓細胞(Aboushwareb et al.、World J Urol 26、295、2008;Presnell et al.2010、前出)のラットおよびヒトの血清と補充物質不含条件の培養物から集め、インビトロアッセイに利用した。インビトロアッセイでは、市販品として利用可能なラットおよびヒト由来糸球体間質細胞を宿主応答組織の代用試薬として使った。理由は、糸球体間質細胞は、傷害または病気の腎臓中のPAI−1産生のソースであるためである(Rerolle et al.、Kidney Int 58、1841、2000.)。PAI−1遺伝子およびタンパク質発現を、それぞれ、定量RT−PCRおよびウェスタンブロットでアッセイした。細胞により培地中に排出された小胞粒子(例えば、エキソソーム)を高速遠心分離により集め(Wang et al.、Nuc Acids Res 2010、1−12doi:10.1093/nar/gkq601、July 7、2010)、トリゾール試薬(Invitrogen)を使って全RNAをペレットから抽出した。小胞のRNA含有物を、既知のマイクロRNA配列のPCRベースアレイ(Qiagen)を使って選別した。
【0243】
結果:生理活性腎臓細胞培養由来の馴化培地は、TGFβ1誘導による糸球体間質細胞中のPAI−1定常状態タンパク質レベルの増加を弱めたが、定常状態mRNAレベルに影響を与えなかった。これは、マイクロRNAが標的遺伝子を調節するという機序と一致する観察であった。マイクロRNAが細胞外の小胞輸送により細胞間を移動できるという仮説(Wang et al.、前出、2010)に基づき、我々は、馴化培地のマイクロRNA含有物を分析し、PAI−1阻害剤と推定されるマイクロRNA30b−5p(miR−30b−5p)の存在を確認した。
【0244】
ここに提示のデータは、生理活性腎臓細胞が、エキソソーム経由miR−30b−5pの標的糸球体間質細胞への細胞間移動により線維形成を直接調整できることを示唆している。糸球体間質細胞によるmiR−30b−5p取込の結果として、定常状態PAI−1タンパク質レベルでのTGFβ1誘導増加を弱め、腎臓組織において、最終的に糸球体の空隙内の細胞外マトリックスの析出を減らす応答を弱める。現在、PAI−1が実際にmiR−30b−5pを直接に標的にすることを確認するための調査が進行中である。
【0245】
図14A〜Bは、対照(CTRL)またはTGFβ1の培地への添加のある場合(+)と無い場合(−)の生理活性腎臓細胞馴化培地(CM)で24時間培養したヒト糸球体間質細胞中のPAI−1とα−アクチン(対照)タンパク質発現のウェスタンブロットを示す。CTRL培養では、TGFβ1がPAI−1タンパク質発現を増加させた。CM培養では、TGFβ1−誘導応答が減弱した。
【0246】
分泌小胞について、PAI−1の推定抑制因子であるマイクロRNAを分析した。ヒトおよびラット生理活性腎臓細胞CM由来分泌小胞を高速遠心分離により集め、既知の配列のPCRベースアレイを使って、マイクロRNA含有物をアッセイした。miR−449a、PAI−1(6)の推定制御因子、を特定した。HRMCは、一時的にmiR−449aを形質移入したか、または形質移入しなかった(CTRL)。形質移入24時間後に、細胞を、さらに24時間、5ng/ml TGFb1(+)に暴露するか、または暴露しなかった(−)。
【0247】
図16Aは、総タンパク質を調製し、PAI−1とβ−アクチンをアッセイしたウェスタンブロットを示す。miR−449aは、定常状態PAI−1タンパク質レベルを減らし(レーン1〜レーン3を比較)、PAI−1タンパク質の誘導レベルもまた、miR−449a形質移入培養物で低下した(レーン2〜レーン4を比較)。このデータは、分泌小胞がmiR−449aを含み、miR−449aの糸球体間質細胞中への取込は、PAI−1発現を低下させるという結論を支持する。
【0248】
図16Bは、マイクロRNAであるmiR−30b−5pを示し、これも、PCRベースアレイで特定され、予測アルゴリズム(http://mirbase.org−miRBaseは、英国マンチェスター大学・生命工学部(Faculty of Life Sciences)で運営、維持されている)に基づいたPAI−1の推定制御因子である。
【0249】
糸球体中のPAI−1タンパク質レベルを、5/6腎摘出術により生理活性腎臓細胞で誘導されたCKDの処置後、インビボで調査した。
【0250】
図17A〜Cは、片側腎摘出術(A)、5/6腎摘出術(B)、または5/6腎摘出術と生理活性腎臓細胞の腎臓内送達(C)を受けたLewisラット腎臓のPAI−1の代表的免疫組織化学像(A〜C)を示す。処置(C)の結果、5/6腎摘出術式(B)の結果としての糸球体(矢頭)中のPAI−1の蓄積が減少した。
【0251】
別の調査では、死体解剖時に採取した腎臓組織に対しqRT−PCRを行い、相対的遺伝子発現値を調査日数に対しプロットした。
【0252】
図17Dは、5/6腎摘出ラット(赤正方形)が、生理活性腎臓細胞(青菱形)および偽手術された対照(緑三角形)で処置されたものに比べ、より強力なPAI−1の発現を立証したことを示す。
【0253】
図17Eは、処置後3ヶ月および6ヶ月で採取された腎臓検体の代表的ウェスタンブロット分析を示す。5/6腎摘出ラット(Nx)の処置組織(Nx+Tx)は、PAI−1とフィブロネクチン(FN)タンパク質の蓄積が減少した(Kelley et al.2010、前出)。
【0254】
このデータは、5/6腎摘出術により誘導されたCKDの生理活性腎臓細胞による処置後、インビボで糸球体中のPAI−1タンパク質レベルが減少するという結論を支持する。
【0255】
まとめると、実施例12〜13は、生理活性腎臓細胞の腎臓内送達が腎機能を改善する1つの機序は、常在性腎臓細胞の線維化経路を調節する成分の細胞間移動を経由する可能性があるという仮説を支持する。
【0256】
実施例14−生理活性腎臓細胞由来分泌因子がNFκBシグナル伝達経路を弱める
この調査では、我々は、5/6腎摘出術モデルの疾患進行のNKA媒介減弱化におけるNFκB経路の役割を調査し、また、NFκB活性化の直接調節による再生結果に対し寄与できる生理活性腎臓細胞の特性を特定することを検討した。
図17Gは、TNFαによるNFkB経路の標準的活性化を示す。
【0257】
材料と方法:残遺物腎臓を、PBS中のB2+B4(NKAプロトタイプ)での処置の6週前に2段5/6腎摘出術式を行ったLewisラットから採取した。NKA処置(TX)または未処置(UNTX)組織に対し、免疫組織化学、RT−PCR、ウェスタンブロット分析、および電気泳動移動度シフトアッセイ(EMSA)によりNFκB活性化をアッセイした。血清および補助剤不含培地中で成長させたエクスビボNKA細胞培養物から集めた馴化培地(CM)をインビトロ機能性アッセイ用に使った。ヒトの近位尿細管細胞株(HK−2)を、分子および免疫蛍光法ベースアッセイ読み取りのための標的細胞型として使用した。細胞により培地中に排出された小胞粒子(エキソソーム)を高速遠心分離により集めた。エキソソームから単離された全RNAを既知マイクロRNA配列のPCRベースアレイ(Qiagen)を使って選別した。
【0258】
結果:5/6腎摘出ラット由来残遺物腎臓中にNFκBサブユニット、RelA/p65の核局在化が観察され、UNTX組織中の炎症経路の活性化を示唆する。RT−PCRによるTX組織との予備的比較により、RelA遺伝子発現の現象が示され、NKA処置がRelA/p65発現の抑制を介してNFκB経路活性化に影響する可能性があることが示唆された。この仮説は、CM腫瘍壊死因子α(TNFα)に対する応答に比べ、暴露HK−2細胞中のRelA/p65の核局在化の低減(
