(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6386816
(24)【登録日】2018年8月17日
(45)【発行日】2018年9月5日
(54)【発明の名称】バッテリ状態監視回路及びバッテリ装置
(51)【国際特許分類】
G01R 31/36 20060101AFI20180827BHJP
H02J 7/00 20060101ALI20180827BHJP
H02J 7/10 20060101ALI20180827BHJP
H01M 10/48 20060101ALI20180827BHJP
【FI】
G01R31/36 A
H02J7/00 Q
H02J7/10 B
H02J7/10 H
H01M10/48 P
【請求項の数】5
【全頁数】8
(21)【出願番号】特願2014-134401(P2014-134401)
(22)【出願日】2014年6月30日
(65)【公開番号】特開2016-11916(P2016-11916A)
(43)【公開日】2016年1月21日
【審査請求日】2017年4月5日
(73)【特許権者】
【識別番号】715010864
【氏名又は名称】エイブリック株式会社
(72)【発明者】
【氏名】小池 智幸
(72)【発明者】
【氏名】佐野 和亮
(72)【発明者】
【氏名】桜井 敦司
(72)【発明者】
【氏名】向中野 浩志
【審査官】
小川 浩史
(56)【参考文献】
【文献】
特開2015−135315(JP,A)
【文献】
特開平8−315793(JP,A)
【文献】
特開2001−86604(JP,A)
【文献】
特開2011−86530(JP,A)
【文献】
特開2012−63244(JP,A)
【文献】
特表2016−539319(JP,A)
【文献】
米国特許出願公開第2010/0225325(US,A1)
【文献】
独国特許出願公開第102012003100(DE,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/36
H01M 10/48
H02J 7/00−7/10
(57)【特許請求の範囲】
【請求項1】
第一端子と第二端子に接続される二次電池の充放電を監視し、前記二次電池の残量を検出するバッテリ状態監視回路であって、
前記二次電池の擬似等価回路と、
前記二次電池の充放電電流を検出するためのセンス抵抗と、
入力端子が前記センス抵抗の両端に接続され、出力端子が前記擬似等価回路に接続され、前記センス抵抗の両端の電圧を測定し、前記充放電電流に応じた電流を前記擬似等価回路に流す電圧電流変換器と、
前記第一端子の電圧を監視する第一A/Dコンバータと、
前記擬似等価回路の開放電圧を監視する第二A/Dコンバータと、
前記第一A/Dコンバータの出力信号と前記第二A/Dコンバータの出力信号から前記二次電池の残量を検出する演算回路と、
を備えたことを特徴とするバッテリ状態監視回路。
【請求項2】
前記擬似等価回路は、
前記第二端子に一方の端子が接続された第一容量と、
前記第一容量の他方の端子と前記電圧電流変換器の出力端子の間に直列に接続された第一抵抗及び第二抵抗と、
前記第二抵抗に並列に接続された第二容量と、を備え、
前記第二A/Dコンバータは、前記第一容量の他方の端子の電圧を測定する
ことを特徴とする請求項1に記載のバッテリ状態監視回路。
【請求項3】
前記第一端子と前記第一容量の他方の端子の間に接続された第一の定電流回路と、
前記第一容量の他方の端子と前記第二端子の間に接続された第二の定電流回路と、
を備えたことを特徴とする請求項2に記載のバッテリ状態監視回路。
【請求項4】
前記第一端子と前記第一容量の他方の端子の間にスイッチ回路を備えた
ことを特徴とする請求項2または3に記載のバッテリ状態監視回路。
【請求項5】
請求項1から4のいずれかに記載のバッテリ状態監視回路と、
前記二次電池と、
を備えたことを特徴とするバッテリ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二次電池の電圧や異常を検知するバッテリ状態監視回路及びバッテリ装置に関し、特に、二次電池の残量予測機能および劣化診断機能を搭載したバッテリ状態監視回路及びバッテリ装置に関する。
【背景技術】
【0002】
図5に、従来のバッテリ状態監視回路を備えたバッテリ装置の概略図を示す。従来のバッテリ状態監視回路を備えたバッテリ装置は、二次電池501と、電流源511と、電流源512と、スイッチ回路510を備えている。二次電池501は、電池容量502と、抵抗503と、抵抗504と、容量505により等価回路で表すことができる。スイッチ回路510は、電流源511と電流源512を切替えるように動作する。電流源511と電流源512は、夫々異なる電流値I1とI2の電流を流す。
