特許第6386688号(P6386688)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 山崎 貴弘の特許一覧

<>
  • 特許6386688-簡易型非常用電力供給装置 図000002
  • 特許6386688-簡易型非常用電力供給装置 図000003
  • 特許6386688-簡易型非常用電力供給装置 図000004
  • 特許6386688-簡易型非常用電力供給装置 図000005
  • 特許6386688-簡易型非常用電力供給装置 図000006
  • 特許6386688-簡易型非常用電力供給装置 図000007
  • 特許6386688-簡易型非常用電力供給装置 図000008
  • 特許6386688-簡易型非常用電力供給装置 図000009
  • 特許6386688-簡易型非常用電力供給装置 図000010
  • 特許6386688-簡易型非常用電力供給装置 図000011
  • 特許6386688-簡易型非常用電力供給装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6386688
(24)【登録日】2018年8月17日
(45)【発行日】2018年9月5日
(54)【発明の名称】簡易型非常用電力供給装置
(51)【国際特許分類】
   H02J 9/08 20060101AFI20180827BHJP
   H02J 9/06 20060101ALI20180827BHJP
【FI】
   H02J9/08
   H02J9/06 120
【請求項の数】8
【全頁数】15
(21)【出願番号】特願2018-94985(P2018-94985)
(22)【出願日】2018年5月16日
(62)【分割の表示】特願2017-229643(P2017-229643)の分割
【原出願日】2017年11月29日
【審査請求日】2018年5月30日
【早期審査対象出願】
(73)【特許権者】
【識別番号】518001771
【氏名又は名称】山崎 貴弘
(74)【代理人】
【識別番号】100080090
【弁理士】
【氏名又は名称】岩堀 邦男
(72)【発明者】
【氏名】林 義正
(72)【発明者】
【氏名】山崎 正弘
【審査官】 赤穂 嘉紀
(56)【参考文献】
【文献】 特開2001−045681(JP,A)
【文献】 特開2013−230063(JP,A)
【文献】 特開昭52−113408(JP,A)
【文献】 国際公開第2009/054154(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 9/00−11/00
(57)【特許請求の範囲】
【請求項1】
排気量500cc超え〜5000ccの小型乃至中型のLPG用のガスエンジンと、該ガスエンジンの起動により発電する交流発電機と、電源用の直流用の蓄電池と、エンジン用バッテリと、複数のオン・オフスイッチと、該オン・オフスイッチを制御する総合コントロールユニットとを備え、
前記ガスエンジンのシリンダには2個の点火プラグが設けられる共に、前記シリンダを平面的に見て、第1の点火プラグ,吸気バルブ,第2の点火プラグ,及び排気バルブが周回りに配され、且つ前記吸気バルブからの吸気が前記シリンダ内を平面的に見て、接線方向乃至接線に近似する方向に流入するように構成されてなり、
通常時においては、前記オン・オフスイッチを介して商用電源の電力供給側を通電状態とし、何等かの事故等により前記商用電源が喪失した瞬間に前記蓄電池からインバータを介して応急的に前記商用電源と同等の電圧で同等の周波数の交流電力を前記電力供給側に給電すると共に、前記商用電源が失した瞬間から前記エンジン用バッテリにて前述した構成の前記ガスエンジンを起動させて該起動力により前記交流発電機にて発電し、
該発電中の前記ガスエンジンが所定の回転数に達したときに前記蓄電池からの電力の供給を中止すると同時に、前記ガスエンジンで発電した交流電力を前記電力供給側に給電し、
前記商用電源の復帰時まで前記ガスエンジンのみの電力にて給電し続けることとしてなることを特徴とする簡易型非常用電力供給装置。
【請求項2】
請求項1に記載の簡易型非常用電力供給装置において、前記事故時のガスエンジンによる電力にても、或いは通常時の電力にても前記蓄電池及び前記エンジン用バッテリに対して充電作用を提供することを特徴とする簡易型非常用電力供給装置。
【請求項3】
請求項1又は2に記載の簡易型非常用電力供給装置において、前記ガスエンジンの前記吸気バルブ,前記点火プラグ,前記排気バルブ及び前記点火プラグが4等分に配されてなることを特徴とする簡易型非常用電力供給装置。
【請求項4】
請求項1,2又は3に記載の簡易型非常用電力供給装置において、前記ガスエンジンのシリンダ内に流入した合気の主流が前記点火プラグの点火点を直撃せず、かつその近傍を流れるように構成されてなることを特徴とする簡易型非常用電力供給装置。
【請求項5】
請求項1,2,3又は4に記載の簡易型非常用電力供給装置において、前記ガスエンジンを4気筒直列構成としてなることを特徴とする簡易型非常用電力供給装置。
