【実施例】
【0033】
次に本発明の実施例を比較例とともに詳しく説明する。下記の実施例1〜3は、第2の観点の発明に基づき、実施例4〜6は、第1の観点の発明に基づく。
【0034】
まず、本発明の実施例及び比較例のシリコン多結晶インゴットを製造する装置を
図1により説明する。
図1は 一方向凝固法に基づくシリコン多結晶を製造する鋳造装置10を示す。この鋳造装置10は、内部を気密状態に保持するチャンバ11と、シリコン融液3が貯留されるるつぼ20と、このるつぼ20が載置されるチルプレート31と、このチルプレート31の下方に位置する下部ヒータ33と、るつぼ20の上方に位置する上部ヒータ43と、るつぼ20の上端に載置された蓋部50と、るつぼ20と蓋部50との間の空間に不活性ガス(Arガス)を導入するガス供給管42とを備える。また、るつぼ20の外周側には、断熱壁12が配設されており、上部ヒータ43の上方に断熱天井13が配設され、下部ヒータ33の下方に断熱床14が配設されている。即ち、るつぼ20、上部ヒータ43、下部ヒータ33等を囲繞するように、断熱材(断熱壁12、断熱天井13、断熱床14)が配設される。また、断熱床14には、排気孔15が設けられる。
【0035】
上部ヒータ43及び下部ヒータ33は、それぞれ電極棒44,34に接続されている。上部ヒータ43に接続される電極棒44は、断熱天井13を貫通して挿入されている。下部ヒータ33に接続される電極棒34は、断熱床14を貫通して挿入されている。るつぼ20が載置されるチルプレート31は、下部ヒータ33に挿通された支持部32の上端に設置されている。このチルプレート31は、中空構造であって、支持部32の内部に設けられた供給路(図示なし)を介して内部にArガスが供給されるようになっている。るつぼ20は、水平断面形状が正方形をなしている。このるつぼ20は、石英で構成されており、チルプレート31に接触する底面21と、この底面21から上方に向けて立設された側壁部22とを有する。この側壁部22は、製造するシリコン多結晶インゴットの形状に応じて、水平断面が矩形環状又は円形環状をなしている。
図1では矩形環状の例を示す。側壁部22が円形環状である場合、即ち円形のるつぼの場合、るつぼ外周の断熱材の形状やその配置を適宜変更する(図示せず)。
【0036】
<実施例1>
上記鋳造装置を用いてシリコン多結晶インゴットを製造した。その鋳造は以下のように行った。高純度のSi原料260kgと5N(純度99.999%)の小塊状の金属ゲルマニウム6819gと窒素源としてシリコンウエハ上に成膜した窒化ケイ素膜0.026gと高純度グラファイト粉末0.67gを充填した水平断面が正方形のるつぼ(るつぼ内径670mmxるつぼ内径670mmxるつぼ深さ450mm)を鋳造炉内に入れ、Arガスで置換後、Ar雰囲気中で溶解、凝固、冷却を行った。るつぼは内面に微細溶融シリカ砂を含む内層シリカ層を形成した石英るつぼを使用した。溶解は上ヒータを1500℃、下ヒータを1450℃に設定しシリコン原料と添加したドーパントを溶解した。その後、一方向凝固を行うために、下ヒータを切り、中空構造のチルプレート内部にArガスを供給し、上ヒータの温度を0.1〜0.001℃/minで降下した。凝固が完了した後、上ヒータと下ヒータを制御して、インゴットの温度を1100℃で2時間保持して、その後炉冷し、200℃で炉から取り出した。得られたシリコン多結晶インゴットは、670mm角で高さ250mmの四角形柱状であり、酸素濃度は、上述した方法で測定したところ、0.85×10
18〜2.7×10
18atoms/cm
3の範囲にあった。
【0037】
<実施例2>
金属ゲルマニウムの充填量を1091gに変え、窒化ケイ素膜の充填量を0.0065gに変え、高純度グラファイト粉末の充填量を0.22gに変えた。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.83×10
18〜2.8×10
18atoms/cm
3の範囲にあった。
【0038】
<実施例3>
金属ゲルマニウムの充填量を136gに変え、窒化ケイ素膜の充填量を0.003gに変え、高純度グラファイト粉末の充填量を0.11gに変えた。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は0.81×10
18〜2.9×10
18atoms/cm
3の範囲にあった。
【0039】
<実施例4>
金属ゲルマニウムの充填量を実施例1と同じ6819gにし、窒化ケイ素膜の充填量を0.013gに変えた。炭素源としての高純度グラファイト粉末は加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.82×10
18〜3.0×10
18atoms/cm
3の範囲にあった。
【0040】
<実施例5>
金属ゲルマニウムの充填量を1227gに変え、窒化ケイ素膜の充填量を0.0065gに変えた。炭素源としての高純度グラファイト粉末は加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.80×10
18〜2.5×10
18atoms/cm
3の範囲にあった。
【0041】
<実施例6>