図17F)からも明らかなように、CMがTNFα誘導NFκB活性化をインビトロで弱める観察により支持される。進行中のNKAエキソソームマイクロRNAのRT−PCR分析では、NFκB経路に影響することが既知の配列が存在するか否かを調査している。
【0259】
図17Fは、免疫蛍光アッセイで、NKACMに対する2時間暴露が、TNFαで前処置された対照培養物中に比べ、HK−2中のNFκBp65(緑)の核局在化を減らすことを示す。InHK−2では、NFkBp65(緑)は、TNFα(対照培地)への暴露30分後、核に局在化する。しかし、HK−2細胞のNKA馴化培地によるTNFα添加の前の2時間の前処置が、NFkBp65核局在化応答を弱めた。核をDAPI(青)で染色し、繊維状アクチンをAlexa594−ファロイジン(赤)で染色して、NFκB核局在化の強さの定性的評価を支援する(組み合わせパネル中最下段のTNFα処置対照細胞の少し薄くなったファロイジン境界に注意されたい)。対比染色は、組み合わせ画像中のNFkB局在化に対する基準を与える。
【0260】
Lewisラットの腎臓組織中のNFkBp65サブユニットの免疫組織化学は、5/6腎摘出術(パネルB)により惹起された進行性CKDの動物では、対照動物(パネルA)の片側腎摘出術により惹起された非進行性腎不全に比べて、より強力なNFkBp65サブユニットの核局在化が、特に尿細管上皮細胞(黒の矢頭)中で起こることを示す。腎摘出術後6週で採取した組織。倍率200X。
【0261】
パネルC:5/6腎摘出術を受けたLewisラット腎臓組織の細胞質(「C」)および核(「N」)タンパク質抽出物中のNFkBp65のウェスタンブロット分析。チューブリンレベル(ローディング・コントロール)が相対的に一定である1週と13週の比較では、核のNFkBp65は、時間経過と共に増加し、免疫組織化学結果と一致する。
【0262】
パネルD:核抽出物の電気泳動移動度シフトアッセイ(EMSA)により、5/6腎摘出術後に核に局在化するNFkBは、DNA結合のために活性化されることが確認される。レーンは、各時点で2つの動物から調製された核抽出物を表す。
【0263】
NFkB経路は、慢性腎疾患の5/6腎摘出術モデルにおいて徐々に活性化される。Lewisラットの腎臓組織中のNFkBp65サブユニットの免疫組織化学分析を行った。
【0264】
図18A〜Dは、5/6腎摘出術(パネルB)により惹起された進行性CKDの動物では、対照動物(パネルA)の片側腎摘出術により惹起された非進行性腎不全に比べ、NFkBp65サブユニットのより強い核局在化が、特に尿細管上皮細胞(黒色矢頭)中で、発生することを示す。腎摘出術後6週に採取した組織。倍率200X。
【0265】
図18Cは、5/6腎摘出術を受けたLewisラット腎臓組織の細胞質(「C」)および核(「N」)タンパク質抽出物中のNFkBp65のウェスタンブロット分析を示す。チューブリンレベル(ローディング・コントロール)が相対的に一定である1週と13週を比較すると、核のNFkBp65は、時間経過につれ増加し、免疫組織化学結果と一致する。
【0266】
図18Dは、核抽出物の電気泳動移動度シフトアッセイ(EMSA)を示し、5/6腎摘出術後に核に局在化するNFkBは、DNA結合のために活性化されることが確認される。レーンは、各時点で2つの動物から調製された核抽出物を表す。1mgの核タンパク質を5ngのNFkBDNA結合部位と共にインキュベートし、6%DNA遅延ゲルで電気泳動を行い、続けて臭化エチジウムで染色した。
【0267】
NKA細胞の腎臓内送達がNFkB核局在化を減らす:複数の確定腎臓細胞亜集団を単離し、CKDの5/6腎摘出術モデルの腎機能の改善におけるインビボで生理活性をアッセイした(Presnell et al.2010、前出)。NKA細胞は、生理活性を示したが、一方、他の亜集団は生理活性を示さなかった(Kelley et al.2010前出)。
【0268】
図18Eは、NKA(A)または非生理活性腎臓細胞(B)の腎臓内注射を受けた確定CKDのLewisラットを示す。確定CKDのLewisラットは、NKA(A)または非生理活性腎臓細胞(B)の腎臓内注射を受けた。処置後6ヶ月で、組織を採取し、免疫組織化学によりNFkBp65サブユニットをアッセイした。NKA処置動物由来組織は、非生理活性腎臓細胞で処理した動物由来組織に比べ、より少ないNFkBp65の核局在化を、特に近位尿細管中で示し、NKA処置がインビボでNFkB経路活性の低減に寄与したことを示唆する。
【0269】
ヒトおよびラットNKA馴化培地から高速遠心分離で単離された分泌小胞の既知配列のPCRベースアレイを使ったマイクロRNA含有物の分析により、NFkBを介して免疫応答に影響を与えることができるいくつかのマイクロRNA種を、文献の報告(Marquez RT et al.(2010)Am J Physiol Gastrointest Liver Physiol 298:G535;Taganov KD et al.(2006)Proc Natl Acad Sci USA 103:12481)、または予測アルゴリズム(http://mirbase.org−miRBaseは、英国マンチェスター大学・生命工学部(Faculty of Life Sciences)で運営、維持されている)に基づいて特定した。
【0270】
インビボおよびインビトロ知見は、どのようにして、生理活性腎臓細胞(NKA)が、免疫応答経路、例えば、NFkB活性化により影響を受けた経路を調節することにより慢性疾患腎臓の腎機能を改善できるかに関する洞察を与える。活性化NFkB(p65核局在化、特に近位尿細管細胞中で)は、5/6腎摘出術げっ歯類モデルの慢性腎疾患の形成に関連し、NKA処置により弱められる。近位尿細管細胞(HK−2)のNKA馴化培地に対するインビトロ応答は、NKA処置に応答したNFkB核局在化のインビボ減弱化を模倣する。NFkB活性化に対する細胞間抑制の推定メディエーター(マイクロRNA)がNKA馴化培地中で特定された。まとめると、これらのデータは、生理活性腎臓細胞の腎臓内送達が腎機能を改善する1つの機序は、常在性腎臓細胞の免疫応答を調節する成分、例えば、RNAの細胞間移動を経由している可能性があるという仮説を支持する。
【0271】
実施例15−NKA構築物の機能評価
ゼラチンまたはHAベースヒドロゲル上に播種した腎臓細胞集団は生存可能であり、トランスクリプトーム、プロテオミクス、セクレトームおよび共焦点免疫蛍光法アッセイにより測定して、3日間のインビトロ成熟の間、尿細管上皮機能性表現型を維持した。NKA構築物が疾患状態に影響する可能性のある機序を調べるため、CKD進行に付随する尿細管間質性線維形成に関係するTGF−βシグナル伝達経路に対する馴化培地の効果を評価した。馴化培地は、ヒト近位尿細管細胞株(HK2)中でのインビトロTGF−β−誘導上皮間葉転換(EMT)を弱めることが観察された。
【0272】
材料と方法
生体材料:生体材料を、ビーズ(同種構成の球形状)として、または粒子(ギザギザの縁のある異種起源集団)として、調製した。Percell Biolytica(Åstorp、スエーデン)により製造されたゼラチンビーズ(Cultispher SおよびCultispher GL)をそれぞれ、Sigma−Aldrich(St.Louis、MO)およびFisher Scientific(Pittsburgh、PA)から購入した。架橋HAおよびHA/ゼラチン(Glycosan BioSystems、Salt Lake City、UTからのHyStem(登録商標)およびExtracel(登録商標))粒子を、メーカーのインストラクションに従って作成した凍結乾燥スポンジから形成した。ゼラチン(Sigma)粒子を架橋、凍結乾燥スポンジから形成した。