【請求項6】
請求項1,2,3,4又は5に記載の簡易型非常用電力供給装置において、前記ガスエンジンと前記交流発電機との間にフライホイールが設けられてなることを特徴とする簡易型非常用電力供給装置。
【請求項7】
請求項6に記載の簡易型非常用電力供給装置において、前記フライホイールと前記交流発電機とはスプライン結合されてなることを特徴とする簡易型非常用電力供給装置。
【請求項8】
請求項1,2,3,4,5,6又は7に記載の簡易型非常用電力供給装置において、前記オン・オフスイッチをオン・オフリレースイッチとしたことを特徴とする簡易型非常用電力供給装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、小型乃至中型のガスエンジン及び交流発電機を用いて、複数回又は何度でも停電事故が間欠的に続いても、高効率に非常用電力を供給できる簡易型非常用電力供給装置に関する。
【背景技術】
【0002】
災害などに備え家庭用や標識などで使う25kW未満の停電時の小型乃至中型の非常用電力供給装置(無停電電源装置など)としては、蓄電池式とエンジンにより発電する方式がある。蓄電池によるものは停電から点灯までの時間が短いことや、簡便なことなどの長所があるが質量が嵩むという大きな短所がある。
【0003】
例えば、1kWの電力を72時間(災害により破壊されたインフラの復旧の目処がつく3日間)供給する場合の蓄電池の質量を求めてみる。1kWは1kJ/sであるから72時間では、1kJ/s×72×3600s=259200kJとなる。しかし、蓄電池は直流であるので、これを交流に変換するインバータの効率を93%とすると、最低でも蓄電池には259200kJ/0.93=278710kJ(≒2797MJ)の電気エネルギ−を蓄えていなければならない。エネルギ密度(単位質量あたりの電気エネルギ)が大きなリチウムイオン電池でもせいぜい100Wh/kgであるので100J/s×3600s=360000J=360kj、すなわち1kgあたり360kjとなる。従って、蓄電池の質量は278710kJ/(360kJ/kg)=774kgの重さとなる。
【0004】
一方、エンジンによる発電は燃料が続く限り発電できるが、エンジンを始動して安定した電気出力を供給できるまでには数十秒の時間が必要であり、この間は停電が続くことになる。さらに前記のように小型乃至中型な装置では余力が少ないため要求電力(電気負荷)の急激な増大が生じた場合、エンジンの回転速度が低下して電力の供給が追いつかなくなったり、エンジンが停止してしまうことがある。このように、蓄電池式、エンジン発電機ともに大きな問題があった。
【0005】
また、交流無停電電源装置としては、特許文献1が存在するが、本文献は商用電源用ではないが、山間部や離島等にて用いられるもので、特に、周波数の低下をインバータ制御にて低下しないようにしたものであり、この装置にはエンジンは使用されてはいるが、構成としても全く相違している。
【0006】
また、特許文献2では、蓄電池及びエンジンにて無停電電源装置であるが、蓄電池の容量を小さくしてエンジンにて給電できるようにしたものであるが、特に、大災害などで、複数回に亘って、商用電源が喪失した場合には、引用文献2では到底対応できないものであった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平5−207684号公報
【特許文献2】特開2001−45681号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明が解決しようとする課題(技術的課題又は目的等)は、大規模の非常用発電装置ではなく、家庭用のみならず信号機や各種の標識、監視カメラなどに簡易に電力を供給する小型乃至中型の非常用電力供給装置を提供する。しかも、停電になると間髪をいれずに主電源と同じ電圧と周波数の交流電力を供給し、しかも3日間供給し続けることができ、特に、大災害などで、複数回に亘って、商用電源が喪失した場合にも、十分に対応できることを実現することにある。
【課題を解決するための手段】
【0009】
そこで、発明者は上記課題を解決すべく鋭意,研究を重ねた結果、請求項1の発明を、排気量500cc超え〜5000ccの小型乃至中型のLPG用のガスエンジンと、該ガスエンジンの起動により発電する交流発電機と、電源用の直流用の蓄電池と、エンジン用バッテリと、複数のオン・オフスイッチと、該オン・オフスイッチを制御する総合コントロールユニットとを備え、前記ガスエンジンのシリンダには2個の点火プラグが設けられる共に、前記シリンダを平面的に見て、第1の点火プラグ,吸気バルブ,第2の点火プラグ,及び排気バルブが周回りに配され、且つ前記吸気バルブからの吸気が前記シリンダ内を平面的に見て、接線方向乃至接線に近似する方向に流入するように構成されてなり、通常時においては、前記オン・オフスイッチを介して商用電源の電力供給側を通電状態とし、何等かの事故等により前記商用電源が喪失した瞬間に前記蓄電池からインバータを介して応急的に前記商用電源と同等の電圧で同等の周波数の交流電力を前記電力供給側に給電すると共に、前記商用電源が失した瞬間から前記エンジン用バッテリにて前述した構成の前記ガスエンジンを起動させて該起動力により前記交流発電機にて発電し、該発電中の前記ガスエンジンが所定の回転数に達したときに前記蓄電池からの電力の供給を中止すると同時に、前記ガスエンジンで発電した交流電力を前記電力供給側に給電し、前記商用電源の復帰時まで前記ガスエンジンのみの電力にて給電し続けることとしてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。
