【課題を解決するための手段】
【0021】
これにより、毒性、および剥離したポリマー剤が体内を移動することで生じる損傷の問題が防止される。薬剤充填穴を有し、別途塗布されるポリマーバリア層材料または薬剤−ポリマー(またはコポリマー)混合物を利用して薬剤放出または溶出速度を制御する上述の従来技術のステントと異なり、本発明は、薬剤放出植込み型医療装置を作製する際にポリマーまたはコポリマー結合剤またはバリア層の使用を完全に回避することができる。
【0022】
従来のエネルギーイオン、加速荷電原子または分子のビームは、半導体装置の接合を形成する、スパッタリングの表面を平滑化し、薄膜の特性を向上させるために広く利用されている。従来のイオンと異なり、ガスクラスタイオンは、材料(標準的な温度および圧力下ではガス状−一般的には、たとえばアルゴンなどの不活性ガス)の多数の(標準的な分布は数百〜数千、平均値は数千)弱く結合した原子または分子のクラスタから成り、クラスタは共通電荷を共有し、大きな電位差(約3kV〜約70kV以上)により共に加速されて高い総エネルギーを得る。弱く結合されているため、ガスクラスタイオンは表面との
衝撃時に分裂して、クラスタの総エネルギーは構成原子の間で共有される。このエネルギーのため、個々の共有原子は従来のイオンまたはクラスタ化イオンよりもエネルギーがかなり小さくなる結果、かなり浅くしか浸透しない。
【0023】
エネルギーガスクラスタイオン内の個々の原子のエネルギーは非常に小さく、通常は数eV〜数十eVであるため、原子は衝撃時に目標表面の多くてもほんの数個の原子層しか貫通しない。こうした衝突原子の浅い貫通(通常、ビーム加速に応じて数ナノメートル〜約10ナノメートル)は、クラスタイオン全体の担持する全エネルギーが1マイクロ秒の期間内に最上表面層にごくわずかの量しか離散しないことを意味する。これは、材料への浸透が時には数百ナノメートルに及び、材料の表面下深くの変化をもたらす従来のイオンビームと異なる。ガスクラスタイオンの高総エネルギーおよびごくわずかな相互作用量のため、衝撃部位での堆積エネルギー密度は従来のイオンによる衝突の場合よりもずっと大きい。このため、GCIBから得られるGCIBまたは加速中性ビームは薬剤のような有機材料の表面と相互作用して、約10ナノメートル以下の極浅表面層に大きな変化をもたらすことができる。このような変化は分子の架橋、表面層の分子、緻密化、表面層内の有機材料の炭化、ポリマー化、およびその他の形の変性を含むことができる。
【0024】
GCIBは、たとえばKirtpatrickらによる公開米国特許出願第2009/0074834A1に教示されるような既知の技術によりワークピースを照射するために生成および送信される。照射用のGCIBまたはその他の種類のビームの経路に対象を保持し、対象を操作または走査して対象の複数の部分にビームを照射させるための各種ホルダが当該技術において既知である。中性ビームは、本願に教示の技術によりワークピースを照射するために生成および送信することができる。
【0025】
本願で使用されるように、「薬剤」という用語は、略有益に活性化され、植込み型医療装置の近傍で局地的に放出または溶出させて、(たとえば、制限なく、潤滑剤の提供によって)装置の植込みを簡易化する、あるいは(たとえば、制限なく、生物学的または生化学的な活性化により)装置の植込みの好ましい医学上または生理学上の成果を促進することのできる治療薬または材料を意味することを目的とする。「薬剤」は、薬剤を結合する、薬剤に粘着性を提供する、薬剤を医療装置に付着させる、あるいはバリア層を形成して薬剤の放出または溶出を制御するために採用される薬剤とポリマーとの混合物を意味することを目的としていない。薬剤の分子を緻密化、炭化または部分的に炭化、部分的に変性、架橋または部分的に架橋、あるいは少なくとも部分的にポリマー化するようにイオンビーム照射によって変質させられている薬剤は、「薬剤」の定義に含まれると意図される。
【0026】