【0003】
スイッチ回路510によって電流源511と電流源512を切り替えて、二次電池501への充電電流を周期的に変化させる。そして、夫々の時点での二次電池の電圧を測定して、抵抗503と抵抗504の抵抗値を求める。
これらの抵抗値を用いて、二次電池の寿命診断を行う方法が開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−133322号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の技術では、充電中に所定の周期で充電電流を変化させて、夫々の電圧を測定しなければならず、充電器および充電方法の制限があるという課題があった。また、二次電池使用時の電流又は電圧変動がある場合は、二次電池の内部抵抗を算出することが困難、という課題がある。さらに、近似式による計算で二次電池の寿命診断を行わなければならない、という課題があった。
【0006】
本発明は、以上のような課題を解決するために考案されたものであり、どのような充電器を用いても充電しながら二次電池の残量予測が可能であり、二次電池の電流又は電圧変動がある場合や放電しながらでも二次電池の残量予測が可能であり、また、近似式に寄らない二次電池の寿命診断ができるバッテリ状態監視回路及びバッテリ装置を提供するものである。
【課題を解決するための手段】
【0007】
従来の課題を解決するために、本発明のバッテリ状態監視回路を備えたバッテリ装置は以下のような構成とした。
二次電池の擬似等価回路と、二次電池の充放電電流を検出するためのセンス抵抗と、入力端子がセンス抵抗の両端に接続され、出力端子が擬似等価回路に接続され、センス抵抗の両端の電圧を測定し、充放電電流に応じた電流を擬似等価回路に流す電圧電流変換器と、第一端子の電圧を監視する第一A/Dコンバータと、擬似等価回路の開放電圧を監視する第二A/Dコンバータと、第一A/Dコンバータの出力信号と第二A/Dコンバータの出力信号から二次電池の残量を検出する演算回路と、を備えたバッテリ状態監視回路。
【発明の効果】
【0008】
本発明のバッテリ状態監視回路を備えたバッテリ装置によれば、一般的な充電器を用いて充電していても、また、二次電池の電流又は電圧変動がある場合にも、精度良く二次電池の残量予測が可能であり、また、近似式によらない二次電池の寿命診断ができる、という効果がある。
【図面の簡単な説明】
【0009】
【
図1】第一の実施形態のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。
【
図2】第一の実施形態の他の例のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。
【
図3】第二の実施形態のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。
【
図4】第二の実施形態の他の例のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。
【
図5】従来のバッテリ状態監視回路を備えたバッテリ装置の概略図である。
【発明を実施するための形態】
【0010】
以下、本実施形態について図面を参照して説明する。
<第一の実施形態>
図1は、第一の実施形態のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。第一の実施形態のバッテリ状態監視回路を備えたバッテリ装置は、バッテリ状態監視回路11と、二次電池101と、容量112と、充電器または負荷が接続される外部端子131及び外部端子132を備えている。
【0011】
二次電池101は、正極端子106と、負極端子107を備えている。二次電池101は、電池容量102と、抵抗103と、抵抗104と、容量105により等価回路で表すことができる。
バッテリ状態監視回路11は、VDD端子116と、VSS端子117と、容量接続端子127と、外部接続端子128と、出力端子129を備えている。
【0012】
二次電池101は、負極端子107がバッテリ状態監視回路11のVSS端子117に接続され、正極端子106がバッテリ状態監視回路11のVDD端子116に接続される。
容量112は、バッテリ状態監視回路11の容量接続端子127とVSS端子117の間に接続される。
【0013】
バッテリ状態監視回路11は、VDD端子116が外部端子131に接続され、外部接続端子128が外部端子132と接続される。
