(58)【調査した分野】(Int.Cl.,DB名)
3つの主方向、即ち、円周方向(X)、軸方向(Y)および半径方向(Z)を決定し、トレッド(3)が登載しているクラウン(2)、2枚の側壁(4)、2本のビード(5)、ここで、各側壁(4)は、各ビード(5)をクラウン(2)に連結している、ビード(5)の各々内に固定され側壁(4)内でクラウン(2)まで延びているカーカス補強材(7)、クラウン(2)内で円周方向(X)に延びており且つ半径方向においてカーカス補強用補強材(7)とトレッド(3)の間に位置するクラウン補強材即ちベルト(10)を含み、前記ベルト(10)が、少なくとも3つの補強材重ね合せ層(110、120、130)を含む多層複合ラミネート(10a、10b、10c)を含み、これらの補強材は、各層内で一方向にあり、ゴム(それぞれ、C1、C2、C3)の厚さ内に埋込まれているところのラジアルタイヤ(1)であって、
・第1層(10a)のゴム(C1)は、トレッド側にあり、円周方向(X)に対して-5〜+5度の角度アルファで配向させている第1列の補強材(110)を含み、ここで、これらの補強材(110)は、第1補強材と称し、熱収縮性繊維材料でできており;
・第2層(10b)のゴム(C2)は、第1層(10b)と接触しており且つこの第1層の下に配置しており、円周方向(X)に対し10度と30度の間の正または負の所定の角度ベータで配向させている第2列の補強材(120)を含み、ここで、これらの補強材(120)は、第2補強材と称し、金属補強材であり;
・第3層(10c)のゴム(C3)は、第2層(10b)と接触しており且つこの第2層の下に配置しており、前記角度ベータの反対側の角度ガンマで配向させている第3列の補強材(130)を含み、ここで、前記角度ガンマ自体は円周方向(X)に対し10と30度の間の角度であり、これらの補強材(130)は、第3補強材と称し、金属補強材であり;
さらに、下記特徴:
・熱収縮性繊維材料でできている第1補強材(110)が、マルチフィラメント繊維であって、当該繊維上で個々にメートル当り140回転〜300回転の捻れTで捻られているマルチフィラメント繊維であり;
・第1補強材(110)のD1で示すエンベロープ直径が、0.40mm〜0.50mmの範囲内であり;
・第1層のゴム(C1)中の第1補強材(110)の密度d1が、軸方向(Y)において測定して、スレッド数90本/dmとスレッド数150本/dmの間であり;
・第2補強材(120)および第3補強材(130)が、それぞれ、D2およびD3で示す直径または厚さが0.20mmと0.50mmの間である鋼モノフィラメントであり;
・第2層のゴム(C2)および第3層のゴム(C3)中の第2補強材(120)および第3補強材(130)それぞれの密度d2およびd3が、それぞれ、軸方向(Y)において測定して、スレッド数100本/dmとスレッド数180本/dmの間である、
を有する、前記ラジアルタイヤ(1)。
【発明を実施するための形態】
【0015】
4.
定義
本出願における用語は、下記のように理解されたい:
・“ゴム”または“エラストマー”(2つの用語は同義であるとみなす):ジエンタイプまたは非ジエンタイプ、例えば、熱可塑性の任意のタイプのエラストマー;
・“ゴム組成物”または“ゴム状組成物”:少なくとも1種のゴムと少なくとも1種の充填剤を含む組成物。
・“層”:厚さがその他の寸法と比較して相対的に小さい、好ましくは厚さ対最大の他の寸法との比が0.5よりも小さい、好ましくは0.1よりも小さいシート、ストリップまたは任意の他の要素;
【0016】
・“軸方向”:タイヤの回転軸に実質的に平行な方向;
・“円周方向”:軸方向およびタイヤの半径の双方に対して実質的に垂直である方向(換言すれば、中心がタイヤの回転軸上にある円に正接している);
・“半径方向”:タイヤの半径に沿った方向、即ち、タイヤの回転軸を通り、この方向に対し実質的に垂直である、即ち、この方向に対する垂直線と5度を超えない角度をなす任意の方向。
【0017】
・“軸に沿ってまたは1つの方向に配向させる”:補強材のような任意の要素について言えば、この軸またはこの方向に対して実質的に平行に配向させている要素、即ち、この軸またはこの方向と5度を超えない(即ち、ゼロまたはせいぜい5度に等しい)角度をなす要素;
・“軸または方向に対して垂直に配向させる”:補強材のような任意の要素について説明するとき、この軸またはこの方向に対して実質的に垂直に配向させている、即ち、この軸またはこの方向に対する垂線と5度を超えない角度をなす要素。
【0018】
・“正中円周面”(Mで示す):2本のビードの間の中間に位置し、クラウン補強材即ちベルトの中央を通るタイヤの回転軸Yに対して垂直な面。
【0019】
・“補強材”または“補強用スレッド”:任意の長くて細いストランド、即ち、その断面に対して長い長さを有する任意の長い線状の糸状ストランド、特に、任意の個々のフィラメント、任意のマルチフィラメント繊維、または合撚糸またはコードのような、そのようなフィラメントまたは繊維の任意の集合体;このストランドまたはスレッドは直線状または非線状、例えば、撚り状もしくは波形状であり得、そのようなストランドまたはスレッドは、ゴムマトリックスを補強すること(即ち、ゴムマトリックスの引張特性を改良すること)ができる。
【0020】
・“一方向補強材”:本質的に互いに平行である、即ち、1つの同じ軸に沿って配向させている補強材;
・“ラミネート”または“多層ラミネート”:国際特許分類の意義の範囲内において、互いに接触している平坦または非平坦形の少なくとも2枚の層を含む任意の製品、これらの層は一緒に接合または連結させていてもまたはさせてなくてもよい;“接合”または“連結”なる表現は、特に接着結合による接合または集合体化の全ての意味を包含するように広く解釈すべきである。
【0021】
さらにまた、特に明確に断らない限り、示す百分率(%)は、全て、質量%である。
“aとbの間”なる表現によって示される値の範囲は、いずれも、aよりも大きくからbよりも小さいまでに及ぶ値の範囲を示し(即ち、端点aとbは除外される)、一方、“a〜b”なる表現によって示される値の間隔は、いずれも、aからbまでに及ぶ値の範囲を意味する(即ち、厳格な端点aおよびbを含む)。
【0022】
5.