【0010】
請求項2の発明を、請求項1に記載の簡易型非常用電力供給装置において、前記事故時のガスエンジンによる電力にても、或いは通常時の電力にても前記蓄電池及び前記エンジン用バッテリに対して充電作用を提供することを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。請求項3の発明を、請求項1又は2に記載の簡易型非常用電力供給装置において、前記ガスエンジンの前記吸気バルブ,前記点火プラグ,前記排気バルブ及び前記点火プラグが4等分に配されてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。請求項4の発明を、請求項1,2又は3に記載の簡易型非常用電力供給装置において、前記ガスエンジンのシリンダ内に流入した合気の主流が前記点火プラグの点火点を直撃せず、かつその近傍を流れるように構成されてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。
【0011】
請求項5の発明を、請求項1,2,3又は4に記載の簡易型非常用電力供給装置において、前記ガスエンジンを4気筒直列構成としてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。請求項6の発明を、請求項1,2,3,4又は5に記載の簡易型非常用電力供給装置において、前記ガスエンジンと前記交流発電機との間にフライホイールが設けられてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。請求項7の発明を、請求項6に記載の簡易型非常用電力供給装置において、前記フライホイールと前記交流発電機とはスプライン結合されてなることを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決した。請求項8の発明を、請求項1,2,3,4,5,6又は7に記載の簡易型非常用電力供給装置において、前記オン・オフスイッチをオン・オフリレースイッチとしたことを特徴とする簡易型非常用電力供給装置としたことにより、前記課題を解決したものである。
【発明の効果】
【0012】
請求項1及び2の発明においては、本発明では、特に、大災害などで、複数回に亘って、商用電源が喪失した場合でも、良好に対応できる。これは、停電時であってもガスエンジンによっても蓄電できるためである。また、その蓄電池を停電の瞬間のみに使うことによりその質量を1/350以下とし、簡易なオン・オフスイッチによる制御で、蓄電池からの電力をエンジンにより発電した電力に切り換えるともに、その電力の一部で先に消費した電気エネルギを補充するため、繰り返しの停電にも十分に対応できる利点がある。
【0013】
さらに、請求項1及び2の発明では、小型乃至中型のエンジン故に不利な急激な負荷の増大に出力が追随しにくいことにも、回転慣性エネルギを増大させ、これを電気エネルギに換えて安定した電力を供給するとともに、蓄電池端子電圧と発電した交流を直流に変換後の電圧を同一にして、ごく短時間の電圧降下を防止する。また、LPGとした効果、日本全国のどこにでも存在しており、緊急時に極めて効率的な支援、復旧が可能にできる。
【0014】
請求項3〜5の発明では、特に、燃焼効率を上げ、ガスエンジンの立上げを良好にできる。請求項6及び7の発明では、ガスエンジンのエンストを防止できる。請求項8の発明では、リレー装置が簡易な構成で安価に提供できる等の効果を奏する。
【図面の簡単な説明】
【0015】
図1】電力会社や自家用発電機などの主電源から正常に電力が供給されているときの本発明の通常時の構成図である。
図2】主電源からの供給が途絶えた瞬間の本発明の非常用の蓄電池から電力を供給している供給状態の過渡状態の構成図である。
図3】非常時において、ガスエンジンが作動して交流発電機から安定して電力が供給しているときの状態の構成図である。
図4】本発明の動作状態を示す簡易なフローチャート図である。
図5】本発明のフローを示す図表である。
図6】(A)は単気筒箇所の平面図、(B)は(A)のY1−N−O−X線矢視拡大断面図、(C)は(A)のY2−Y2矢視拡大断面図である。
図7】単気筒箇所の拡大状態斜視図である。
図8】(A)はガスエンジンのクランクシャフトの一部とフライホイールとが分離状態の一部断面とする拡大側面図、(B)はクランクシャフトの一部にフライホイールを固着した後に、該フライホイールに交流発電機の駆動軸を取付けんとする一部断面とする拡大状態図である。
