【実施例】
【0015】
(実施例1)
上記内燃機関用の過給装置にかかる実施例について、
図1〜
図4を用いて説明する。
本例の内燃機関用の過給装置1は、
図1に示すように、タービンインペラ2を備えるタービン部20と、タービンインペラ2に接続されたコンプレッサインペラ3を備えるコンプレッサ部30とを有するターボチャージャ10を備える。さらに、内燃機関用の過給装置1には、タービン部20に内燃機関100の排ガスを供給する排ガス供給路5と、タービン部20から吐出された排ガスを外部に排出する排ガス通路6が備えられる。また、コンプレッサ部30に吸入される吸気を供給する吸気通路7と、コンプレッサ部30から吐出された圧縮空気を内燃機関100に供給する圧縮空気通路33と、圧縮空気通路33を流通する圧縮空気を冷却するインタークーラ108と、排ガス通路6を流通する排ガスの少なくとも一部を吸気通路7に還流するLPL−EGR通路8とが設けられている。
そして、圧縮空気通路33には、インタークーラ108よりも上流に、圧縮空気中の異物を捕集するサイクロン式の捕集装置9が設けられている。
【0016】
本例の内燃機関用の過給装置1の構成について、以下に詳述する。
図1に示すごとく、内燃機関用の過給装置1において、タービン部20には排ガス供給路5及び排ガス通路6が接続されており、排ガス供給路5は自動車等の内燃機関100のエキゾーストマニホールド101に接続されている。また、タービン部20には、タービンインペラ2をバイパスさせるウェイストゲートバルブ60とウェイストゲートバルブ60を駆動するアクチュエータ61が設けられている。排ガス通路6の下流には、排ガス用三元触媒106、DPF105が設けられている。LPL−EGR通路8は、DPF105の下流において排ガス通路6に接続されている。LPL−EGR通路8には、LPL−EGR通路8を流通するEGRガスを冷却するEGRクーラ53と、LPL−EGR通路8を開閉してEGRガスの流量を規定するEGRバルブ51が設けられており、EGRバルブ51には、EGRバルブ51の開閉を制御するガス流量調節部52が接続されている。ガス流量調節部52は、当該自動車に搭載されたECU(エンジンコントロールユニット)97に接続されている。
【0017】
図1に示すように、タービンインペラ2はロータシャフト4を介して、コンプレッサインペラ3と連結されている。ロータシャフト4は軸受ハウジング43において回転可能に軸受けされている。これにより、タービンインペラ2の回転に伴い、コンプレッサインペラ3が回転するように構成されている。
【0018】
図1に示すように、コンプレッサインペラ3を備えるコンプレッサ部30の吸入口31には、吸気通路7が接続されている。吸気通路7にはエアクリーナ107が設けられており、エアクリーナ107の下流には、内燃機関100のクランクケース内からブローバイガスが流出されるPCV通路11と、LPL−EGR通路8とが接続されている。また、コンプレッサ部30には、圧縮空気を吐出するアウトレットポート32が設けられており、アウトレットポート32には圧縮空気通路33が接続されている。圧縮空気通路33には、インタークーラ108が設けられている。そして、圧縮空気通路33には、インタークーラ108の上流に捕集装置9が設けられている。本例では、捕集装置9は圧縮空気通路33において、アウトレットポート32の直後に位置している。
【0019】
内燃機関100のエキゾーストマニホールド101から排出された排ガスは、排ガス供給路5によってタービン部20に供給されて、タービンインペラ2を回転させる。そして、タービンインペラ2の回転力によってロータシャフト4を介してコンプレッサインペラ3を回転させる。コンプレッサインペラ3の回転により吸気負圧が生じ、吸気通路7からコンプレッサインペラ2に向かって吸気が吸引されることとなる。吸気は、コンプレッサ部30内に吸入されて圧縮された後、コンプレッサ部30からアウトレットポート32を通じて圧縮空気通路33に吐出される。そして、当該圧縮空気は、捕集装置9を通じてインタークーラ108及びインテークマニホールド102を介して内燃機関100に送り込まれる。
【0020】
捕集装置9は、