バッテリ状態監視回11は、抵抗113と、抵抗114と、容量115と、A/Dコンバータ118と、A/Dコンバータ119と、演算回路120と、センス抵抗121と、電圧電流変換器122と、通信回路126を備えている。A/Dコンバータ118は、二次電池101の電圧を監視する。A/Dコンバータ119は、容量接続端子127の電圧を監視する。
【0014】
直列に接続され抵抗113と抵抗114と、抵抗114と並列に接続された容量115は、容量接続端子127と電圧電流変換器122の出力端子の間に接続される。センス抵抗121は、外部接続端子128とVSS端子117の間に接続される。電圧電流変換器122は、第一入力端子と第二入力端子にセンス抵抗121の両端が接続される。A/Dコンバータ118は、入力端子がVDD端子116に接続される。A/Dコンバータ119は、入力端子が容量接続端子127に接続される。演算回路120は、第一入力端子がA/Dコンバータ118の出力端子と接続され、第二入力端子がA/Dコンバータ119の出力端子と接続される。通信回路126は、入力端子が演算回路120の出力端子に接続さ、出力端子はバッテリ状態監視回11の出力端子129に接続される。図示はしないが、電圧電流変換器122などは、正負電源端子に夫々VDD端子116とVSS端子117が接続される。
【0015】
次に、第一の実施形態のバッテリ状態監視回路の動作について説明する。
容量112と、抵抗113と、抵抗114と、容量115は、二次電池101の等価回路と同じ回路を構成する。
【0016】
電池容量102の容量値をCbat、抵抗103の抵抗値をRb1、抵抗104の抵抗値をRb2、容量105の容量値をCbとする。容量112の容量値をCmdb、抵抗113の抵抗値をRmd1、抵抗114の抵抗値をRmd2、容量115の容量値をCmdとする。電池容量Cbatと容量Cmdbは、Cmdb÷Cbat=N(Nは定数)の関係にあるものとすると、その他の素子はCmd=Cb×N、Rmd1=Rb1÷N、Rmd2=Rb2÷Nとなるように設定する。二次電池101へ流れる電流をIbatとすると、Imd=Ibat×Nと設定する。充電電流と放電電流は、符号が逆の関係にある。電流Imdは、電圧電流変換器122の出力端子とVSS端子117間に流れる電流である。
【0017】
充電電流Ibatは、外部端子131から二次電池101、VSS端子117からセンス抵抗121介して外部接続端子128、そして外部端子132へ流れる。センス抵抗121の抵抗値は、VSS端子117と外部端子128の端子間の抵抗値Rsを測定すれば得られる。よって、電圧電流変換器122でセンス抵抗121の両端の電圧Vsを測定すれば、電流Ibatの値(Vs/Rs)が分かり、電流Imdを作ることができる。電圧電流変換器122は、電流Imdによって抵抗114と抵抗113を介して容量112へ充電又は放電を行うことができる。このように動作させることで、二次電池101の充放電を、バッテリ状態監視回路11と容量112で擬似的に行うことができる。
【0018】
従って、A/Dコンバータ119で容量接続端子127の電圧を測定すれば、二次電池101の電池容量102の電圧値(開放電圧)が擬似的に得ることができる。そして、この測定値を演算回路120へ入力する。演算回路120は、二次電池101の開放電圧の上限値と下限値が格納されており、それらと測定値とを演算回路120で比較し計算することで二次電池101の残量予測ができる。この残量予測値は、通信回路126を介して出力端子129へ出力され、例えば外部に接続された機器に送信される。
【0019】
ここで、精度良く残量予測を行うためには、例えば、CmdbはCbatと、CmdはCbと類似の特性を有する容量を用いればよい。また、Rmd1はRb1と、Rmd2はRb2と類似の特性を有する抵抗を用いればよい。
【0020】
なお、図示はしないが、A/Dコンバータ119の入力端子を、スイッチ回路によって容量接続端子127と抵抗114の第二端子に切替えて接続させるようにしてもよい。このようにすると、二次電池101の経時変化による内部インピーダンスの増加を検出することが出来る。従って、この検出結果を利用して、容量112の電圧を補正することで、より精度良く残量予測を行うことが出来る。
【0021】
また、A/Dコンバータ118で二次電池101の電圧を測定することができる。二次電池101の無負荷時の電圧と電流が流れている時の電流と電圧を測定し、演算回路で抵抗103と抵抗104の抵抗値を計算し演算回路に記憶させておく事もできる。この抵抗値を初期値と比較し、二次電池の内部抵抗である抵抗103と抵抗104の劣化度合いを判断できる。
【0022】
また、A/Dコンバータ118で測定した二次電池101の無負荷時の電圧と、A/Dコンバータ2で測定した容量接続端子127の電圧を演算回路120で比較することもできる。