図9】(A)はフライホイール取付箇所の別の実施形態の一部断面とする一部拡大側面図、(B)は回転慣性モーメントを大きくしたフライホイールを取付けた状態下での急激な電気負荷の増大によるエンジン回転数の低下と出力回復特性の改善効果を比較するグラフである。
図10】直列4気筒とした本発明の主要部の平面図である。
図11】LPG流入箇所の作用状態図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面に基づいて説明すると、図1乃至図3は本発明の構成図及び動作を示した状態図である。図1が通常時の構成図であって、図2及び3が非常時の動作状態図である。これらの図において、本来なら単相交流や直流ならば配線は2本、3相交流なら3本の配線が必要であるが、図を見やすくするため1本の線で代表して、接続関係を表すことにする。
【0017】
図1は、発電所や工場や船舶などの自家発電設備から通常時において、商用電源が供給されているときの状態を示す。本発明の主要な構成としては、小型乃至中型のガスエンジン1と、該ガスエンジン1の起動により発電する交流発電機13と、電源用の直流用の蓄電池12と、複数のオン・オフスイッチと、該オン・オフスイッチを制御する総合コントロールユニット26(「TCU」とも称する。)、低電圧のエンジン用バッテリ8から供給されるエンジンコントロールユニット9(「ECU」とも称する。)等が備えらえている。
【0018】
図1において、ガスエンジン1と燃料供給装置2と交流発電機13とを備えた発電装置であって、燃料としては液化石油ガス(LPG)用のガスボンベ6が使用される。小型乃至中型の非常用電源であるため前記ガスエンジン1は約500cc超え〜約5000ccの小型乃至中型排気量である。該ガスエンジン1は一つのシリンダに2個の点火プラグを配設した多点点火エンジンである。これにより着火の機会を増やすとともに、急速燃焼を実現して燃費を改善できる。
【0019】
前記ガスエンジン1は、ピストン10が上下運動可能に収納されたシリンダ11の上部にはシリンダヘッド12が設けられ、該シリンダヘッド12の下面が扁平弧状膨出面として形成されている。該シリンダヘッド12の上面側から平面的に見て、点火プラグ13を2個と吸気バルブ15及び排気バルブ17が設けられている。前記吸気バルブ15,前記点火プラグ13,前記排気バルブ17及び前記点火プラグ13が4等分で周回りに配されている〔図6(A)参照〕。
【0020】
前記扁平球面状凹面12aの曲率半径Rは、前記シリンダ11の中心軸n上の任意の点Pに位置している。さらに、2個の前記点火プラグ13の中心軸mも、前記吸気バルブ15の中心軸w及び排気バルブ17の中心軸uも、それぞれ前記点P上を通過するように構成されている。つまり、前記点火プラグ13の中心軸mも、前記吸気バルブ15(吸気ポート14の入口部)の中心軸w及び排気バルブ17(排気ポート16の出口部)の中心軸uも、曲率半径Rなる前記扁平球面状凹面12aの球面の法線上に存在している。このような三次元としての燃焼室が構成されている。
【0021】
特に前記吸気バルブ15に吸気させる吸気ポート14は、前記吸気バルブ15からの吸気が前記シリンダ11を平面的に見て、接線方向乃至接線に近似する方向から該シリンダ11内に流入して渦流(スワールG)になるように構成されている。該シリンダ11内のピストン10が下降時において、このスワールS(渦流)が発生するようになっている。
【0022】
該スワールS(渦流)にても方向性は確保できることがある。十分な方向性の確保のためには次の構成とすることが多い。特に、前記扁平球面状凹面12aの下側面に、略三日月状又は台形山形状等の膨出部12bが、1つの前記点火プラグ13の手前側であって、且つ前記スワールS(渦流)の下流側になるようにして設けられている。該スワールS(渦流)の内容を詳述すると、スワールS(渦流)の主流が前記点火プラグ13の点火点を直撃せず、かつその近傍を流れるように構成されている〔図6(A)参照〕。
【0023】
前記膨出部12bは、略三日月状であって縦断面は略三角状をなし〔図6(A)及び(B)参照〕、前記スワールS(渦流)の流れを変更する働きを成すものであり、最高位の高さは1mm前後でもよい。前記膨出部12b箇所でも、前記スワールS(渦流)は小さな乱流状態を起こし得る。また、前記膨出部12bは、富士山を扁平状にした台形山形状又は該台形山形状を半分(縦割り)に形成されても(図示しない)、前述の三日月タイプの膨出部12bと同様の効果を奏する。また、前記膨出部12bは、前記スワールS(渦流)の方向性を変え得れば、その形状には限定されない。
【0024】
さらに、図6(A)及び(B)においては、主流対反主流の流量が8対2程度が好適である。反主流が存在するために、気流の乱れが発生してミキシング改善と共にガス(LPG)燃焼の促進を一層良好にできる。このような構成は従来には存在しない大きな利点である。特に、図7に示すように、前記スワールS(渦流)における主流は、前記シリンダ11内において、反主流を受けて速度が徐々に遅くなると同時に細かな乱流状態を呈するものであり、このときこそが、気体なる空気(エア)と気体なるLPGとを渾然一体にできる。
【0025】