発明の詳細な説明
例えば、
図1は、そのベルトが本発明に従う多層複合ラミネートを含む、例えば乗用車またはバンタイプの車両用の本発明に従うタイヤの半径断面を極めて略図的に示している(即ち、何ら特定の縮尺に従って描いていない)。
【0023】
本発明に従うこのタイヤ(1)は、3つの垂直方向、即ち、円周方向(X)、軸方向(Y)および半径方向(Z)を決定し、トレッド(3)が登載しているクラウン(2)、2枚の側壁(4)、2本のビード(5)、ここで、各側壁(4)は、各ビード(5)をクラウン(2)に連結している、ビード(5)の各々内に固定され側壁(4)内でクラウン(2)まで延びているカーカス補強材(7)、クラウン(2)内で円周方向(X)に延びており且つ半径方向においてカーカス補強用補強材(7)とトレッド(3)の間に位置するクラウン補強材即ちベルト(10)を含む。カーカス補強材(7)は、知られている通り、“ラジアル”と称する繊維コードによって補強された少なくとも1枚のゴムプライから構成されており、上記の繊維コードは、実際上、互いに平行に配置されて一方のビードから他方のビードまで延びて正中円周面Mと一般に80°と90°の間の角度をなしている;この場合、例えば、この補強材(7)は、各ビード(5)内の2本のビードワイヤー(6)の周りに巻付けており、この補強材(7)の上返し(8)は、例えば、タイヤ(1)の外側に向って配置されており、この場合、タイヤリム(9)上に取付けたように示している。
【0024】
本発明によれば、また、後で詳細に説明する
図2の描写によれば、タイヤ(1)のベルト(10)は、補強材の3つの重ね合せ層を含む多層複合ラミネート(10a、10b、10c)を含み、これらの補強材は、各層内で一方向にあり、ゴム(それぞれ、C1、C2、C3)の厚さ内に埋込まれており、
・第1層のゴム(C1)は、トレッド側にあり、円周方向(X)に対して‐5〜+5度の角度アルファで配向させている第1列の補強材(110)を含み、ここで、これらの補強材(110)は、第1補強材と称し、熱収縮性繊維材料でできており;
・第2層のゴム(C2)は、第1層(10b)と接触しており且つこの第1層の下に配置しており、円周方向(X)に対し10度と30度の間の正または負の所定の角度ベータで配向させている第2列の補強材(120)を含み、ここで、これらの補強材(120)は、第2補強材と称し、金属補強材であり;
・第3層のゴム(C3)は、第2層(10b)と接触しており且つこの第2層の下に配置しており、前記角度ベータの反対側の角度ガンマで配向させている第3列の補強材(130)を含み、ここで、前記角度ガンマ自体は円周方向(X)に対し10と30度の間の角度であり、これらの補強材(130)は、第3補強材と称し、金属補強材である。
【0025】
本発明によれば、反対方向の角度βとγは、共に10°と30°の間の角度であって、同一あってもまたは異なっていてもよい、即ち、第2(120)および第3(130)補強材は、上記で定義した正中円周面(M)の両側に対称形または非対称形で配置し得る。
【0026】
図1に略図的に示すこのタイヤにおいては、勿論、トレッド3、多層ラミネート10およびカーカス補強材7は、互いに接触させていてもまたはさせなくてもよいことを理解されたい;にもかかわらず、これらのパーツは、
図1においては、略図として、簡素化目的で、また、図面をより明白にするために意図的に離している。これらのパーツは、これらパーツの少なくとも1部において、例えば、当業者にとって周知の、硬化または架橋後のアッセンブリの固着力を最適にすることを意図するタイゴムにより物理的に隔離し得る。
【0027】
本発明のタイヤにおいては、熱収縮性繊維材料製の第1補強材(110)は、各々、一般に“撚り強糸(オーバーツイスト)(overtwist)”として知られている、(1本捻り(シングルプライ)を有する)個々のマルチフィラメント繊維(当該繊維上で個々に撚られている)から構成されており;これは、良く知られているように、(少なくとも)2本の繊維(またはプライ)を、先ずは最初に、所定の方向(例えば、方向S)に個々に撚り、次いで、上記(少なくとも)2本を反対方向(方向Z)に一緒に撚って、(少なくとも)2本の撚り強糸(オーバーツイスト)を集合させることによって合撚糸を最終的に形成させている合撚糸(folded yarn)と対比される。
【0028】
これらのマルチフィラメント繊維のTで示す捻れは、メートル当り100回転よりも多く、好ましくは100回転/mと450回転/mの間、より好ましくは120〜350回転/m、特に140〜300回転/mの範囲内である。
上記マルチフィラメント繊維の線密度または力価は、好ましくは50texと250texの間、より好ましくは,65〜200texの範囲内である(tex = g/1000mの繊維)。