【0023】
また、図示はしないが、温度測定回路を搭載し温度情報を演算回路120に持たせることもでき、Imdや、可変抵抗とした抵抗114や、可変抵抗とした抵抗113へ温度特性変化を考慮した補正を行うことも可能である。
また、センス抵抗121は、バッテリ状態監視回路11に内蔵しても、外付けの部品で構成しても良い。
【0024】
図2は、第一の実施形態の他の例のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。このように、VDD端子116と容量接続端子127の間にスイッチ回路212を設けても良い。
【0025】
このように構成したバッテリ状態監視回路21は、二次電池101へ充放電電流が流れていないときにスイッチ回路212をショートさせ、スイッチ回路212がショートしている間に、容量112の電圧を二次電池101の電圧と等しくすることができる。
【0026】
その他の動作は、
図1のバッテリ状態監視回路11と同様であり、従って、二次電池101の残量を精度良く予測することができる。
なお、スイッチ回路212は、任意の周期でオープンとショートを繰り返してもよい。
【0027】
以上に説明したように、第一の実施形態のバッテリ状態監視回路を備えたバッテリ装置によれば、容量接続端子127の電圧値を測定するだけで二次電池101の残量を精度良く予測することができる。
【0028】
<第二の実施形態>
図3は、第二の実施形態のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。以下、第一の実施形態のバッテリ状態監視回路との違いについて説明する。
バッテリ状態監視回111は、さらに、定電流回路123と、定電流回路124を備えている。演算回路120は、さらに第二出力端子と第三出力端子を備えている。
【0029】
定電流回路123は、VDD端子116と容量接続端子127の間に接続され、制御端子に演算回路120の第二出力端子が接続される。定電流回路124は、容量接続端子127とVSS端子117の間に接続され、制御端子に演算回路120の第三出力端子が接続される。
【0030】
次に、第二の実施形態のバッテリ状態監視回路の動作について説明する。
二次電池101の等価回路を擬似回路については、第一の実施形態のバッテリ状態監視回路と同様であるので、説明を省略する。
【0031】
演算回路120は、A/Dコンバータ118で測定した二次電池101の無負荷時の電圧と、A/Dコンバータ119で測定した容量112の電圧を比較する。このとき、比較した電圧に差が有る場合に、演算回路120は定電流回路123と定電流回路124を制御して、容量112の電圧と二次電池101の無負荷時の電圧が等しくなるようにする。
このように構成することによって、バッテリ状態監視回路111は、二次電池101の残量を精度良く予測することができる。
【0032】
図4は、第二の実施形態の他の例のバッテリ状態監視回路を備えたバッテリ装置のブロック図である。このように、VDD端子116と容量接続端子127の間にスイッチ回路212を設けても良い。
【0033】
このように構成したバッテリ状態監視回路211は、二次電池101へ充放電電流が流れていないときにスイッチ回路212をショートさせ、スイッチ回路212がショートしている間に、容量112の電圧を二次電池101の電圧と等しくすることができる。
【0034】
その他の動作は、
図3のバッテリ状態監視回路111と同様であり、従って、二次電池101の残量予測がより精度良くできる。
なお、スイッチ回路212は、任意の周期でオープンとショートを繰り返してもよい。
【0035】
以上に説明したように、第二の実施形態のバッテリ状態監視回路を備えたバッテリ装置によれば、容量接続端子127の電圧値を測定するだけで二次電池101の残量予測が精度良く求めることができる。
【0036】
なお、第一の実施形態及び第二の実施形態のバッテリ状態監視回路は、図示はしないが、二次電池101の電圧を監視する保護回路を備え、図示しない充放電経路に設けられた充放電制御スイッチを制御して、二次電池101の過充電や過放電を防止するように構成されても良い。
【0037】
以上に説明したように、本発明のバッテリ状態監視回路を備えたバッテリ装置によれば、容量接続端子127の電圧値を測定するだけで二次電池101の残量予測が精度良く求めることができ、さらに安全性を向上させることができる。
【符号の説明】
【0038】
101 二次電池
11、21、111、211、 バッテリ状態監視回路
118、119 A/Dコンバータ
120 演算回路
122 電圧電流変換器
123、124 定電流回路
125 定電圧回路
126 通信回路