図2に示すように、サイクロン式の捕集装置である。捕集装置9は、本体部90、吸気導入部91、吸気吸引部92、及び貯留部93を有する。本体部90は、軸方向(鉛直方向)Yにおける上側が円筒状に形成されるとともに軸方向Yにおける下側が略円錐状に形成されている。吸気導入部91は、本体部90の側壁90aに接続されている。吸気吸引部92は、本体部90の軸方向Yにおける上部に接続されている。貯留部93は、本体部90の軸方向Y下部に接続されている。本例では、捕集装置9は、吸気導入部91が本体部90の接線方向に延びるように接続された接線流入式であるとともに、貯留部93と吸気吸引部92とが軸方向Yにおいて本体部90に対して反対側に設けられる反転型のサイクロン式の捕集装置である。
【0021】
図2に示すように、アウトレットポート32(
図1参照)から吐出された圧縮空気Pはその過給圧により、圧縮空気通路33を通じて吸気導入部91から本体部90内に流入してくる。本体部90に流入した圧縮空気Pが、本体部90における円筒状の内周面に沿って流通することにより本体部90内を旋回して旋回流Rが生じ、圧縮空気Pに遠心力が生じることとなる。これにより、圧縮空気Pにおいて、EGRガスに含まれていた凝縮水などの異物が本体部90の内周面に凝集されて捕集されることとなる。捕集された捕集物は重力によって、本体部90の軸方向Y下方の貯留部93に貯留されることとなる。
【0022】
図1に示すように、貯留部93には、貯留部93に貯留された上記捕集物を排出する捕集物排出路94と、捕集物排出路94を開閉する排出路開閉部としての排出路バルブ95と、排出路バルブ95の開閉状態を制御する開閉制御部96とが接続されている。貯留部93に貯留された捕集物は、開閉制御部96により、排出路バルブ95が開放されることにより、捕集物排出路94を通じて外部に排出される。
【0023】
本例では、開閉制御部96は、ECU97を介して伝達されるイグニッションスイッチ(図示せず)のオン状態及びオフ状態に基づいて、排出路バルブ95の開閉状態を制御する。具体的には、
図3に示すように、開閉制御部96はECU97からイグニッションスイッチがオン状態であるとの信号IGSW−ONを受信すると(ステップS1におけるYes)、排出路バルブ95を閉塞する(ステップS2)。これにより、貯留部93内の捕集物が貯留された状態となる。開閉制御部96がECU97からイグニッションスイッチがオフ状態であるとの信号IGSW−OFFを受信すると(ステップS1におけるNo及びステップS3におけるYes)、開閉制御部96は排出路バルブ95を開放する(ステップS4)。これにより、貯留部93内の捕集物が捕集物排出路94を通じて外部に排出されることとなる。
【0024】
したがって、自動車の走行時及びアイドリング時などの内燃機関100が稼働している場合には、貯留部93内の捕集物は貯留された状態に維持され、当該内燃機関100が停止している場合には、貯留部93内の捕集物の排出が行われることとなる。
【0025】
さらに、圧縮空気通路33には、捕集装置9をバイパスさせるバイパス通路80が設けられている。バイパス通路80には、該バイパス通路80を開閉するバイパス通路開閉部としてのバイパス弁81と、バイパス弁81の開閉状態を制御するバイパス通路開閉制御部82とを備える。バイパス通路開閉制御部82は、ECU97に接続されている。
【0026】
そして、バイパス通路開閉制御部82は、LPL−EGR通路開閉制御部としてのガス流量調節部52によってLPL−EGR通路開閉部としてのEGRバルブ51が開かれているときには、バイパス弁81を閉じるように制御する。一方、ガス流量調節部52によってEGRバルブ51が閉じられているときには、バイパス弁81を開くように制御するように構成されている。
【0027】
すなわち、
図4に示すように、バイパス通路開閉制御部82におけるバイパス弁81の開閉制御は以下の通りに行われる。まず、ECU97はEGRバルブ51が開いているか否か判断する(ステップS11)。ECU97は、EGRバルブ51が開いていると判断したときには(ステップS11のYes)、バイパス通路開閉制御部82によりバイパス弁81を閉じるように制御する(ステップS12)。ECU97は、EGRバルブ51が閉じていると判断したときには(ステップS11のNo)、バイパス通路開閉制御部82によりバイパス弁81を閉じるように制御する(ステップS13)。これにより、EGRバルブ51が開放状態ではバイパス弁81は閉塞状態となり、EGRバルブ51が閉塞状態ではバイパス弁81は開放状態となるように、すなわち、両者の開閉状態が反対となるように同期して制御される。
【0028】