【0029】
一方、これら第1繊維補強材(110)の(平均)エンベロープ直径D1は、0.30mmと0.60mmの間、好ましくは0.35mmと0.55mmの間、特に0.40mm〜0.50mmの範囲内である;エンベロープ直径とは、通常通り、これらの補強材が円形断面を有さない一般的な場合におけるそのような第1繊維補強材(110)を取り囲む想定回転円筒体の直径を意味するものと理解されたい。
【0030】
第2(120)および第3(130)補強材は、それぞれ、D2およびD3で示す直径(または、定義によれば、上記モノフィラメントが円形断面を有さない場合の厚さ)が0.20mmと0.50mmの間、好ましくは0.25mmよりも大きくて且つ0.40mmよりも小さい鋼モノフィラメントからなる。さらに好ましくは、本発明のタイヤの最適な耐久性のためには、特に厳しい走行条件下においては、D2およびD3は、0.28〜0.35mmの範囲内であるのが好ましくはしい。
【0031】
鋼“モノフィラメント”とは、この場合、その断面形状はどうであれ、任意の個々の鋼フィラメントを意味し、その直径(円形断面の場合)または厚さ(非円形断面の場合) Dは、100μmよりも大きい。従って、この定義は、本質的に円筒形状を有する(円形断面を有する)モノフィラメント並びに異なる形状を有するモノフィラメント、例えば、平坦形状を有するまたは長方形もしくは正方形断面を有する細長いモノフィラメントの双方に及ぶ;非円形断面の場合、その断面の最長寸法対最短寸法の比は、好ましくは50よりも小さく、より好ましくは30よりも小さく、特に20よりも小さい。
【0032】
この一般的定義を考慮すれば、本発明のタイヤにおいては、第2(120)および第3(130)鋼補強材の直径または厚さD (それぞれ、D2およびD3)は、全ての場合において、0.20mmよりも大きい。
【0033】
本発明のこのタイヤは、さらなる本質的特徴として、下記の特徴を有する:
・ゴムの第1層(C1)中の第1補強材(110)の密度d
1は、軸方向(Y)において測定して、スレッド数90本/dmとスレッド数150本/dm (デシメートル、即ち、100mmのゴム層当り)の間である;
・ゴムの第2(C2)および第3(C3)層中の第2(120)および第3(130)補強材それぞれの密度d
2およびd
3は、それぞれ、軸方向(Y)において測定して、スレッド数100本/dmとスレッド数180本/dmの間であり;
上記特徴は、10cmの軸幅全体に亘る正中面(M)の両側上(即ち、正中面(M)に対して‐5cmと+5cmの間)の、特にまた好ましくは加硫状態のタイヤのベルトの中央部分において測定する。
【0034】
好ましくは、下記の特徴を満たす:
・密度d
1は、スレッド数100本/dmとスレッド数140本/dmの間であり;
・密度d
2およびd
3は、スレッド数110本/dmとスレッド数170本/dmの間、より好ましくはスレッド数120本/dmとスレッド数160本/dmの間である。
【0035】
さらにまた、本発明のもう1つの好ましい実施態様によれば、下記の特徴の少なくとも1つ(より好ましくはこれらの特徴の全て)を満たす:
・(第1層C1の)第1補強材(110)とこの第1補強材に最も近い(第2層C2の)第2補強材(120)とを隔てているゴムの平均厚さEz
1は、半径方向(Z)において測定して、0.20mmと0.40mmの間であり;
・(第2層C2の)第2補強材(120)とこの第2補強材に最も近い(第3層C3の)第3補強材(130)とを隔てているゴムの平均厚さEz
2は、半径方向(Z)において測定して、0.35mmと0.60mmの間であり;
・上記多層複合ラミネート、即ち、その3つの重ね合せ層(C1、C2、C3)の全体厚さは、半径方向Zで測定して、1.8mmと2.7mmの間である;
また、これらの特徴も、正中面(M)の両側上に合計で10cmの軸幅(即ち、正中面Mに対して‐5cmと+5cmの間)で存在する、加硫状態のタイヤのベルトの中央部分において測定する。
【0036】
上記で示したデータ(D1、D2、D3、Ez
1およびEz
2、d
1、d
2、d
3)は、全て、上記で示したように、正中面(M)の各側上の5cm、即ち、合計10cmの幅にわたるベルトの中央部分を通して撮影したタイヤの半径断面の写真においてオペレーターが実験により測定した平均値である。
【0037】
さらに好ましくは、転がり抵抗性、ドリフトスラストおよび走行耐久性の点での最適の性能のためには、下記の特徴の少なくとも1つ(より好ましくはこれらの特徴の全て)を満たす:
・第1補強材(110) (第1層C1の)をこの第1補強材に最も近い第2補強材(120) (第2層C2の)を隔てているゴムの平均厚さEz