仮に、強いスワールS(渦流)の主流が前記点火プラグ13の点火点(スパークギャップ)を直撃すると、この部分の温度が下がり(例えば、450℃以下)、遊離カーボンが発生して先端部を汚損して火花が飛びにくくなるが、この先端部の直撃を避けながら、新しい混合気を点火点(スパークギャップ)に流れ込ませるようにする。そして、一旦、火がつくとスワールS(渦流)により火炎は極めて急激に燃焼空間(シリンダヘッド12とシリンダ11内壁面とピストン10頂面で区画された空間全体)に三次元的に広がってゆきガスの燃焼効率を格段を上昇し得る。
【0026】
この燃焼効率は、前記曲率半径Rなる前記扁平球面状凹面12aの球面としての三次元の燃焼室と、前記点火プラグ13の点火点を避けたスワールS(渦流)とが相俟って極めて良好なる効果を奏する。さらに、停電直後におけるガスエンジン1の始動も極めて早期に立ち上げることができる最大の利点がある。なお、前記点火プラグ13の中心軸mと前記シリンダ11の中心軸nとの角度θも、前記吸気バルブ15の中心軸wと前記シリンダ11の中心軸nとの角度θも、前記排気バルブ17の中心軸uと前記シリンダ11の中心軸nとの角度θもそれぞれ同一角度で、且つ約12°〜約14°に構成されている。
【0027】
以上の説明では、単気筒のガスエンジン1であったが、本発明は、約2千cc以上では、複数気筒に構成することが多い。図10では、4気筒直列タイプであり、かかる場合には、吸気アクト18の途中で2股に分かれ、さらに、前記シリンダヘッド12内における吸気ポート14箇所において2つに分かれて構成されて、この端部が各シリンダ1には、それぞれ、前述した単気筒構成と同様に、前記吸気バルブ15からの吸気が前記シリンダ11を平面的に見て、接線方向乃至接線に近似する方向から該シリンダ11内に流入して渦流(スワールG)になるように構成されている。図10において、例えば、単気筒で800ccで、4気筒では、3200ccというように構成されることもある。
【0028】
それぞれの前記シリンダヘッド12の上面側から平面的に見て、前記吸気バルブ15,前記点火プラグ13,前記排気バルブ17及び前記点火プラグ13が4等分で周回りに配されている〔図10参照〕。そして、前記吸気バルブ15に吸気させる吸気ポート14は、前記吸気バルブ15からの吸気が前記シリンダ11を平面的に見て、接線方向乃至接線に近似する方向から該シリンダ11内に流入して渦流(スワールG)になるように構成されている。このスワールG現象は、全て単気筒と同一である。
【0029】
前記ガスボンベ29には減圧バルブ28が設けられ、ここから供給配管25が配置され、該供給配管25の他端は、前記吸気ポート12の手前の吸気ダクト18のオリフィス18a内に連通するように構成されている。前記ガス配管25には、電磁弁27,調圧バルブ26を介してLPGが前記吸気ポート12に流入され、最終的には、スロットルアクチュエータ22によるスロットル21を適宜開いて噴出される。つまり、前記燃料供給装置2としては、該ロットル21,スロットルアクチュエータ22,ガス配管25,調圧バルブ26,電磁弁27,減圧バルブ28,ガスボンベ29にて構成されている。
【0030】
燃料は前述したように、入手が容易でガスボンベ29に充填されていて輸送に便利な液化石油ガス(LPG)を用いる。該LPGは長期間の保存でもガソリンや軽油のように変質しない利点がある。さらに、これまでの軽油を燃料とする圧縮着火のディーゼルエンジンよりも、始動時間が短く、二酸化炭素や窒素酸化物の排出が少ない利点もある。図中44はラジエータ、45はファンモータである。
【0031】
商用電源用としての直流用の蓄電池51は非常時に使用する電源であり、該蓄電池51の蓄電容量について説明する。前記ガスエンジン1が起動して安定した電力が交流発電機3から供給されるまでの時間は約10秒から約40秒である。この間を賄う電力はP2から出力する電力を1kWとすると、最大でも1kJ/s×40s=40kJとなる。ところがインバータ71で所定の交流にする転換効率を93%とすると、40kJ/0.93=43kJとなる。
【0032】
前記蓄電池51が一般的なリチウムイオン電池の場合、このエネルギ密度は360kJ/kg程度であるから43kjの電気エネルギを蓄えるには、(43kj)/(360kJ/kg)=0.12kgでよいことになる。しかし、電池にはエネルギ密度(kJ/kg)とともに出力密度(W/kg)がある。リチウムイオン電池の場合、これが700W/kg程度であるので、1kW/0.93=1.08kWを出力するためには、(1.08kW)/(0.7kW/kg)≒1.6kgが必要である。
【0033】
エネルギ密度と出力密度を同時に満たす電池の質量は1.6kg以上となる。区切りのよいところで、2kgもあればエンジンによる発電が安定するまで所定の電力を十分に供給できる。前述のように、前記蓄電池12からの電気エネルギの供給時間は交流発電機3の前記ガスエンジン1が起動するまでであり電力供給時間は短い。それをさらに短縮するには前記ガスエンジン1の起動時間をより短くすることが必須である。
【0034】