本願で使用されるように、「溶出」という用語は、対象者への医療装置の植込み後、溶媒、典型的には体液溶媒への薬剤の漸進的溶解によって、医療装置上または医療装置の穴に薬剤源から少なくとも部分的に溶解性のある薬剤材料が放出されることを意味することを目的とする。多くの場合、薬剤材料の溶解性は高いため、薬剤は所望するよりも急速に溶液に放出されて、望ましくないことに医療装置植込み後の薬剤の治療寿命を短縮させてしまう。薬剤の溶出速度または放出速度は、たとえば薬剤の溶解性、薬剤と溶媒間の露出表面積、または薬剤と溶解性を低減させる材料との混合物などの多数の要因に左右される。しかしながら、薬剤と溶媒間のバリア層または密閉層もまた薬剤の溶出または放出速度を変更する可能性がある。溶出による放出速度を遅延させて、植込み部位での治療影響の時間を延長させることが望ましい場合が多い。所望の溶出速度は、医療装置の当業者にとっては十分に既知である。本発明はデバイスでのそのような速度管理を強化している。たとえば、http://www.news−medical.net/health/Drug−Eluting−stent−Design.aspx(溶出時間)を参照。US第3,641,237号も具体的な薬剤溶出速度をいくつか教示している。Haeryら著「薬剤溶出ステント:再狭窄の最後の始まり?」、Cleveland Clinic Journal of Medicine、V71(10),(2004)の818ページ、第2欄の第5段落には、ステントの薬剤放出速度が詳述されている。
【0027】
本願で使用されるように、「拡散」という用語は、バリア層にわたって、またはバリア層を通って濃度勾配により材料を移送することを意味することを目的とする。バリア層にわたって拡散する流体(たとえば体液)は通常、流体が豊富な側からさほど豊富でない側へと分子レベルで移動する結果、層内に濃度勾配が生じる。
【0028】
本願で使用されるように、「ポリマー」という用語はコポリマーを含み、モノマーまたはポリマー形状のいずれかで略有効にポリマー化され生物活性のない材料を意味することを目的とする。代表的なポリマーは制限なく、ポリ乳酸、ポリグリコール酸、乳酸−グリコール酸共重合体、ポリ乳酸カプロラクトン共重合体、ポリエチレングリコール、ポリエチレン酸化物、ポリビニルピロリドン、ポリオルトエステル、多糖、多糖誘導体、ポリヒアルロン酸、ポリアルギン酸、キチン、キトサン、各種セルロース、ポリペプチド、ポリリジン、ポリグルタミン酸、ポリ酸無水物、ポリヒドロキシアルカン酸塩、ポリヒドロキシ吉草酸、ポリヒドロキシブチレート、ポリリン酸エステルを含むことができる。「ポリマー」という用語は、薬剤の分子をイオンビーム照射によって緻密化、炭化または部分的に炭化、部分的に変性、架橋または部分的に架橋、または少なくとも部分的にポリマー化するように変質された薬剤を含むことを目的としていない。
【0029】
本願で使用されるように、「穴」という用語は、植込み型医療装置の表面を貫通する任意の穴、空隙、窪み、谷、溝、凹み、凹部を意味することを目的とし、装置の一部を通って延在していてもよいし(貫通孔)、装置の一部にのみ延在していてもよいし(止まり穴または空隙)、略円筒状、矩形、またはその他の任意の形状をとることができる。
【0030】
本願で使用されるように、「GCIB」、「ガスクラスタイオンビーム」、「ガスクラスタイオン」という用語は、イオン化ビームおよびイオンだけでなく、加速後に電荷状態の全部または一部が変更される(中性化を含む)加速ビームおよびイオンを包含することを目的とする。「GCIB」および「ガスクラスタイオンビーム」という用語は、未クラスタ化粒子も含むにせよ、加速ガスクラスタイオンを備えるすべてのビームを包含することを目的とする。本願で使用されるように、「中性ビーム」という用語は、加速ガスクラスタイオンビームから得られる中性ガスクラスタおよび/または中性モノマーのビームを意味することを目的とし、加速はガスクラスタイオンビームの加速から生じる。