1は、半径方向(Z)において測定して、0.20mmと0.35mmの間であり;
・第2補強材(120) (第2層C2の)をこの第2補強材に最も近い第3補強材(130) (第3層C3の)を隔てているゴムの平均厚さEz
2は、半径方向(Z)において測定して、0.35mmと0.55mmの間であり;
・上記多層複合ラミネート、即ち、その3つの重ね合せ層(C1、C2、C3)の全体厚さは、半径方向Zで測定して、2.0mmと2.5mmの間である。
【0038】
図2は、断面において、
図1の本発明に従うタイヤ(1)においてベルト(10)として使用する多層複合ラミネート(10a、10b、10c)の1つの例を略図的示しており(何ら特定の縮尺に従って描いていない);上記ラミネート(10)は、繊維上で100回転/mよりも多い捻れで撚られているマルチフィラメント繊維の形の熱収縮性繊維材料製の補強材(110)を使用している、
【0039】
図2に示しているように、Ez
1は、第1補強材(110)をこれに最も近い第2補強材(120)から隔てているゴムの厚さ(Ez
1(1)、Ez
1(2)、Ez
1(3)、…、Ez
1(i))の平均である;これらの厚さは、各々、半径方向Zにおいて測定し、ベルトの中心に対して−5.0cmと+5.0cmの間の軸方向距離全体に亘って(即ち、例えば、層C1中にcm当り10本の補強材(110)が存在する場合には合計で約100回の測定全部に対して)平均する。
【0040】
異なる形で表現すれば、Ez
1は、各第1補強材(110)をこれに半径方向Zにおいて最も近い第2補強材(120)から“連続”(back-to-back)して隔てている最短距離Ez
1(i)の平均である;この平均は、正中面Mに対して−5cmと+5cmとの間に及ぶ軸間隔におけるベルトの中心部分に存在する第1補強材(110)全部に亘って計算する。
【0041】
同様に、Ez
2は、半径方向Zにおいて測定した、第2補強材(120)をこれに最も近い第3補強材(130)から隔てているゴムの厚さ(Ez
2(1)、Ez
2(2)、Ez
2(3)、…、Ez
2(i))の平均である;この平均は、ベルトの中心に対して−5.0cmと+5.0cmの間からなる軸方向距離全体に亘って計算する。別の形で表現すれば、これらの厚さは、第2補強材(120)をこれに半径方向Zにおいて最も近い第3補強材(130)から“連続”(back-to-back)して隔てている最短距離を示す。
【0042】
別の形で表現すれば、Ez
2は、各第2補強材(120)をこれに半径方向Zにおいて最も近い第3補強材(130)から“連続”して隔てている最短距離Ez
2(i)の平均である;この平均は、正中面Mに対して−5cmと+5mとの間に及ぶ軸方向間隔において、ベルトの中心部分に存在する第2補強材(120)全部に亘って計算する。
【0043】
転がり抵抗性、ドリフトスラストおよび走行耐久性の点での最適の性能のためには、本発明のタイヤは、好ましくは、下記の不等式の少なくとも1つ(より好ましくは双方)を満たす:
0.20 < Ez
1 / (Ez
1 + D1 + D2) < 0.35
0.30 < Ez
2 / (Ez
2 + D2 + D3) < 0.50
好ましくは、下記の不等式を満たす:
0.300 < (Ez
1+Ez
2) / (Ez
1+Ez
2+D1+D2+ D3) < 0.450
【0044】
熱収縮性繊維材料製の第1補強材(110)の熱収縮(CTで示す)は、185℃で2分後において、好ましくは7.0%よりも低く、より好ましくは6.0%よりも低い;これらの値は、タイヤケーシングの製造および寸法安定性にとって、特に、その硬化および冷却段階において最適であることが判明している。
【0045】
CTは、以下に示す試験条件下におけるこれら第1補強材(110)の相対的収縮である。パラメーターCTは、他で明記しない限り、規格ASTM D1204‐08に従って、例えば、“TESTRITE”タイプの装置において、0.5cN/texの標準プレテンション(従って、試験する試験標本の力価即ち線密度に対して表す)として何が知られているかを考慮して測定する。また、一定の長さにおいて、最高収縮力(Fcで表す)も、上記試験、180℃の温度で3%伸び下でのこの時間を使用して測定する。この収縮力Fcは、好ましくは、10N (ニュートン)よりも高い。高収縮力は、タイヤが高走行速度においてヒートアップするときのタイヤのクラウン補強材に対する熱収縮性繊維材料製の第1補強材(110)のフーピング能力にとって特に有益であることが判明している。
【0046】