【0273】
PCLをSigma−Aldrich(St.Louis、MO)から購入した。PLGA50:50をDurect Corp.(Pelham、AL)から購入した。PCLおよびPLGAビーズを修飾二重エマルジョン(W/O/W)溶媒抽出法を使って調製した。PLGA粒子を、溶媒キャスト・孔物質溶出(solvent casting porogen leaching)技術を使って調製した。全ビーズおよび粒子は、ドライ状態で測定した場合、65〜355μmの間であった。
【0274】
細胞の単離、調製および培養:研究目的のためのヒト組織の使用を管理する全てのNIHガイドラインを順守して、死体ヒト腎臓をNational Disease Research Institute(NDRI)から入手した。イヌの腎臓を契約研究機関(Integra)から入手した。ラット腎臓(21日齢Lewis)をCharles River Labs(MI)から入手した。 1次腎臓細胞集団(UNFX)および全ラット、イヌおよびヒト腎臓由来の確定亜集団(B2)の調製については、以前記載した(Aboushwareb et al.World J Urol 26(4):295−300;2008;Kelley et al.前出、2010;Presnell et al.WO/2010/056328)。簡単に述べると、腎臓組織を 4.0ユニット/mLディスパーゼ(Stem Cell Technologies、Inc.、Vancouver BC、Canada)および300ユニット/mlコラゲナーゼIV(Worthington Biochemical、Lakewood NJ)を含む緩衝液中で酵素により解離させ、次に、赤血球および壊死組織片を15%イオジキサノール(Optiprep(登録商標)、Axis Shield、Norton、MA)を使って遠心分離により取り除き、UNFXを得た。UNFX細胞を組織培養物処理ポリスチレンプレート(NUNC、Rochester NY)上に播種し、50:50培地、高グルコースDMEM:5%FBS、2.5μgEGF、25mgBPE、1X ITS(インスリン/トランスフェリン/亜セレン酸ナトリウム培地補充剤)、および抗生物質/抗真菌剤(全てInvitrogen、Carlsbad CAから入手)含有ケラチノサイト無血清培地(KSFM)の1:1混合物中で培養した。B2細胞を、UNFX培養物から遠心分離により、げっ歯類(16%、13%、11%、および7%)、イヌ(16%、11%、10%、および7%)、またはヒト(16%、11%、9%、および7%)用に特別に層別化した4段イオジキサノール(OptiPrep;非補充KSFM中60%w/v)密度勾配を使って単離した(Presnell et al.国際公開第2010/056328号;Kelley et al.、前出、2010)。勾
配を800xgで20分間、室温で遠心分離した(ブレーキ無し)。対象のバンドをピペットで取り出し、無菌の燐酸塩緩衝食塩水(PBS)で2回洗浄した。
【0275】
細胞/生体材料複合体(NKA構築物):生体材料上での細胞機能のインビトロ分析のために、均一層の生体材料(上述のように調製された)を、6ウエル低接着性プレートの1つのウエル上に重ねた(Costar #3471、Corning)。ヒトUNFXまたはB2細胞(ウエル当たり2.5x10
5)を生体材料上に直接播種した。イヌの細胞の生体材料への付着性を調べるために、2.5x10
6のUNFX細胞を、非接着性24ウエルプレート(Costar #3473、Corning)中の50μlの圧縮容積(packed volume)の生体材料に播種した。ロッキングプラットフォーム上で4時間経過後、イヌのNKA構築物を37℃の5%CO
2インキュベーター中で一晩成熟させた。翌日、生死染色アッセイキット(Invitrogen)を使い、メーカーのインストラクションに従って生死染色を行った。ラットNKA構築物を60ccシリンジ中で、ローラーボトル回転装置を使って1RPMの回転速度で調製した。
【0276】
下記のトランスクリプトーム、セクレトーム、およびプロテオミクス分析のために、NKA構築物を3日間成熟させた。その後、細胞をトランスクリプトームまたはプロテオミクス分析用に採取し、馴化培地をセクレトームプロファイリング用に集めた。
【0277】
尿細管細胞関連酵素活性の機能分析:24ウエルプレートに入れたイヌのNKA構築物(10μlの緩い圧縮容積)を前に報告の方法(Tate et al.Methods Enzymo l113:400−419;1985)から改良したロイシンアミノペプチダーゼ(LAP)活性用のアッセイを使って評価した。簡単に述べると、0.5mlのPBS中の0.3mML−ロイシンp−ニトロアニリド(Sigma)を室温で1時間かけてNKA構築物に添加する。ウエルを二通りに検体採取し、405nmの吸光度をLAP活性の測定値として記録した。LLC−PK1細胞ライセート(アメリカ合衆国培養細胞系統保存機関(ATCC))を陽性対照とした。
【0278】
トランスクリプトームプロファイリング:RNeasy Plus Miniキット(Qiagen、CA)を使ってポリアデニル化RNAを抽出した。濃度と健全性をUV分光光度法により測定した。SuperScript VILO cDNA合成キット(Invitrogen)を使って、1.4μgの単離RNAからcDNAを生成した。市販品で利用可能なプライマーおよびプローブ(表15.1)、ならびに、ABI−Prism7300 Real Time PCR System(Applied Biosystems、CA)を使って、標的転写物の発現レベルを定量リアルタイムポリメラーゼ連鎖反応(qRT−PCR)により調査した。TaqMan Gene Expression Master Mix(ABI、Cat #4369016)および内在性対照としての役目をするTATA ボックス結合タンパク質遺伝子(TBP)を使って、増幅を行った。各反応は、10μl Master Mix(2X)、1μl プライマーおよびプローブ(20X)ならびに、9μl cDNAから構成される。試料を3回反応させた。
【0279】
セクレトームプロファイリング:ヒトNKA構築物由来馴化培地を集め、−80℃で凍結した。検体のバイオマーカー濃度定量化による評価を行った。馴化培地中の所与のバイオマーカー濃度の結果を対照培養物(生体材料の無い場合の2D培養物)由来の馴化培地中の同じバイオマーカーの濃度に対して正規化し、単位のない比率として表した。
【0280】
プロテオミクスプロファイリング:3つの独立した複写物を細胞/生体材料複合体からタンパク質を抽出し、2Dゲル電気泳動法による分析用としてプールした。全試薬は、Invitrogenから入手した。200μlのZOOM 2Dタンパク質溶解剤#1(Cat# ZS10001)に再懸濁した30μgのタンパク質、ZOOM両性電解質担体pH4〜7(Cat# ZM0022)、および2M DTT(Cat# 15508−013)をpH4〜7 ZOOM IEFストリップ(Cat# ZM0012)に加えて等電点電気泳動(IEF)を行った。500Vで18時間の電気泳動後、SDS−PAGE分離のために、IEFストリップをNuPAGE Novex 4〜12% Bis−Tris ZOOM IPGウエルゲル(Cat# NP0330BOX)にロードし、200Vで45分間、MES緩衝液(Cat#NP0002)中で電気泳動を行った。タンパク質を、SYPRO Rubyタンパク質ゲル染色(Cat# S−12000)を使い、メーカーのインストラクションに従って可視化した。
【0281】