また、図1の日常時において、エンジン用バッテリ52にパワーコンディショナ74で低電圧(例えば12V)の直流に変換して充電作業を行う(破線参照)。さらに、非常用の前記蓄電池51にも交流→直流インバータ71を介して充電作業も行う(破線参照)。なお、前記エンジン用バッテリ52は、自動車用の12Vの鉛・希硫酸バッテリなど、前記蓄電池51は、満充電制御機能がついたリチウムイオン電池やリチウムイオンキャパシタ、ニッケル水素電池などを用いることが多い。
【0035】
図1において、総合コントロールユニット(TCU)61の電力は、前記エンジンコントロールユニット(ECU)62と同じに低電圧のエンジン用バッテリ52から供給される。これに高い電圧の非常用の前記蓄電池51を用いると、制御用の電源が2種類となるのでこれを避けるためである。
【0036】
図1の状態では、前記蓄電池51や交流発電機3からの電力は使わないので、この回路(蓄電池51と交流発電機3から商用電源出力側)のオン・オフイッチ82、84、85は開位置を保持したままである。商用電源の状態(電気が来ているか否か)はP1から固定抵抗91を通して主電源信号ライン90を経て前記総合コントロールユニット(TCU)62にかかる電圧で判断するように構成されている。前記固定抵抗91の存在にて前記総合コントロールユニット(TCU)62が微弱な電流で停電か否かを判断できるからである。該総合コントロールユニット(TCU)62内にも抵抗がありこの前後の電圧を監視しておけば、もし主電源(商用電源)が喪失すれば、この電圧がゼロとなる。
【0037】
通常時においては、図1に示すように、オン・オフスイッチ83は閉じており、主電源からの電力は太い矢印のようにP1からP2を経て出力する。前記オン・オフスイッチ83は前記総合コントロールユニット(TCU:Total Control Unit)61からの信号で回路をオン・オフする機能を具備している。スイッチは電磁的に接点を開閉しても、トランジスタを用いた通常の無接点スイッチでもよい。
【0038】
図11においては、公知技術であるスロットル20を適宜開けると、LPGは、前記オリフィス18a箇所から吸気ダクト18内に流入するが、あたかも、単に水道水が流入するようになっており、LPGも気体であり、空気とは、混合しにくい状況であり、これが、前述したように、前述したシリンダ11内でのスワールS現象によって、空気とLPGとが良好に混合して、燃焼効率の良好なガスエンジン1を提供できる。
【0039】
次に、非常時においての動作説明を図2及び図3に基づいて説明する。何等かの事故等により商用電源が喪失したことを検出すると、図1において、前記総合コントロールユニット(TCU)61の作動にて前記オン・オフスイッチ81,83が開き、前記オン・オフスイッチ82、85が閉じる。このとき、前記総合コントロールユニット(TCU)61の出力信号に時定数を設け、各々が閉じるのを数msでも遅くしておけば、万一のショートを避けることができる。なお、前記オン・オフスイッチ84は開いたままである。
【0040】
前述の各オン・オフスイッチ82、85、81、83及び84のオン・オフ状態は瞬時であり、これらが図2の状態となる(非常時:過渡期)。すなわち、何等かの事故等により商用電源が喪失した瞬間に、非常用の前記蓄電池51からインバータ71を介して応急的に前記商用電源と同等の電圧で同等の周波数の交流電力を接点部P2を経て電力供給側に供給する。
【0041】
つまり、商用電源が喪失した瞬間に、非常用の前記蓄電池51に蓄えられていた電力は閉となったオン・オフスイッチ85を経て、矢印のように接点部P4から直流→交流インバータ71で主電源と同じ電圧と周波数となって、閉となったオン・オフスイッチ82を通り接点部P2を経て電力供給側に出力する。図1乃至図3において、実線矢印は、電力出力の方向を示し、点線矢印は充電作用状態を示す。
【0042】
また、オン・オフスイッチ83が開となることによって前記蓄電池51からの電力がP2を経て総合コントロールユニット61に流れ、該総合コントロールユニット61が主電源が復活したと誤認識しないようにする。同様にオン・オフスイッチ83が開くのも逆流を防止するためである。それでも僅かな電力であるが、接点部P2からパワーコンディショナ74を介して再び直流に変換されてエンジン用バッテリ52に充電される。特に、非常時でも充電作用を提供できる
【0043】
次に、図3においてガスエンジン1にて発電し長時間に亘って本格的に電力を供給し続けるときの本発明の特徴について説明するが、その前に前記ガスエンジン1が始動するまでの過程について述べる。まず、前記総合コントロールユニット(TCU)61で、商用電源(主電源)の喪失を検出するとその信号は、該総合コントロールユニット(TCU)61からエンジンコントロールユニット(ECU)62に伝えられる。
【0044】
該エンジンコントロールユニット(ECU)62からの信号でスターターリレー42はエンジン用バッテリ(12V)52の電源でスタータモータ41を駆動する。同時に前記エンジンコントロールユニット(ECU)62の信号にてガスボンベ29(LPG用)から通常用いる機械式の減圧バルブ28を経て来たガスを遮断していた電磁弁27に通電してこれを開く。