上記パラメーターCTおよびFcは、区別することなく、ラミネートおよびその後タイヤに組込む前の接着剤コーティング初期繊維補強材において測定してもよく、或いは、別法として、これらの補強材において、これらの補強材を加硫タイヤの中心領域から引抜き、好ましくは“脱ゴム処理”(即ち、これらの補強材を層C1中でコーティングしているゴムを除去)した時点で測定してもよい。
【0047】
任意の熱収縮性繊維材料が適しており、特にまた好ましくは、上記で説明した収縮特性CTを満たす繊維材料が適している。好ましくは、この熱収縮性繊維材料は、ポリアミド、ポリエステルおよびポリケトンからなる群から選ばれる。ポリアミドのうちでは、特に、ポリアミドPA−4,6、PA−6、PA−6,6、PA−11またはPA−12を挙げることができる。ポリエステルのうちでは、例えば、PET(ポリエチレンテレフタレート)、PEN (ポリエチレンナフタレート)、PBT (ポリブチレンテレフタレート)、PBN (ポリブチレンナフタレート)、PPT (ポリプロピレンテレフタレート)およびPPN (ポリプロピレンナフタレート)を挙げることができる。
本発明によれば、上記第1補強材(110)を製造する熱収縮性繊維材料は、ポリアミドまたはポリエステル、好ましくはポリアミドである。
【0048】
定義によれば、第2(120)および第3(130)補強材は、鋼モノフィラメントである。好ましくは、鋼は、タイヤ用の“鋼コード”タイプのコードにおいて使用する鋼のような炭素鋼である;しかしながら、他の鋼、例えば、ステンレススチールまたは他の合金を使用することも勿論可能である。
【0049】
1つの好ましい実施態様によれば、炭素鋼を使用する場合、その炭素含有量(鋼の質量%)は、0.5〜1.2%、より好ましくは0.7%〜1.0%の範囲内である。本発明は、特に、標準張力(NT)または高張力(HT)鋼コードタイプの鋼、その場合、好ましくは2000MPaよりも高い、より好ましくは2500MPaよりも高い引張強度(Rm)を有する炭素鋼から製造した上記(第2および第3)補強材に当てはまる。また、本発明は、鋼コードタイプの超(super)高張力(SHT)鋼、超(ultra)高張力(UHT)鋼またはメガ張力(MT)鋼、その場合、好ましくは3000MPaよりも高い、より好ましくは3500MPaよりも高い引張強度(Rm)を有する炭素鋼から製造した上記(第2および第3)補強材にも当てはまる。これらの補強材の破断点全体伸び(At)は、弾性伸びと塑性伸びの和であって、好ましくは2.0%よりも大きい。
【0050】
鋼から製造した上記(第2および第3)補強材に関する限り、破断点力、Rmで示す破断点強度(MPaでの)、およびAtで示す破断点伸び(%での全体伸び)の測定は、1984年のISO規格6892に従って張力下に実施する。
【0051】
使用する鋼は、特に炭素鋼またはステンレススチールのいずれであれ、それ自体、例えば、鋼モノフィラメントの加工性または上記補強材および/またはタイヤそれら自体の磨耗特性、例えば、接着特性、耐腐蝕性をまたはエージングに対する耐性でさえも改良する金属層でコーティングし得る。1つの好ましい実施態様によれば、使用する鋼は、黄銅(Zn‐Cu合金)または亜鉛の層で被覆する;スレッド製造過程においては、スレッドを黄銅または亜鉛でコーティングすることは、スレッドが延伸するのをより容易にし且つスレッドがゴムにより良好に結合するようにすることを思い起こされたい。しかしながら、これらの補強材は、例えばこれらスレッドの耐腐蝕性および/またはこれらスレッドのゴムへの接着性を改良する機能を有する黄銅または亜鉛以外の金属の薄層、例えば、Co、Ni、Alの、或いはCu、Zn、Al、Ni、Co、Snの2種以上の配合物の合金の薄層で被覆することができる。
【0052】
上記多層複合ラミネートを製造するゴム組成物の各層(C1、C2、C3) (以下、“ゴムの層”)は、少なくとも1種のエラストマーと少なくとも1種の充填剤をベースとする。
【0053】
好ましくは、上記ゴムは、ジエンゴム、即ち、思い起こされるとおり、ジエンモノマー、即ち、2個の炭素−炭素二重結合を担持し、これらの結合が共役型であるかどうかを問わないモノマーに少なくとも1部由来する任意のエラストマー(即ち、ホモポリマーまたはコポリマー) (単一エラストマーまたはエラストマーブレンド)である。
【0054】
このジエンエラストマーは、さらに好ましくは、ポリブタジエン(BR)、天然ゴム(NR)、合成ポリイソプレン(IR)、ブタジエンコポリマー、イソプレンコポリマーおよびこれらのエラストマーのブレンドからなる群から選ばれる;そのようなコポリマーは、特に、ブタジエン/スチレンコポリマー(SBR)、イソプレン/ブタジエンコポリマー(BIR)、イソプレン/スチレンコポリマー(SIR)およびイソプレン/ブタジエン/スチレンコポリマー(SBIR)からなる群から選ばれる。
【0055】