共焦点顕微鏡観察:ヒトもしくはラットUNFXまたはB2細胞から調製したNKA構築物を3日間成熟させ、その後、2%パラホルムアルデヒドで30分間固定した。固定されたNKA構築物をブロッキングし、D−PBS(Invitrogen)+0.2%トリトンX−100(Sigma)中の10%ヤギ血清(Invitrogen)を用いて室温(RT)で1時間のインキュベーションにより透過処理した。免疫蛍光法に対しては、NKA構築物を、室温下、5μg/mlの最終濃度で一晩、一次抗体(表15.2)で標識した。標識NKA構築物を2%ヤギ血清/D−PBS+0/2%トリトンX−100で2回洗浄し、5μg/mlの濃度のヤギまたはウサギTRITCコンジュゲート抗マウスIgG2A(Invitrogen)二次抗体と共にインキュベートした。DBA(ドリコス豆凝集素)によるに二重標識に対しては、NKA構築物候補を、2%ヤギ血清/D−PBS+0.2%トリトンX−100中で2mg/mlの濃度に室温で2時間希釈したFITCコンジュゲートDBA(Vector Labs)と共にさらにインキュベートした。
【0282】
検体をD−PBSで2回洗浄し、LSM Imageソフトウェア(Zeiss)またはPathway 855共焦点顕微鏡(BD Biosciences)を利用したZeiss LSM510レーザー走査共焦点システム(Cellular Imaging Core、Wake Forest Baptist Medical Center)、を使って、光学的に薄片を作った。
【0283】
HK2細胞中のTGF−β媒介EMTの分析:フィブロネクチンまたはコラーゲン(IV)コート培養皿(BD Biosciences)に入れた50:50培地中でHK2細胞(ATCC)を培養した。EMTアッセイに対しては、50:50培地または2次元(2D)ヒトUNFX培養物から、もしくは培地採取の前2日間熟成したヒトUNFXで作ったNKA構築物から集めた馴化培地と共に、HK2細胞を24ウエルコラーゲン(IV)コートプレートに70〜80%の培養密度で播種した。EMTアッセイ用細胞からのRNAの単離の前に、10ng/mlを3日間培地に加えることによりTGF−β誘導を惹起した。3日間のインキュベーション期間の終わりに、E−カドヘリンの相対的発現(上皮マーカー)およびカルポニン(間葉マーカー)をqRT−PCRで分析することにより、EMTをモニターした。採取したHK2細胞から、TaqMan qRT−PCR分析用RNAを上述のように調製した。各検体の等分散を仮定して、標準的両側スチューデントt検定を使って、統計的分析を行った。95%(p値<0.05)および99%(p値<0.01)の信頼区間を使用して統計的有意性を求めた。
【0284】
無細胞生体材料およびNKA構築物のインビボ移植:Lewisラット(6〜8週齢)をCharles River(Kalamazoo、MI)から購入した。全実験工程をCarolinas Medical CenterのPHSとIACUCガイドラインに従って、実施した。イソフルラン麻酔下で、雌Lewisラット(約2〜3月齢)に正中切開を行い、左腎臓を露出させた。35μlの圧縮生体材料(無細胞の生体材料またはNKA構築物)を微量注入により腎実質中に導入した。2つの注射経路を使用した:(i)各極から皮質の方向へ(皮質注射と呼ぶ)、または(ii)腎臓正中から骨盤の方向へ(髄質注射と呼ぶ)。注射後1、4、または8週でラットを屠殺した。早期死は発生しなかった。無細胞移植調査の調査計画を表15.3に示す(ND=実施せず(not done))。
【0285】
腎臓組織:代表的腎臓検体を集め、10%緩衝液ホルマリン中に24時間置いた。徐増濃度のエタノール中で切片を脱水し、パラフィン中に包埋した。切片(5μm)を切りだし、帯電スライド上に置き、標準的染色プロトコル(Prophet et al.、Armed Forces Institute of Pathology:組織工学における実験室的手法(Laboratory methods in histotechnology).Washington、DC:American Registry of Pathology;1992)に従って、ヘマトキシリンとエオシン(H&E)染色、Massonのトリクローム染色および過ヨウ素酸シッフ(PAS)染色処理を行った。Digital Sight(DS−U1)カメラを備えたNikon Eclipse 50i顕微鏡を使ってx40、x100およびx400の全倍率のディジタルマイクロ写真をキャプチャした。腎臓形態学変化を通常使われる(Shackelford et al.Toxicol Pathol 30(1):93−96;2002)重症度グレード体系(グレード1、2、3、4)により評価し、これに対し、記述用の用語(最小、軽度、中等度、重度/重篤)を適用して、観察された糸球体硬化症、尿細管萎縮症および拡張症、尿細管円柱、および間質性線維症、ならびに炎症の程度を記載した。
【0286】
結果
生体材料の腎実質中への注射に対する哺乳類腎臓組織の応答:健康なラット腎臓への直接注射により、生体材料の腎臓細胞/生体材料複合体としての使用の可能性を分析した(表15.3)。組織応答を、注射後1および4週目の病理組織学パラメーター(炎症、線維形成、壊死、石灰化/鉱質化)および生体適合性パラメーター(生体材料分解、新血管新生、および新組織形成)の程度を測定することにより評価した。
【0287】
図19A〜Bは、移植後1週目の生体材料のインビボ評価を示す。トリクロームX10:生体材料凝集体を示す腎臓断面の低倍率像。トリクロームX40:生体材料凝集体の拡大像。H&EX400:細胞/組織浸潤の程度を評価するための生体材料凝集体高倍率像。材料と方法のところで記載するように、各腎臓の2つの部位で注射した。移植後1週目では、各試験生体材料により誘導された宿主組織応答は、通常、類似であったが、ゼラチンヒドロゲルは、より少ない程度の病理組織学的応答、およびより多い生体適合性応答を誘発するように思われた。
【0288】
図19Cは、移植後4週目の生体材料のインビボ評価を示す。移植後4週目で、HAまたはゼラチン粒子を注射した組織の病理組織学パラメーターの重症度は、移植後1週目に比べて、定性的に減少した。ゼラチン粒子は、ほぼ完全に再吸収され、HA粒子を受けた組織の場合より少ない巨細胞反応が観察された。大抵のケースで、生体材料が髄質注射経路で注射された場合(例えば、髄質/骨盤中へより深く)、水腎症の原因となる閉塞、より高い重症度の炎症反応、および梗塞の原因となる腎臓細動脈と毛細管微小塞栓、等の望ましくない結果が観察された(データは示さず)。
【0289】
治療に関連のある生体材料を含む腎臓細胞集団の機能表現型の評価:腎実質への直接注射後の慢性腎疾患のげっ歯類モデルで、生存を延長し、腎機能を高める治療に関連のある腎臓細胞集団(UNFX)を特徴づけ(Presnell et al.国際公開第2010/056328号;Kelley et al.前出、2010)、それらの単離、キャラクタリゼーション、および増殖の方法を開発し、複数の種間へ適用した(Presnell et al.2010、前出)。NKA構築物に組み込まれた場合、優先的に尿細管、上皮表現型に付着するのか、生存可能なそれらのまま残るのか、およびそれらを保持するのかどうかを判断するために、UNFX細胞および種々の生体材料から産生したNKA構築物に対し、トランスクリプトーム、セクレトーム、プロテオミクス、および共焦点免疫蛍光法顕微鏡分析を行った。
【0290】
付着性および生存率:イヌの由来UNFX細胞をゼラチンビーズ、PCLビーズ、PLGAビーズ、HA粒子、およびHA/ゼラチン粒子と共に記載したように(生体材料当たり3NKA構築物)播種した。播種の1日後、細胞分布および生存率を生死染色により評価した。