【0045】
同時に殆ど大気圧の燃料の圧力を調整する調圧バルブ26を作動させ、燃料をガスエンジン1の燃料供給装置2に供給する態勢が整う。一方、ガスエンジン1の運転に不可欠なエンジンオイルの供給は電動のオイルポンプ46で、冷却水も電動のウォーターポンプ47で循環させる。
【0046】
前記スタータモータ41が回転すると、ガスエンジン1がクランキングされて吸入によって発生する負圧で燃料供給装置2で計量された燃料と空気を吸入して、圧縮し点火して始動する。この始動性は多点点火(2個の点火プラグ13を配設した)とガス燃料のためディーゼルエンジンに比べると格段に優れている。
【0047】
ガスエンジン1が始動して定格の回転数に達し、これと同一回転数で回る交流発電機3から電力が供給できるようになると、オン・オフスイッチは図2の状態から図3のように切り換わる。ここで、ガスエンジン1の回転速度はクランクセンサ48で検出した点火時期制御用の上死点信号を勘定して回転数を算出する。これが所定の回転数、例えば、2000rpmになるように、エンジンコントロールユニット(ECU)62の信号で、燃料供給装置2のスロットル20の開度を調整する。
【0048】
前記オン・オフスイッチ83は開いたままであるがオン・オフスイッチ81とオン・オフスイッチ84は閉じる。また、これまで閉じていたオン・オフスイッチ85は開いて前記蓄電池51からP4への回路を遮断する。前記交流発電機3は、通常の200V程度の三相交流である。これで発電した交流を交流→直流インバータ73で直流に変換する。
【0049】
この変換された直流の電圧を非常用の前記蓄電池51と等しくする。例えば、セル電圧1.6Vのリチウムイオン電池では60個を直列にしたパックを複列にして96Vとすると、前記交流→直流インバータ73の出力電圧もこれと同じにする。これは図2の非常時において、前記ガスエンジン1が始動するまでの過渡の状態であっても、本格的なガスエンジン1による発電時でも直流→交流インバータ73の入力を揃えておくためである。
【0050】
前記オン・オフスイッチ84が閉じているので前記交流→直流インバータ73からの直流は矢印のようにP4から、前述の図2の蓄電池51から供給されていたのと全く同じに、前記直流→交流インバータ73で直流が主電源と同じ電力と周波数の交流に変換されて前記オン・オフスイッチ82を経てP2から出力される。
【0051】
このとき前記オン・オフスイッチ81(図3参照)は閉じているので、前記ガスエンジン1で発電され、前記直流→交流インバータ73で再度交流に変換された電力の一部は破線のように、P2から前記オン・オフスイッチ81を経て、直流→交流インバータ73で直流に変換されて蓄電池51に供給され充電する。
【0052】
これによって、先の放電で減少した電気エネルギを満充電まで補充しておく。この非常時の充電機能が大きな利点である。これは主電源が回復後、また喪失したときに備えるためである。同様に前記パワーコンディショナ74で低電圧の直流に変換されて前記エンジン用バッテリ52も充電するように構成されている。
【0053】
ガスエンジン1の作動中に冷却水温度が上昇すると、サーモスタット43が開いて、冷却水がラジエータ44を循環する。さらに、水温が上がるとファンモータ45に通電して、冷却風で前記ラジエータ44からの放熱を促進する。
【0054】
次に燃料の消費とこれによる発電エネルギについて説明する。例として、前記ガスボンベ29にプロパンC3H8が20kgが充填されっているボンベを使った場合を想定する。C3H8の分子量は44、すなわち1モル、標準状態(0℃,1気圧)22.4リットルの質量が44である。一方、標準状態におけるプロパンの低発熱量(以後、発熱量と略す)は90.7MJ/m3である。
【0055】
C3H8の1m3の質量は44g×1000/22.4=1964gである。従って、20kgボンベには標準状態で(20kg)/(1.964kg/m3)=10.18m3のプロパンが充填されている。その発熱量は90.7MJ/m3×10.18m3=923MJ(=923×103kJ)となる。これだけの熱量で発電できる電気エネルギを求め、72時間1kWを供給できるかを検討する。
【0056】
摩擦損失の小さい低速で回転する多点点火のエンジンで安定して得られた熱効率は36%である。発電機の効率を95%、交流→直流そして直流→交流の二つの変換器、直流→交流インバータ72,73の転換効率をともに93%とする。また、P2端子からの出力を最大の1kWを出し続けるとして、エンジンで消費するエネルギは、変換を2回繰り返すので(1kJ/s)/(0.36×0.95×0.93×0.93)=3.381kJ/sとなる。923×103kJを消費する時間は(923×103kJ)/(3.381kJ/s)≒273000s、即ち75.8時間となる。20kgボンベ1本で75時間以上の発電が可能であり、余裕をもって目標の72時間を達成することができる。
【0057】