1つの特に好ましい実施態様は、“イソプレン”エラストマー、即ち、イソプレンホモポリマーまたはコポリマー、換言すれば、天然ゴム(NR)、合成ポリイソプレン(IR)、イソプレンの各種コポリマーおよびこれらのエラストマーの混合物からなる群から選ばれるジエンエラストマーを使用することからなる。
【0056】
イソプレンエラストマーは、好ましくは、天然ゴムまたはシス‐1,4タイプの合成ポリイソプレンである。これらの合成ポリイソプレンのうちでは、好ましくは、90%よりも多い、さらにより好ましくは98%よりも多いシス‐1,4結合含有量(モル%)を有するポリイソプレンを使用する。1つの好ましい実施態様によれば、ゴム組成物の各層は、50〜100phrの天然ゴムを含む。他の好ましい実施態様によれば、上記ジエンエラストマーは、全体的にまたは部分的に、例えば、例えばBRタイプのもう1つのエラストマーとのブレンドとしてまたは単独で使用するSBRエラストマーのようなもう1つのジエンエラストマーからなり得る。
【0057】
各ゴム組成物は、1種または数種のジエンエラストマー;さらにまた、例えば、カーボンブラックまたはシリカのような補強用充填剤、カップリング剤、エージング防止剤、酸化防止剤、可塑剤または増量剤オイル(後者は芳香族性または本質的に非芳香族性(特に、そうであったとしても極めて弱い芳香族性であり、例えば、ナフテンまたはパラフィンタイプの高または好ましくは低粘度を有するオイル、MESまたはTDAEオイル)である)、高ガラス転移温度(30℃よりも高い)を有する可塑化用樹脂、生状態の組成物の加工性を改良する薬剤、粘着付与樹脂、戻り防止剤、例えばHMT (ヘキサメチレンテトラミン)またはH3M (ヘキサメトキシメチルメラミン)のようなメチレン受容体および供与体、補強用樹脂(レゾルシノールまたはビスマレイミドのような)、金属塩タイプ、例えば、特にコバルト、ニッケルまたはランタニドの塩の既知の接着促進剤系、架橋または加硫系のようなタイヤの製造を意図するゴムマトリックス中で通常使用する添加剤の全部または数種を含有し得る。
【0058】
好ましくは、上記ゴム組成物用の架橋系は、加硫系と称される、即ち、イオウ(またはイオウ供与剤)と一時加硫促進剤とをベースとする系である。各種既知の加硫活性化剤または二次促進剤をこの基本加硫系に添加し得る。イオウは、0.5phrと10phrの間の好ましい含有量で使用し、一時加硫促進剤、例えば、スルフェンアミドは、0.5phrと10phrの間の好ましい含有量で使用する。補強用充填剤、例えば、カーボンブラックおよび/またはシリカの量は、好ましくは30phrよりも多く、特に30phrと100phrの間の量である。
【0059】
全てのカーボンブラック、特に、タイヤにおいて通常使用するHAF、ISAF、SAFタイプのブラック類(タイヤ級ブラック類と称するブラック類)がカーボンブラックとして適している。後者のうちでは、さらに詳細には、(ASTM)級300、600または700のカーボンブラック類(例えば、N326、N330、N347、N375、N683、N772)が挙げられる。450m
2/gよりも低い、好ましくは30〜400m
2/gのBET表面積を有する沈降または焼成シリカは、シリカとして特に適している。
【0060】
当業者であれば、本説明に照らして、上記ゴム組成物の配合を如何に調整して所望レベルの性質(特に弾性モジュラス)を達成し且つ上記配合を意図する特定の用途に合うように適応させるかは承知していることであろう。
【0061】
好ましくは、各ゴム組成物は、架橋状態においては、4MPaと25MPaの間、より好ましくは4MPaと20MPaの間の、10%伸びでの伸長中割線モジュラスを有する;特に5MPaと15MPaの間の値は、特に適していることが判明している。モジュラス測定は、他で断らない限り、1998年の規格ASTM D 412 (試験標本“C”)従い、張力下に実施する:“真”の割線モジュラス(即ち、試験標本の実際の断面に対するモジュラス)を、10%の伸びでの2回目の伸びにおいて(即ち、順応サイクル後に)測定し、この場合、これをMsで示し、MPaで表す(1999年の規格ASTM D 1349に従う標準の温度および相対湿度条件下に)。
【0062】
第1、第2および第3補強材を上述したそれら3つのそれぞれのゴム層(C1、C2、C3)に接着させるためには、任意の適切な接着剤系、例えば、第1の繊維補強材に関する限りは、“RFL”(レゾルシノール‐ホルムアルデヒドラテックス)または等価のタイプの繊維接着剤、或いは、例えば、鋼から製造した第2および第3補強材に関する限りは黄銅または亜鉛のような接着コーティングを使用し得る;しかしながら、普通の、即ち、コーティングしていない鋼を使用することも可能である。
【実施例】
【0063】
6.