【0291】
図20A〜Dは、イヌのUNFX細胞を播種したNKA構築物の生死染色を示す(A=ゼラチンビーズ;B=PCLビーズ;C=HA/ゼラチン粒子;D=HA粒子)。緑は生細胞を示す;赤は死細胞を示す。(A)ゼラチンビーズ;(B)PCLビーズ;(C)HA/ゼラチン粒子;および(D)HA粒子。生存可能な細胞は、全ヒドロゲルベースNKA構築物で観察されうる。
【0292】
UNFX細胞は、天然由来ヒドロゲルベース生体材料、例えば、ゼラチンビーズおよびHA/ゼラチン粒子(A、Dの黒色矢印)に強く付着したが、合成PCL(B)またはPLGAビーズには最小の付着性を示した(データは示さず)。細胞は、HA粒子(C)に付着しなかったが、生物学的応答の証拠(すなわち、スフェロイド形成)が認められた。ヒドロゲルベースNKA構築物上での播種UNFX細胞の機能生存率をロイシンアミノペプチダーゼ、近位尿細管関連加水分解酵素をアッセイすることにより確認した(データは示さず)。
【0293】
トランスクリプトームプロファイリング:ヒドロゲルベースNKA構築物(生体材料当たり3NKA構築物)およびUNFX細胞のパラレル2D培養物中でのヒトUNFX細胞の遺伝子発現プロファイルを定量トランスクリプトーム分析により比較した。
【0294】
図20E〜Gは、NKA構築物のトランスクリプトームプロファイリングを示す。TC:2D培養した1次ヒトUNFX細胞。ゼラチン:ヒトUNFX細胞とゼラチンヒドロゲルから構成されるNKA構築物。HAゲル:ヒトUNFX細胞とHA/ゼラチン粒子から構成されるNKA構築物。qRT−PCRデータをグラフと表フォーマットで示した。調査した転写物は、4つの主要カテゴリーに分けられる:(i)
尿細管:アクアポリン2(AQ2)、E−カドヘリン(ECAD)、エリスロポエチン(EPO)、N−カドヘリン(NCAD)、チトクロムP450、ファミリー24、サブファミリーA、ポリペプチド1−別名;ビタミンD24−ヒドロキシラーゼ(CYP)、キュビリン、ネフリン;(ii)
間葉:カルポニン(CNN1)、平滑筋ミオシン重鎖(SMMHC);(iii)
内皮:血管内皮細胞増殖因子(VEGF)、血小板内皮細胞付着分子(PECAM);および(iv)
糸球体:ポドシン。全体として、尿細管マーカー発現は、ヒドロゲルベースNKA構築物と2D UNFX培養物の間で同程度であった。同様に、内皮マーカー(VEGFとPECAM)波動程度であった。対照的に、糸球体マーカーポドシンは、NKA構築物の間で有意な差異を示した。HA/ゼラチンベースNKA構築物中のポドシンレベルは、2D UNFX培養物で観察されたレベルに極めて類似していた。興味深いことには、間葉マーカー(CNN1とSMMHC)発現は、2D UNFX培養物に比べて、ヒドロゲルベースNKA構築物中で、有意に下方制御され(p<0.05)、腎臓培地配合物中のヒドロゲルベースNKA構築物の場合と同様に、UNFXの線維芽細胞亜集団は増殖できないことが示唆される。
【0295】
セクレトームプロファイリング:ヒトUNFXおよびB2細胞ならびにゼラチンまたはHA/ゼラチンヒドロゲルを使ってNKA構築物を産生した(細胞型当たり、生体材料当たり、1NKA構築物=全体で4NKA構築物)。
【0296】
図21A〜Bは、NKA構築物のセクレトームプロファイリングを示す。データは、3D:2D比率として提示している。材料と方法に記載のように、ヒトUNFXまたはB2細胞およびゼラチン(ヒドロゲル1)またはHA/ゼラチン(ヒドロゲル2)ヒドロゲルからNKA構築物を産生した。セクレトームプロファイリングを、3日間熟成したNKA構築物由来馴化培地に対し行い、NKA構築物(3次元、すなわち3D、培養)の分析物発現の2D培養物に対する比率(3D:2D比率)を計算することにより、ヒトUNFXまたはB2細胞のパラレル2D培養物と比較した。UNFX細胞で播種した3つのNKA構築物のそれぞれで、3D:2D比率は、1であるか、または1に近く、これらの生体材料上の播種工程および3日間の成熟は、UNFX細胞のセクレトームプロファイルに、ほとんど影響しなかったことを示唆している。B2細胞を播種したNKA構築物に対しては、3D:2D比率が1または1に近いという類似の結果が観察され、これらの生体材料上の播種工程および3日間の成熟は、治療に関連する腎臓細胞のセクレトームプロファイルには、ほとんど影響を与えなかったという追加の証明を提供する。
【0297】
プロテオミクスプロファイリング:所与の細胞または組織のプロテオミクスプロファイルが2Dゲル電気泳動法を使って全体細胞タンパク質を分離することにより作成され、腎疾患に関連する特異的バイオマーカーを特定するために使用されてきた(Vidal et al.Clin Sci(Lond)109(5):421−430;2005)。
【0298】
図22A〜Bは、NKA構築物のプロテオミクスプロファイリングを示す。NKA構築物を、示したように、ヒトUNFX細胞および生体材料を使って産生した。総タンパク質量抽出物中のタンパク質を、材料と方法に記載されるように、2Dゲル電気泳動法により分離した。この実験では、プロテオミクスプロファイリングを使って、NKA構築物(ゼラチンまたはHA/ゼラチンヒドロゲルベース、生体材料当たり3NKA構築物)および2D組織培養物中のヒトUNFX細胞におけるタンパク質発現を比較した。NKA構築物またはUNFX細胞の2D培養物から単離された総タンパク質量のプロテオームプロファイルは、基本的に、同じであり、これらの生体材料上の播種工程および3日間の成熟は、UNFX細胞により発現されたプロテオームには、ほとんど影響を与えなかったという追加の証明を提供する。
【0299】
共焦点顕微鏡観察:NKA構築物中のラットおよびヒトB2細胞(Presnell et al.2010、前出)の尿細管上皮表現型の保持を、確立したバイオマーカーの共焦点画像処理により評価した:
図23A〜Cは、NKA構築物共焦点顕微鏡像を示す。ヒト(A)またはラット(B、C)B2細胞およびゼラチンヒドロゲルを使って産生されたNKA構築物の共焦点顕微鏡像。(A)E−カドヘリン(赤−中実白色矢印)、DBA(緑−点線緑矢印)およびゼラチンヒドロゲルビーズは、DIC光学を使って可視化される。(B)DAPI染色により可視化されたDNA(青−中実白色矢印)および次のそれぞれ緑色のマーカー(点線白色矢印):IgG対照、N−カドヘリン、E−カドヘリン、サイトケラチン8/18/18、DBA。(C)マーカーの二重標識像および色表示。ヒトNKA構築物中のE−カドヘリンおよびDBA、ならびに、ラットNKA構築物中のE−カドヘリン、DBA、N−カドヘリン、サイトケラチン8/18/19、ガンマグルタミルトランスペプチダーゼ(GGT−1)、およびメガリン。共焦点像の光学的切片作成により、また、播種および3日間の成熟後の生体材料中への細胞浸潤の程度の評価が可能となる。ヒトおよびラットNKA構築物中のB2細胞は、複数の尿細管上皮マーカーの発現を示した。光学的切片は、ヒドロゲル構築物の最小の細胞浸潤を示し、細胞は、通常生体材料の表面に限定されていた。
【0300】
NKA構築物プロトタイプの移植に対するインビボ応答:腎実質への生体材料の注射に対するインビボ応答、ならびに、上述のNKA構築物中のUNFXおよびB2細胞のインビトロ表現型および機能キャラクタリゼーションに基づいて、ゼラチンヒドロゲルを選択して、健康なLewisラットにおける腎実質へのNKA構築物の注射に対するインビボ応答を評価した。NKA構築物を同系B2細胞から産生し、2匹の動物へ移植した。これらの動物は、移植後1、4、および8週で屠殺した。全動物が腎臓組織切片の採取予定の死体解剖時まで生存し、切片作成を行って、トリクローム、ヘマトキシリンおよびエオシン(H&E)、ならびに過ヨウ素酸シッフ(PAS)で染色した。