商用電源(主電源)が回復するとこれを前記総合コントロールユニット(TCU)61が関知し、前記オン・オフスイッチ82、84を開き、且つ前記オン・オフスイッチ83を閉じてP1からは主電源の電力が供給される。また、エンジンコントロールユニット(ECU)62はエンジンを停止させると同時に前記電磁弁27を閉じて、燃料を遮断する。そして図1の状態に戻る。
【0058】
ここで、各オン・オフスイッチの切り替え速度は遅くても10msである。一方、健康な人間の目の残像時間である1/16秒、すなわち62.5msである。これは一瞬の停電を人間の目では気づかないことを意味する。前記ガスエンジン1が所定の出力より低い出力で定格の回転数で回っているとき、急に要求電気出力が増大したとする。負荷の増大によりエンジンの回転数は低下する。これを回復しようとしてエンジンコントロールユニット(ECU)62からの信号で燃料供給装置2のスロットルを開くが、所定の回転数に戻るまでには短時間ではあるが時間を要する。
【0059】
出力の余力が少ない小型乃至中型エンジンではこれに対抗できずに、P2の出力電圧が低下したり、極端な場合にはガスエンジン1が止まってしまうことがある。これに対して一時的に蓄電池51からの電力放出も効果的であるが、小型乃至中型エンジンであってもガスエンジン自体で負荷の急な増大に対応できるようにしておくことも必要である。このような手段としてフライホイール9を設けることもある。
【0060】
その構造としては、図8(A)及び(B)に示すように、外周囲の厚肉外周部91と薄肉円板部92と中央のボス部93とからなり、該ボス部93内に雌型スプライン94が設けられている。前記フライホイール9は、前記ガスエンジン1のクランクシャフト19端部に、止着ボルト95にて固定されている。
【0061】
前記交流発電機3の中央に設けた雄型スプライン31が前記フライホイール9の雌型スプライン94に嵌合して固着されている。極めて簡易な構成で取付られている。また、図9(A)に示すように、前記雌型スプライン94を有する別体ボス部96が設けられることもある。この場合は、前記フライホイール9を鋳物製とし、前記別体ボス部96を鋼鉄製として、スプライン取付箇所の補強を図り得る。
【0062】
回転慣性モーメントIp(単位はkgm2)が大きいと回転の下りが緩やかとなる。突入直後のエンジン回転数は従来型より高い。高いと吸い込み回数が多いのでミキサから前記シリンダ1内を満たすまでの時間が短くなる。すると、その間に供給される混合気の量が増大する。発生する熱エネルギが多い、即ち、力強く吹き上がる。前記回転慣性モーメントIpの大きさは、10リッタークラスのディーゼルエンジンと略同じ大きさである。
【0063】
また、図9(B)においては、前記フライホイール9を設けた本発明のグラフと従来技術とを比較した図表であり、従来技術では、非常時におけるガスエンジン1に急激な負荷が発生したときに、エンジン回転数が低下してエンスト限界まで立上りが下がり、収束(収斂)されるが遅く、本発明の立上げによる収束(収斂)時間は約半分であり、極めてエンストしにくい構成にできる利点がある。
【0064】
前記各オン・オフスイッチ81、82、83、84、85は、各々オン・オフリレースイッチとして構成することもある。主に、経済性による。また、図4のフローチャート図は、本発明の基本のステップを表している。さらに、図5の表では、特に、本発明の特徴が表わされている。
【0065】
つまり、最下段のように、停電と復帰が所定時間(1日とから、3日とか)間隔で続いたとしても、その非常時においても、非常用の蓄電池51等を充電する構成であることによる。かかる構成は従来には存在しなかった最大の利点である。例えば、最近では、熊本大地震で、24時間以内に震度7が2度も続いた場合でも十分に対応できる発明である。
【符号の説明】
【0066】
1…ガスエンジン、11…シリンダ、12…シリンダヘッド、13…点火プラグ、
16…吸気バルブ、17…排気ポート、12a…扁平球面状凹面、12a…膨出部、
2…燃料供給装置、3…交流発電機、51…蓄電池、52…エンジン用バッテリ、
61…総合コントロールユニット(TCU)、9…フライホイール、
81,82,83,84,85…オン・オフスイッチ。
【要約】
【目的】本発明は、排気量500cc超え〜5000ccの小型乃至中型のガスエンジン及び交流発電機を用いて、複数回又は何度でも停電事故が間欠的に続いても、高効率に非常用電力を供給できること。
【構成】小型乃至中型のLPG用のガスエンジン1と交流発電機3と蓄電池51とを備えていること。シリンダ11を平面的に見て点火プラグ13,吸気バルブ15,点火プラグ13,排気バルブ17が周回りに配され、且つ吸気バルブ15からの吸気がシリンダ11内を平面的に見て、接線方向乃至接線に近似する方向に流入するように構成されていること。何等かの事故等により商用電源が喪失した瞬間に蓄電池51から電力供給側に給電すると共に、この間にガスエンジン1を起動させて交流発電機3にて発電し、ガスエンジン1が所定の回転数に達したときに蓄電池51からの電力の供給を中止し、且つガスエンジン1で発電した電力の交流電力を屋内回路に供給し続けること。
【選択図】 図1
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11