発明の典型的な実施態様
以下の試験により、本発明に従う多層複合ラミネートが、その特異な構造によって、タイヤの重量を、ひいては転がり抵抗性を、ケーブル加工していない鋼モノフィラメントを使用する故により低いコストでもって低めることを可能にし、このことの全てを、何よりも先ずこれらタイヤのコーナリング剛性または全体的耐久性を損なうことなく達成していることを実証する。
【0064】
これらの比較試験は、通常の方法で製造し、多層複合ラミネートの構造を除いては全ての点で同一であるサイズ205/55 R16の乗用車タイヤにおいて実施した。
【0065】
A)
試験するタイヤ
これらの実施例の本発明に従うタイヤにおいては、
図2の略図に従い、各繊維補強材(110)は、繊維上で(個々に)およそ200回転/mの捻れで撚られた(捻り強糸(オーバーツイスト)形態の)、ポリアミド(ナイロン6,6、力価140tex)製のマルチフィラメント繊維である。これらのマルチフィラメント繊維(10)の直径D1 (思い起すとおり、本発明に従う上記ラミネートおよびタイヤにおいて測定したエンベロープ直径)は、およそ0.47mmに等しく;そのCTはおよそ5.3%に等しく、その収縮力Fcはおよそ12Nに等しい。
【0066】
上記繊維補強材(113)をコーティングするゴムの第1層(C1)は、繊維補強材のカレンダー加工においては一般的であって、天然ゴム、カーボンブラック、加硫系および通常の添加剤をベースとするゴム組成物である;上記ポリアミド補強材とゴム層間の接着は、既知の方法で、例えば、“RFL”(レゾルシノール‐ホルムアルデヒドラテックス)タイプの単純な繊維接着剤を使用して確保する。
この第1層(C1)を製造するには、上記繊維補強材(113)を、各々ほぼ0.25mmの厚さを有する生(未加硫)状態のゴム組成物の2枚の層間で、当業者にとって周知の方法でカレンダー加工した。
【0067】
金属補強材(120)および(130)は、およそ3200MPaの強度Rm (破断力226N)、2.3%の全体伸びAtおよび0.30mmの直径(D2、D3)を有するSHTタイプのマイクロアロイ型炭素鋼モノフィラメント(0.9%の炭素)である。
【0068】
これらの鋼モノフィラメント(120、130)をコーティングするゴムの第2(C2)および第3(C3)層は、金属タイヤベルトプライのカレンダー加工においては一般的であって、天然ゴム、カーボンブラック、加硫系、および接着促進剤としてのコバルト塩のような通常の添加剤を典型的にベースとする組成物からなる。
【0069】
これらの2つの層(C2、C3)を製造するには、モノフィラメント(130)を、各々およそ0.32mmの厚さを有する生(未加硫)状態のゴム組成物の2枚の層間で、当業者にとって周知の方法でカレンダー加工した。
【0070】
上記第1層(C1)中の上記繊維補強材(110)の密度d
1は、軸方向(Y)において測定して、およそスレッド数120本/dmに等しく、第2(120)および第3(130)鋼モノフィラメントの密度(それぞれ、d
2およびd
3)は、およそスレッド数140本/dmに等しい。
【0071】
従って、正中面Mの両側上の−5cmと+5cmの間に軸方向に延びている範囲内においては、およそ120本(即ち、各側上に60本)の繊維補強材(113)並びにおよそ140本(即ち、各側上に70本)の第2(120)および第3(130)の鋼モノフィラメントが存在する。
【0072】
これらの繊維補強材(110)を鋼モノフィラメント(120)から隔てているゴムの測定平均厚さEz
1は、およそ0.32mmに等しく;一方、鋼モノフィラメント(120)を他の鋼モノフィラメント(130)から隔てているゴムの平均厚さEz
2は、およそ0.45mmであった。本発明に従うラミネートの全体平均厚さは、半径方向において測定して、およそ2.3mmに等しかった。
【0073】
従って、本発明に従うこの実施例においては、特に好ましい下記の3つの不等式が実際に満たされていることに注目されたい:
0.20 < Ez
1 / (Ez
1+D1+D2) < 0.35
0.30 < Ez
2 / (Ez
2+D2+D3) < 0.50
0.30 < (Ez
1+Ez
2) / (Ez
1+Ez
2+D1+D2+ D3) < 0.45
【0074】
上記のデータ(D1、D2、D3、Zに沿ったEz
1およびEz
2、d
1、d
2、Yに沿ったd
3)は、全て、ベルトの中央部分を通して、上述したように、正中面(M)の両側上の5cmにおいて撮影したタイヤの半径断面の写真においてオペレーターが実験によって測定した平均値である。
【0075】