【0301】
図24A〜Bは、移植後1および4週目のNKA構築物のインビボ評価を示す。トリクロームX10:生体材料凝集体を示す腎臓断面の低倍率像。トリクロームX40:生体材料凝集体の拡大像。H&E/PAS X400:細胞/組織浸潤の程度を評価するための生体材料凝集体の高倍率像。各腎臓は、材料と方法で記載のように、2つの部位に注射された。
【0302】
図24Aは、移植後1週目のNKA構築物のインビボ評価を示す。注射後1週目で、ゼラチンビーズは、好塩基性染色した球状で多孔性の材料の局所的凝集体として存在し(左パネル、丸で囲んだ領域)、多くの血管結合組織および食細胞の多核マクロファージや巨細胞に取り囲まれていた。血管結合組織を、ビーズ内に組み込み、新腎臓組織形成を示す尿細管上皮成分を提示した。さらに、尿細管および血管糸球体(vasculoglomerular)構造を形態学により特定した(PASパネル)。
【0303】
図24Bは、移植後4週目のNKA構築物のインビボ評価を示す。注射後4週までに、ヒドロゲルは完全に再吸収され、空隙は進行性腎臓再生および最小の線維形成を伴う修復により置換された(4週トリクロームパネル中の円で囲んだ領域内の多数の機能性尿細管に注意されたい)。
【0304】
図25A〜Dは、移植後8週目のNKA構築物のインビボ評価を示す。トリクロームX10:生体材料凝集体を示す腎臓断面の低倍率像。トリクロームX40:生体材料凝集体の拡大像。H&E/PASX400:細胞/組織浸潤の程度の評価のための生体材料凝集体高倍率像。(A)中等度の慢性炎症(マクロファージ、血漿細胞およびリンパ球)、顕著な血管結合組織応答(Massonのトリクロームによる青色染色−黒色矢印)を伴う中程度の数のヘモジデリン沈着マクロファージ(注射による慢性出血);(B)新腎臓組織形成と一致する再生応答誘導を示す(A)のボックスで囲んだ領域のさらに高い倍率(トリクローム染色、x400)(C)近接(正常な)腎実質の代表例で、典型的皮質糸球体形態HEを示す、x400);(D)HE染色切片、x400 処置領域で観察された新糸球体形態vs.
図154Cの比較。
【0305】
図25A〜Dは、移植後8週目のNKA構築物のインビボ評価を示す。移植後8週目で、腎形成における初期のイベントの誘導と同じ新腎臓様組織形成の証拠が観察された。再生誘導(B、D)の領域と近接皮質実質(C)の比較により、複数のS−形状体および新規形成糸球体の存在が示された。
【0306】
NKA構築物由来馴化培地のHK2細胞中のTGF−β誘導EMTに与える効果:CKDの進行の間の尿細管間質性線維形成の発生は、尿細管上皮細胞のTGF−β媒介EMTと関連がある(Zeisberg et al.Am J Pathol 160(6):2001−2008;2002)。また、進行性CKDのげっ歯類モデルにおいて、TGF−β経路の減弱化がインビボで観察され、UNFXおよびB2細胞を使った処置により生存が延長され、腎機能が改善された(Presnell et al.国際公開第2010/056328号)。ヒト近位尿細管細胞株HK2は、TGF−β誘導EMTに対する小分子またはタンパク質の刺激または阻害効果を試験するためのインビトロモデルシステムとして充分確立されている(Dudas et al.Nephrol Dial Transplant 24(5):1406−1416;2009;Hills et al.Am J Physiol Renal Physiol 296(3):F614−621;2009)。移植後腎臓組織応答に対するNKA構築物の影響に関する可能な機序を検討するために、UNFX細胞とヒドロゲルから産生したNKA構築物から集めた馴化培地をHK2EMTアッセイシステムで評価した。
【0307】
図26は、NKA構築物由来の馴化培地がHK2細胞中のTGF−β誘導EMTをインビトロで弱めることを示す。ECAD(上皮)およびCNN1(間葉)マーカーの相対発現を定量化することによりEMTをモニターした。表示のように、50:50培地(対照およびTGFB対照検体)またはヒトUNFX細胞(TC)もしくはヒトUNFX細胞の2D培養物およびゼラチンもしくはHA/ゼラチンから産生されたNKA構築物由来の馴化培地(CM)中でHK2細胞を培養した。EMTを誘導するために、10ng/mlTGF−βをアッセイ前の3日間、各検体(対照を除く)に添加した。HK2細胞を50:50培地(対照)中で培養した場合、CNN1(間葉マーカー)より高レベルでECAD(上皮マーカー)が発現した。TGF−βを3日間、培地に添加する場合(TGFB対照)、ECAD発現は、CNN1の上方制御と同時に、有意に下方制御され、EMTイベントの誘導と一致する。2D UNFX細胞培養由来馴化培地は、HK2細胞のTGF−β(TC CM)に対するEMT応答を有意に弱めた(ECADおよびCNN1の両方に対しp<0.05)。NKA構築物(ゼラチンCMおよびHA/ゼラチンCM)由来の馴化培地も、また、TGF−βに対するEMTの応答を弱めた;しかし、全体的効果は、2D UNFX細胞培養由来馴化培地で観察された効果より小さかった(両方のNKA構築物でのECADに対しては有意(p<0.05)で、対照の方に近づく傾向があるが、CNN1に対しては統計的に有意でない)。追加の間葉マーカーを選別し、類似の結果を得た(データは示さず)。これらのデータは、NKA構築物が、細胞ベース処置(Presnell et al.国際公開第2010/056328号)で観察されたものと類似の形式で、尿細管間質性線維形成に関連するTGF−β経路にインビボで影響を与える可能性があることを示唆している。これらのデータは、また、インビボ応答がインビトロEMT応答と統計的に有意な関連性があり、それにより、時間のかかる、高価なインビボアッセイの必要性を低減可能性があることを立証できるなら、インビトロEMTアッセイは、NKA構築物のバイオセラピューティック効力の選別/最適化/モニタリング対する適用の可能性があることを示唆している。
【0308】
この調査は、合成および天然生体材料、無細胞および生理活性腎臓細胞/生体材料複合体(すなわち、NKA構築物)の両方の移植に対する哺乳類腎実質の応答を検討した。インビトロ機能アッセイおよびインビボ再生結果の組み合わせを解析し、NKA構築物プロトタイプ中への組み込みを可能にするために、候補生体材料を機能的に選別した。無細胞のヒドロゲルベース生体材料の腎実質への移植(
図19)は、通常、最少の線維形成または慢性炎症、および移植後4週まで壊死の形跡のないことに繋がっている。最少の残遺物生体材料と共に中等度の細胞/組織の内成長および新血管新生が観察された。これらのインビボデータに基づいて、ヒドロゲルベース生体材料を選択し、NKA構築物を産生して、これを使ってインビトロ生体機能性およびインビボ再生可能性を評価した。材料生体適合性のインビトロでの確認をNKA構築物の生死分析により行った(
図20)。ゼラチン含有ヒドロゲルは、1次腎臓細胞集団の強い付着性に関連していた。生理活性1次腎臓細胞集団(UNFXまたはB2)およびヒドロゲル生体材料から産生したNKA構築物の表現型および機能分析は、尿細管上皮細胞表現型の維持の継続と一致する。NKA構築物のトランスクリプトーム、セクレトーム、プロテオミクス、および共焦点顕微鏡分析により、2D培養で播種した1次腎臓細胞に対する有意差が無いことが確認された。最終的に、ヒドロゲルベースNKA構築物の健康な生体げっ歯類の腎実質への移植は、最少の炎症性および線維化応答、ならびに移植後8週までの新腎臓様組織の再生に結びついていた。
【0309】