本願で使用されるように、「モノマー」という用語は単独の原子または単独の分子のいずれも等しく指す。「原子」、「分子」、「モノマー」という用語は互換可能に使用することができ、これらすべてが当該ガスの特徴となる適切なモノマー(クラスタの成分、クラスタイオンの成分、または原子または分子)を指す。たとえば、アルゴンなどの一原子ガスを原子、分子、またはモノマーに関して言及することができ、それらの用語はそれぞれ単独の原子を意味する。同様に、窒素のような二原子ガスの場合、原子、分子、またはモノマーに関して言及することができ、それらの用語はそれぞれ二原子分子を意味する。さらに、CO
2のような分子ガスを原子、分子、またはモノマーに関して言及することができ、それらの用語はそれぞれ三つの原子分子などを意味する。これらの定義は、ガス状の一原子、二原子、または分子のいずれであるかに関係なくガスおよびガスクラスタまたはガスクラスタイオンの総称に関する議論を単純化するために用いられる。
【0031】
従来のエネルギーイオン、加速荷電原子または分子のビームは、半導体装置の接合を形成する、スパッタリングの表面を変質させる、薄膜の特性を変更するために広く利用されている。従来のイオンと異なり、ガスクラスタイオンは、標準的な温度および圧力下ではガス状の(一般的には、たとえば酸素、窒素、またはアルゴンなどの不活性ガスだが、ガスクラスタイオンを生成する任意の凝縮性ガスが使用可能である)材料の多数の(標準的
な分布は数百〜数千、平均値は数千)弱く結合した原子または分子のクラスタから形成され、各クラスタは一つまたはそれ以上の電荷を共有し、大きな電位差(約3kV〜約70kVまたはそれ以上)により共に加速されて高い総エネルギーを得る。ガスクラスタイオンの形成および加速後、それらの電荷状態は変更させることができる、あるいは変更する(さらには中性化する)結果、より小さなクラスタイオンまたはモノマーイオン、および/またはより小さな中性化クラスタおよび中性化モノマーに断片化される、あるいは断片化を誘発されることがあるが、大きな電位差を通じて加速されるために比較的高い速度およびエネルギーを維持する傾向があり、エネルギーは断片全体に分配される。ガスクラスタイオンの形成および加速後、それらの電荷状態はその他のクラスタイオン、その他の中性クラスタ、または残りの背景ガス粒子との衝突によって変更させることができる、あるいは変更する(さらには中性化する)結果、より小さなクラスタイオンまたはモノマーイオン、および/またはより小さな中性化クラスタおよび中性化モノマーに断片化される、あるいは断片化を誘発されることがあるが、結果として生じるクラスタイオン、中性クラスタ、モノマーイオン、中性モノマーは大きな電位差を通じて加速されるために比較的高い速度およびエネルギーを維持する傾向があり、加速ガスクラスタイオンエネルギーは断片全体に分配される。
【0032】
加速ガスクラスタイオンが完全に解離して中性化されると、結果として生じる中性モノマーは、加速した時点における最初のガスクラスタイオンを備えたモノマーの数N
1で最初の加速ガスクラスタイオンの総エネルギーを割ったものにほぼ等しいエネルギーを有する。このように解離した中性モノマーは、ガスクラスタイオンの最初の加速エネルギーと加速時のガスクラスタのサイズとに応じて、約1eV〜数十、さらには数千eVものエネルギーを有する。
【0033】
本発明は、様々な種類の表面および浅い表面下材料処理用に採用することができ、多数の用途で従来のGCIB処理よりも優れた性能を示す加速ガスクラスタイオンビーム、加速中性ガスクラスタビーム、および/または中性モノマービーム(好ましくは加速中性モノマービーム)から得られる高ビーム純度方法およびシステムを採用することができる。これは、約1eV〜数千eVもの範囲のエネルギーを有する粒子を備えた、十分に集束および加速された強力な中性モノマービームを提供することができる。このエネルギー範囲では、簡易で比較的安価な装置によって強力な中性ビームを形成することはこれまで非実用的であった。