次に、本例の内燃機関用の過給装置1における作用効果について、詳述する。
内燃機関用の過給装置1によれば、内燃機関100の排ガスによりタービンインペラ2が回転することにより介してコンプレッサインペラ3が回転し、吸気通路7から供給された空気がコンプレッサインペラ3によって圧縮される。圧縮空気Pは圧縮空気通路33を流通し、サイクロン式の捕集装置9を通じてインタークーラ108に到達したのち、内燃機関100に供給される。サイクロン式の捕集装置9では、当該圧縮空気Pの過給圧により捕集装置9内に旋回流Rが生じる。そして、旋回流Rによって圧縮空気Pに遠心力が生じて、EGRガスに含まれていた凝縮水などが圧縮空気Pから分離されることとなる。これにより、捕集装置9の下流に接続されたインタークーラ108に凝縮水が付着することを抑制することができ、インタークーラ108の腐食を抑制することができる。そして、捕集装置9は圧縮空気Pが流通する圧縮空気通路33に設けられているため、捕集装置9に流入された圧縮空気Pに旋回流Rを発生させるエネルギーとして、圧縮空気Pの過給圧を有効に利用することができる。これにより、フィルタ式の捕集装置を備える場合に比べて内燃機関100における吸気効率の向上を図ることができる。
【0029】
本例では、捕集装置9は圧縮空気通路33において、アウトレットポート32の直後に位置している。これにより、捕集装置9において、圧縮空気Pに旋回流Rを発生させるエネルギーとして、圧縮空気Pの過給圧を一層有効に利用することができる。
【0030】
上記内燃機関用の過給装置1においては、捕集装置9としてサイクロン式の捕集装置を採用しているため、凝縮水などの異物を効率的に捕集することができる。これにより、複数のフィルタを設ける場合に比べて、圧損を抑制することができ、内燃機関100における吸気効率の向上を図ることができる。
【0031】
本例では、圧縮空気通路33には、捕集装置を9バイパスさせるバイパス通路80と、該バイパス通路80を開閉するバイパス通路開閉部としてのバイパス弁81と、該バイパス弁81の開閉状態を制御するバイパス通路開閉制御部82とを備える。これにより、バイパス通路開閉制御部82により、所望のタイミングでバイパス弁81を開いてバイパス通路80を流通させることによって、圧縮空気通路33を流通する圧縮空気Pが捕集装置9をバイパスすることができる。その結果、圧縮空気通路33における圧縮空気Pの流通抵抗を減少させることができ、内燃機関100における吸気効率の低下を防止することができる。
【0032】
さらに本例では、内燃機関用の過給装置1は、LPL−EGR通路8を開閉するLPL−EGR通路開閉部としてのEGRバルブ51を備えるとともに、バイパス通路開閉制御部82は、EGRバルブ51が開いているときには、バイパス通路開閉部82を閉じるように制御し、EGRバルブ51が閉じているときには、バイパス通路開閉部82を開くように制御するように構成されている。これにより、EGRガスがコンプレッサ部30に供給されるときにのみ、圧縮空気Pが捕集装置9を通じるようにし、EGRガスがコンプレッサ部30に供給されないときは、圧縮空気Pが捕集装置9をバイパスするようにしている。
【0033】
本例では、捕集装置9により捕集された捕集物を貯留する貯留部93と、貯留部93に貯留された捕集物を排出する捕集物排出路94と、捕集物排出路94を開閉する排出路開閉部(排出路バルブ95)と、排出路開閉部(排出路バルブ95)の開閉状態を制御する開閉制御部96とを備える。これにより、開閉制御部96によって所望のタイミングで貯留部93に貯留された捕集物を排出することができ、環境に対する影響を低減することができる。
【0034】
本例では、サイクロン式の捕集装置9として、接線流入式であって反転型のものを採用したが、これに限らない。捕集装置9はサイクロン式であれば良く、本例の接線流入式に替えて、吸気導入部91が軸方向Yと平行に本体部90の上部に接続されるとともに、本体部90内に圧縮空気Pに旋回流を与えるためのガイドベーンを備えた軸流式を採用してもよい。また、本例の反転型に替えて、貯留部93と吸気吸引部92とが本体部90に対して同一側に設けられる直進型を採用してもよい。
【0035】
以上のごとく、本例によれば、圧縮空気を冷却するためのインタークーラ108の腐食を防止するとともに、フィルタ式の捕集装置を備える場合に比べて内燃機関100の吸気効率の向上を図ることができる内燃機関用の過給装置1を提供することができる。