まとめると、これらのデータは、再生応答がNKA構築物によりインビボで誘導されたことを示唆する証拠を与える。これらの調査は、治療的に効果のある1次腎臓細胞/生体材料複合体の移植に対する哺乳類腎臓の生物学的応答の最初のインビボ腎臓内調査を意味する。観察結果は、NKA構築物が、新腎臓組織の再生の促進、および非再生(例えば、修復治癒)応答の減弱化の両方に対する潜在能力を有することを示唆している。
【0310】
ポリマー材料の移植に対する哺乳類腎臓の生物学的応答:別の調査では、げっ歯類腎臓に関し、天然および合成生体材料の腎臓内注射に対する宿主組織応答を調査し、生理活性腎臓細胞集団との細胞/生体材料複合体の形成のための候補生体材料を評価した(Presnell et al.前出、2010)。方法:天然生体材料には、ゼラチンおよびヒアルロン酸(HA)を含めた。合成生体材料には、ポリカプロラクトン(PCL)および乳酸・グリコール酸共重合体(PLGA)を含めた。候補生体材料を2種の別々の物理形態:同種の球状ビーズまたは異種起源で非均一粒子、で評価した。PCLおよびPLGAビーズを修飾二重エマルジョン乳剤(水/オイル/水)溶媒抽出法を使って調製した。ゼラチンビーズは、購入した(Cultispher−S(登録商標)、Sigma−Aldrich、St.Louis、MO)。PLGA粒子を溶媒キャスト・孔物質溶出技術を使って調製した;ゼラチンおよびHA粒子を架橋および凍結乾燥した発泡体から調製した。35μlの緩く圧縮充填した生体材料を2回の注射で3月齢Lewisラットの左腎実質に送達した。炎症、組織/細胞内成長、新血管新生、材料分解、および繊維と細胞の応答に関する0(無し)から4(重度)までの重症度の半定量分類スコアを使って、注射後1週および4週の腎臓組織のホルマリン固定切片の病理組織学的評価を行った。総合スコアは、%陰性応答に対する%陽性応答の比率として計算した(総合スコアが高いほど、優れた結果となる)。
【0311】
結果:生体材料候補に対する病理組織学的評価−移植1週後採取し、切片をMassonのトリクロームで染色した代表的な腎臓の40X像(データは示さず)。天然起原、例えば、ゼラチンおよびHAのポリマーから構成される材料は、合成生体材料、例えば、PLGAおよびPCL(器質性線維状被包形成)に比べて、より穏やかな繊維と細胞の応答および慢性炎症、ならびにより大きい細胞内成長、新血管新生、生体材料分解、ならびに組織治癒および組織集積に要求される必然的な炎症と関連していた。病理組織学的評価スコアリングの要約:スコアは、材料組成で平均化した(平均±SD)。合成材料(PLGAおよびPCL)は最低スコアになり、ゼラチン材料は、通常、HA材料より高いスコアになった。この傾向は、4週の時点で最も際立っている。材料の注射に関係の無い要因のために、必ずしも全ての1週目の試験検体が4週目の分析に利用可能ではなかった。ゼラチン、HA、および合成群に含まれる標本数は、それぞれ、1週目で、3、4、3であり、4週目で2、3、1である。
【0312】
注射により組織応答を誘発した健康な腎実質に送達された天然起原の生体材料(例えば、ゼラチンまたはHA)は、半定量病理組織学的評価により測定して、注射後4週目で、合成起原に比べ、病的な状態はより少なかった。
【0313】
実施例16−培養ヒト腎臓細胞の低酸素暴露が細胞遊走および付着のメディエータを誘導し、尿細管細胞単層の修復をインビトロで促進する
慢性腎疾患(CKD)モデルの立証された治療機能を有する腎臓上皮細胞選択集団(B2)の単離および機能における酸素圧力の役割を調査した。この調査では、処理中の低酸素暴露が選択されたヒトの選択腎臓細胞(SRC)または生理活性腎臓細胞(BRC)の組成および機能を変えるのか否かを調べた。2%酸素への暴露に際し、以下が観察された:密度勾配全体にわたる細胞の分布の変化(Presnell et al.国際公開第10/056328号を参照;この特許は参照によりその全体が本明細書に組み込まれる)、全体の勾配後収率の改善、酸素により調節される遺伝子発現(Kelley et al.前出、(2010)、で以前に報告)の調節、エリスロポエチン、VEGF、HIF1アルファ、およびKDR(VEGFR2)の発現増加。処理中の低酸素への暴露は、選択生理活性腎臓細胞の傷害性尿細管を修復/再生する能力を高める。
【0314】
図27は、細胞を処理中に低酸素へ暴露する手順を示す。
図28は、2%酸素に暴露に際し、下記が観察されたことを示す:密度勾配全体にわたる細胞の分布の変化、全体の勾配後収率の改善。低酸素暴露(<3%)は、大気酸素圧力(21%)に比べて、培養ヒトCKD由来腎臓細胞のイオジキサノールベース密度勾配からの回収率を増加させ(96%vs.74%)、また、選択細胞(B2)の高密度(>9%イオジキサノール)画分への相対的配分を増加させた(21.6%vs.11.2%)。
【0315】
競合的インビトロアッセイは、B2細胞の低酸素性条件への24時間の事前暴露は、21%酸素圧力で培養したB2細胞よりも、傷害性腎臓の近位尿細管単層培養物の修復に対しより高い能力を有し、傷害の2時間以内に修復の発生が58.6%±3%であったことを示した。
【0316】
図29Aは、尿細管単層の修復をインビトロで観察するために開発されたアッセイを示す。1.細胞を蛍光染料で標識する(2%酸素、21%酸素、およびHK2尿細管細胞)。2.尿細管細胞単層を作成し、創傷を与えた。3.酸素暴露標識細胞を添加(2%および21%暴露細胞)。それらを、20,000/cm2で均等に播種する。培養は、無血清培地中、5%O2で24時間行う。4.創傷を修復する細胞を定量する。
図29B−定量画像解析(BD Pathway 855 BioImager)−赤色円=2%O2で培養細胞、青色円=21%O2培養。
図29C−2%酸素誘導細胞がより急速に付着し(2時間)、24時間わずかな優位性を持続することが観察された。2%酸素で誘導された細胞は、尿細管上皮単層の修復に対し、より大きな能力を有する。
【0317】
図30Aは、尿細管単層の修復をインビトロで観察するために開発されたアッセイを示す。1.細胞を蛍光染料で標識する。2.8μm孔径のトランスウエルインサートの底部に尿細管細胞単層を形成し、創傷を与えた。3.インサートを反転し、酸素暴露標識細胞を添加する(2%および21%酸素暴露細胞)。それらに、50,000/cm2で均等に播種する。培養は、無血清培地中、5%O2で24時間行う。4.創傷を修復する細胞を定量する。
【0318】
図30Bは、2%酸素暴露細胞による誘導により、非誘導(21%酸素)に比べ、遊走および創傷修復が強化されたことを示す。
図30Cは、遊走時間に対し遊走細胞の%をプロットしたものである。細胞の平均数および細胞の平均パーセンテージは、表16.1に示されている。
【0319】
低酸素は、また、CXCR4、MMP9、ICAM1、およびジストログリカンのmRNA発現も誘導した;これらは、細胞遊走および付着を媒介する遺伝子である。MMP9の局所的蓄積および細胞の細胞膜へのコネキシン43凝集体の増加が免疫細胞化学手法により確認された。
【0320】
図31Aは、オステオポンチンが尿細管細胞により分泌され、傷害に対する応答で発現上昇することを示す(オステオポンチン免疫細胞化学:Hoechst核染色(青)、オステオポンチン(赤)、10x)。オステオポンチンは、分泌リン酸化糖タンパク質である(Kelly et al.J Am Soc Nephrol、1999)。オステオポンチンは、免疫蛍光(
図31A)およびELISA(
図31B)により示されるように、尿細管中で発現し、付着および遊走に関与する。オステオポンチンは、尿細管細胞単層中に形成された傷害により発現上昇する。
【0321】
図32Aは、細胞の遊走応答が、一部は、オステオポンチンにより媒介されることを示す(緑=遊走細胞(5x))。