使用する対照タイヤは、以下の技術的特徴を除いて本発明のタイヤと同じ構造を有する:金属補強材(120、130)は、14mmのピッチで一緒にケーブル加工した直径0.30mmの2本のスレッドからなるSHT鋼の通常の“2.30”設計コード(およそ470Nの破断力)からなる;これらのコードの直径(エンベロープ)は、従って、0.6mmである;これらコードは、およそスレッド数85本/dmの密度で配置されている;補強材(110)は、ポリアミド 6,6製の合撚糸である;各合撚糸は、250回転/メートルで一緒に合撚し(直接ケーブル加工装置において)、およそ0.66mmに等しい直径D1を有する140texの2本の紡糸(マルチフィラメント繊維)からなる;これらの合撚糸のCTはほぼ7%に等しく、これら合撚糸の収縮力Fcはおよそ28Nに等しい;ポリアミド6,6合撚糸(110)を鋼コード(120)から隔てているゴムの測定平均厚さEz
1はおよそ0.30mmであり、一方、スチールコード(120)を隔てているゴムの測定平均厚さEz
2はおよそ0.50mmであった。ラミネートの全体平均厚さは、半径方向において測定して、およそ3.0mmに等しかった。
【0076】
上記2つの金属層を製造するには、“2.30”コードを、各々およそ0.40mmの厚さを有する生(未加硫)状態のゴム組成物の2枚の層間で、当業者にとって周知の方法でカレンダー加工した。
【0077】
これらの対照タイヤの多層複合ラミネートにおいては、本発明の場合と異なり、下記の2つの不等式が満たされていないことに特に注目し得る:
0.20 < Ez
1 / (Ez
1+D1+D2) < 0.30
0.30 < Ez
2 / (Ez
2+D2+D3) < 0.50
【0078】
B)
比較試験の結果
装置において実施した最初の1連の試験においては、先ずは最初に、本発明のタイヤは、対照タイヤと比較したとき、下記のことをもたらしていることが注目された:
・多層複合ラミネートにおけるおよそ18%の軽量化、即ち、およそ3%のタイヤ自体においての軽量化;
・転がり抵抗性におけるおよそ2%(即ち、およそ0.150kg/トン)の改良;および、
・予期に反して、このかなりのベルトの軽量化にもかかわらず、ドリフトスラストの極めて小さい低下(およそ−3%の)。
【0079】
転がり抵抗性は、ISO 87-67 (1992年)法に従い、動力計において測定した。ドリフトスラストを測定するには、各タイヤを適切な自動機械(MTS社が販売している“フラットトラック”タイプの装置)上で80km/時の一定速度で駆動させ、“Z”で示す荷重を1度のコーナリング角度に対して変動し、コーナリング剛性または“D”で示すドリフトスラスト(スラストをゼロドリフトにおいて補正)を、既知の方法において、センサーを使用して、車輪に対する横荷重をこの荷重Zの関数として記録することによって測定した;ドリフトスラストは、原点におけるD(Z)曲線の勾配である。
【0080】
次に、実際の走行試験を、この場合、上記機械または車両(Volkswagen Golf)のいずれかにおいて実施して、対照タイヤおよび本発明に従うタイヤの耐久性を種々の運転条件下に比較した。
先ずは最初に、極めて高速運転における耐久性を、各タイヤを、上記装置上で、予め設定した制限速度(255km/時)までまたは必要に応じての試験タイヤが試験終了前に破壊するまでの所定の段階での漸進的速度上昇に供することによって評価した。
【0081】
最後に、極めて過酷な条件下での極めて長時間運転(40 000km)における耐久性も、自動走行装置上で、一定速度での各種所定圧および過荷重サイクルに従い試験した;その後、試験した各タイヤを剥ぎ取り、その多層複合ラミネートの全体的状態を、特に、知られている通り最大の加熱を被るタイヤの肩領域において観察した。
【0082】
この第2の試験群の終了時において、本発明に従うタイヤは、対照タイヤと比較して、当業者にとっては驚くべき形で、下記を示すことが判明した:
・高速走行における等価の耐久性(両例において試験したタイヤの顕著な破壊はない):
・そして、最後に、極めて苛酷な走行条件下での極めて長時間運転における等価の耐久性(対照複合ラミネートと比較した本発明に従う多層複合ラミネートの等価の全体的な状態)。
【0083】
従って、上記で説明した本質的な技術的特徴の全てが観察されることを条件として、特に、一方では、繊維自体において個々に撚られたマルチフィラメント繊維の形の、さらにまた、その熱収縮性が好ましく制御されている繊維円周方向補強材(110)と、他方では、小直径モノフィラメントの形の金属補強材(120、130)とを、推奨された構築限界内で使用することを条件として、タイヤベルトの全体的厚さをかなり減じることが、加工性並びに第1層の円周方向補強材によって付与される一次的フーピング機能と他の2つの層の金属補強材によって付与される二次的剛性化機能の区別化を損なうことなくさらに可能であることを見出した。
【0084】
予期に反して、本発明は、乗用車またはバン類タイヤの重量と転がり抵抗性を、コーナリング剛性、従って、道路保持性およびハンドリング性を有意に損なうことなく低下させると同時に、特に苛酷な走行条件下でさえも等価である走行耐久性を提供することを可能にしている。