金属ゲルマニウムの充填量を136gに変え、窒化ケイ素膜の充填量を0.0046gに変えた。炭素源としての高純度グラファイト粉末は加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.81×10
18〜2.7×10
18atoms/cm
3の範囲にあった。
【0042】
<比較例1>
金属ゲルマニウムの充填量を68gに変え、窒化ケイ素膜の充填量を0.00065gに変え、高純度グラファイト粉末の充填量を0.022gに変えた。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.82×10
18〜2.9×10
18atoms/cm
3の範囲にあった。
【0043】
<比較例2>
金属ゲルマニウムの充填量を109gに変え、窒化ケイ素膜の充填量を0.00065gに変えた。炭素源としての高純度グラファイト粉末は加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.85×10
18〜3.0×10
18atoms/cm
3の範囲にあった。
【0044】
<比較例3>
金属ゲルマニウムの充填量を1091gに変えた。窒素源としての窒化ケイ素膜及び炭素源としての高純度グラファイト粉末はいずれも加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.84×10
18〜2.9×10
18atoms/cm
3の範囲にあった。
【0045】
<比較例4>
ゲルマニウム源としての金属ゲルマニウム、窒素源としての窒化ケイ素膜及び炭素源としての高純度グラファイト粉末はいずれも加えなかった。それ以外、実施例1と同様にして、シリコン多結晶インゴットを製造した。このインゴットの酸素濃度は、上述した方法で測定したところ、0.80×10
18〜2.9×10
18atoms/cm
3の範囲にあった。
【0046】
<測定結果>
(a) ドーパント濃度
実施例1〜6及び比較例1〜4で得られた四角形柱状のシリコン多結晶インゴットのるつぼの底部から上方へ20mmの部分、及びるつぼの頂部から下方へ40mmの部分の面内中央部の各ドーパント(ゲルマニウム、窒素、炭素)を上述した方法で測定した。この平均値を表1に示す。なお、炭素濃度に関して、実施例4〜6及び比較例2〜4では、グラファイト粉末を加えなかったが、鋳造装置内の雰囲気からシリコン融液中に炭素源が混入したため、シリコン多結晶インゴットの炭素濃度はそれぞれ1×10
16atoms/cm
3であった。また比較例1では、グラファイト粉末を加えたが、微量であったため、鋳造装置内の雰囲気からシリコン融液中に混入した量が測定された。このインゴットの炭素濃度は2×10
16atoms/cm
3であった。
【0047】
(b) 強度試験
実施例1〜6及び比較例1〜4で得られた四角形柱状のシリコン多結晶インゴットをそれぞれスライスして670mm角で厚さ3mmの10種類のシリコン多結晶板を得た。結晶成長方向の中央部の各シリコン多結晶板を短冊状にスライスして、1枚のシリコン多結晶板から、幅4mm、厚さ3mm、長さ40mmの強度試験用サンプルを3個作製した。即ち、実施例1〜6及び比較例1〜4で得られた10種類のシリコン多結晶インゴットから、それぞれ3個の強度試験用サンプルを作製した。強度のばらつきを防止するため、サンプル表面は研磨して鏡面に仕上げた。JISR1601に基づいて、各サンプルについて4点曲げ試験を行った。4点曲げ試験には、インストロン(登録商標)万能試験機5985型(インストロン社製)を使用した。クロスヘッドスピードは0.5mm/分、上スパンは10mm。下スパンは30mmに設定した。実施例1〜6及び比較例1〜4で得られた10種類のサンプルの強度試験結果を表1に示す。
【0048】
(c) シリコン多結晶インゴットの割れ・欠けの有無
実施例1〜6及び比較例1〜4で得られた四角形柱状のシリコン多結晶インゴットの外観を目視により観察し、インゴットの割れ又は欠けの有無を調べた。その結果を表1に示す。
【0049】
【表1】
【0050】
<評価>
表1から明らかなように、ゲルマニウム、窒素、炭素のいずれもドープしていない比較例4の平均強度は169MPaと低かった。またゲルマニウム、窒素、炭素のすべてをドープしたものの各濃度が所定の下限値濃度未満の比較例1の平均強度は170MPaと低かった。またゲルマニウム濃度を比較例1より高めた比較例2は、窒素濃度が所定の下限値濃度未満でありかつ炭素をドープしていないため、173MPaと低かった。またゲルマニウム濃度を比較例1より高めた比較例3は、窒素及び炭素をドープしていないため、187MPaと低かった。これらの比較例1〜4に対して、ゲルマニウム濃度及び窒素濃度がそれぞれ所定の濃度範囲内にある実施例1〜6は、平均強度が193〜240MPaであり、高かった。特に、ゲルマニウムと窒素に加えて炭素を所定の濃度範囲含有させた実施例1〜3は、平均強度が193〜240であり、比較例1〜4より高かった。また比較例1及び比較例4のシリコン多結晶インゴットはるつぼから取り出した後で、微小な割れ及び欠けが見られた。これに対して実施例1〜6のシリコン多結晶インゴットには全く割れ及び欠けが見られなかった。上記結果から、実施例1〜6のシリコン多結晶インゴットから各種シリコン部品を加工する際に、又は加工後、使用したときに、シリコン部品に割れや掛けを生じないことが予想できた。