図32Bは、オステオポンチンに対する中和抗体(NAb)が腎臓細胞遊走応答を50%減らすことを示す。
【0322】
図33は、細胞低酸素誘導が組織リモデリング遺伝子の発現を調節することを示す。カベオリン1は、インテグリンシグナル伝達の調節に関与する足場タンパク質である。MMP9は、細胞外のマトリックス分解を介して遊走を促進するメタロプロテアーゼである。ICAM1は、上皮細胞運動性に関連する細胞間接着分子である。CXCR4は、細胞遊走を媒介するケモカイン表面受容体である。
【0323】
図34は、腎臓再生に繋がる低酸素による細胞の生理活性増強に対する推定機序を示す。
【0324】
まとめると、これらの結果は、低酸素下暴露が尿細管傷害のインビトロ修復に対する立証された生理活性を有する特異的腎臓細胞亜集団の単離を促進し、その結果、これらの細胞のインビボ送達の後に患部組織へ遊走し生着する能力を潜在的に高めることができることを示唆する。SRCは、進行性CKDのげっ歯類モデルの腎機能を安定化させ、生存を延長する能力を立証した。低酸素レベル(2%O2)は、下記を提供した:選択再生細胞の培養後回収率の増加;尿細管傷害に応答した細胞付着および単層修復の強化;ならびに尿細管傷害に応答した細胞遊走の刺激。さらに、細胞遊走および付着は、一部は、オステオポンチンによりインビトロで媒介された。低酸素は、組織リモデリング、遊走、および細胞間情報伝達を媒介するインテグリン、分泌タンパク質、および細胞接着分子を発現上昇させた。
【0325】
実施例17−尿由来微小胞
尿中に排出された腎臓由来微小胞の内腔含有物内に含まれるmiRNAおよびタンパク質の分析を行い、再生結果を評価するためのバイオマーカーとして使用可能かどうかを判定した。過剰微小胞が細胞外の空隙に排出されるに従い、一部は隣接細胞と融合し、他のものは、尿中に分泌される(Zhou et al.2008.Kidney Int.74(5):613−621)。これらの尿中の微小胞は、今度は、処置結果のより良い理解に向けたアッセイ開発のための優れたバイオマーカーになる。
【0326】
ZSF1慢性進行性腎不全の代謝疾患のげっ歯類モデルを使用した。B2+B4細胞をZSF1動物の腎実質に注射した。健康な動物およびPBS溶媒を対照として使用した。尿由来小胞を、以下にまとめたように、種々の時点で分析した。
1:ZSF1動物−PBS溶媒注射;注射後197日に尿採取
2:ZSF1動物−PBS溶媒注射;注射後253日に尿採取
3:ZSF1動物−B2+B4画分注射;注射後197日に尿採取
4:ZSF1動物−B2+B4画分注射;注射後253日に尿採取
5.ZSF1動物−注射なし;調査の197日目に尿採取
6.ZSF1動物−注射なし;調査の253日目に尿採取
7.健康動物−注射なし;調査の197日目に尿採取
8.健康動物−注射なし;調査の253日目に尿採取
処置後197日目および約253日目に試験動物から尿を採取した。当技術分野で既知の標準的な方法により尿から微小胞を回収した(例えば、Zhou et al.Kidney Int.2008 September;74(5):613−621、を参照)。
図35の標準的ウェスタンブロッティングで示されるように、処置動物の尿から回収された微小胞(レーン3〜4)は、溶媒処置(レーン1〜2)または未処置対照(レーン5〜8)に比較して、前駆細胞関連タンパク質(CD133およびWNT7A)の増加を示した。実際、微小胞は、微小胞特異的タンパク質CD63の発現(
図35)により示されるように、病気の動物の尿(レーン1〜6)のみから回収され、健康な対照(レーン7〜8)からは回収されなかった。CD133含有微小胞は、腎臓細胞から排出されたプロミノソーム(prominosome)であるように見える。CD133およびWNT7Aの両方は、再生および幹細胞分裂に関連するとされてきた(Romagnani P and Kalluri R.2009.Fibrogenesis Tissue Repair.2(1):3;Lie et al.2005.Nature.437(7063):1370−5;Willert et al.2003.Nature.423(6938):448−52;Li et al.2009.Am J Physiol Renal Physiol.297(6):F1526−33)。まとめると、このことは、再生をモニターするように設計されたアッセイ開発のために、微小胞中でバイオマーカーとして発現したタンパク質を標的とすることを支持する。
【0327】
miRNAマイクロアレイおよびRT−PCR:尿由来の小胞由来miRNAのマイクロアレイおよびRT−PCR分析を当技術分野で既知の標準的な方法により行った(例えば、Wang et al.前出、2010、参照)。タンパク質に加えて、miRNAは、単離された微小胞の含有物中にも見つかった。表17.1は、処置により増加することが解ったmiRNAの例を示す。
【0328】
B2+B4で処置したZSF1動物のmiRNAの変化を経時的に分析した(197日目および253日目)。何倍というレベルの変化が以下のmiRNAで観察された:
【0329】
B2+B4で処置したZSF1動物(253日目)のmiRNAレベルを分析し、PBS溶媒で処置したZSF1動物(253日目)のmiRNAレベルと比較した。何倍というレベルの変化が以下のmiRNAで観察された:
【0330】
B2+B4で処置したZSF1動物(197日目)のmiRNAレベルを分析し、PBS溶媒で処置したZSF1動物(197日目)のmiRNAレベルと比較した。何倍というレベルの変化が以下のmiRNAで観察された:
【0331】
表17.1に挙げたmiRNAは、組織再生に関連するプロセスに結びつけられているmiRNAの例を提供する。miR−15bは、BCL−2およびカスパーゼ調節を介してアポトーシスの調節(Guo et al.2009.J Hepatol.50(4):766−78)、ならびにサイクリンの調節を介して細胞周期進行(Xia et al.2009.Biochem Biophys Res Commun.380(2):205−10)に結びつけられている。miR−21は、生存経路MAPK/ERKを調節することによりアポトーシスを阻害することが示された。miRNAのmiR−30ファミリーは、有足細胞構造および機能にとって重要で、増加が糸球体形成に必要である可能性があることを示唆している。miR−141、200a、200cおよび429は、全て、線維形成を減らす可能性のあるTGF−βシグナル伝達に対し応答した上皮から間葉への転換(EMT)の調節に関与する(Saal et al.2009.Curr.Opin.Nephrol.Hypertens.18:317−323)。miR−146aおよび151は、NFκB調節に関係づけられ、従って、インビボで炎症反応を減らす可能性がある(Taganov et al.2006.Proc Natl Acad Sci USA.103(33):12481−6;Griffiths−Jones et al.2006.NAR.34 Database Issue:D140−D144)。まとめると、これらのmiRNAは、成功している再生結果に関連するプロセスを調節する;従って、それらをアッセイ開発のための候補バイオマーカーとする。全体的に見て、このデータは、尿中の微小胞および/またはそれらの内腔含有物が再生アッセイ用の実行可能な標的であるという構想を支持する。理由は、それらが、処置のモニタリングの非侵襲的手段を開業医に提供することに加えて、TGFβ−1、NFκB、アポトーシス、細胞分裂、および多分化能、等の複数の経路を調節することができるタンパク質およびmiRNAを含むからである。