【0034】
これらの加速中性ビームは、まず従来の加速GCIBを形成し、次に、ビームに不純物を導入しない方法および動作条件によって部分的にまたはほぼ全部を解離してから、ビームの残りの荷電部分を中性部分と分離することによって生成され、結果として生じる加速中性ビームがワークピース処理用に使用される。ガスクラスタイオンの解離の程度に応じて、生成される中性ビームは中性ガスモノマーとガスクラスタの混合物とすることができる、あるいは、すべてまたはほぼすべてが中性ガスモノマーから成ることができる。加速中性ビームは完全に解離した中性モノマービームであることが好ましい。
【0035】
本発明の方法および装置によって生成可能な中性ビームの利点は、GCIBを含むすべてのイオン化ビームで一般的に生じるようなビーム移送電荷による電気絶縁性材料表面の帯電により材料に損傷を与えずに該材料を処理するために使用できることである。たとえば、半導体およびその他の電子的用途では、イオンが酸化物、窒化物などの薄誘電膜の損傷または破壊的帯電に寄与することが多い。中性ビームを使用することで、イオンビームが表面またはその他の荷電作用により望ましくない副作用をもたらす用途において、ポリマー、誘電性および/またはその他の電気絶縁性または高電気抵抗材料、コーティング、膜に適切なビーム処理を施すことができる。たとえば、(制限なく)抗腐食コーティング処理や有機膜の照射架橋および/またはポリマー化などである。別の例では、中性ビーム
の誘発するポリマーまたはその他の誘電材料の改質(たとえば、殺菌、平滑化、表面生体適合性の向上、付着の向上、および/または薬剤の溶出速度の制御)を通じて、上記材料を植込み用医療装置および/またはその他の医療/手術用途で使用可能することができる。他の例は、上記ビームがたとえば粗度、平滑性、親水性、生体適合性などの表面特徴を向上させるのに使用することができる、ガラス、ポリマー、およびセラミック生体培養実験機器および/または環境サンプリング表面の中性ビーム処理である。
【0036】
加速中性ビームを本発明の方法および装置によって形成することのできる本特許のGCIBはイオンを備えるため、従来のイオンビーム技術を用いて所望のエネルギーまで容易に加速され、容易に集束される。その後の荷電イオンと中性粒子との解離および分離後、中性ビーム粒子は集束軌道を維持する傾向があり、良好な作用を保ち、長距離を移送させることができる。
【0037】
ジェット内の中性ガスクラスタは、電子衝突によってイオン化されると、加熱および/または励起される。この結果、イオン化ガスクラスタからモノマーが気化し、加速後、ビームラインを下っていく。また、イオン化装置、アクセラレータ、ビームライン領域でのガスクラスタイオンと背景ガス分子との衝突もガスクラスタイオンを加熱および気化する結果、加速後にガスクラスタイオからモノマーをさらに発生させる場合がある。これらのモノマー発生機構がGCIBを形成したものと同じガスの背景ガス分子(および/またはその他のガスクラスタ)と電子との衝撃および/または衝突で誘発されるとき、モノマー発生の際に生じる分離プロセスによって、ビームは汚染されない。
【0038】
ビームを汚染せずにGCIB内のガスクラスタイオンを解離させる(あるいはモノマーの発生を誘発する)ために採用可能な機構は他にもある。これらの機構のうちいくつかも、中性ガスクラスタビーム内の中性ガスクラスタを解離させるために採用することができる。一つの機構は、赤外線またはその他のレーザエネルギーを使用するクラスタ−イオンビームのレーザ照射である。レーザ照射GCIB内のガスクラスタイオンのレーザ誘発加熱はガスクラスタイオンを励起および/または加熱させ、ビームからさらにモノマーを発生させる。もう一つの機構は、輻射熱エネルギーフォトンがビームのガスクラスタイオンに衝突するように加熱管にビームを通過させることである。管内の輻射熱エネルギーによるガスクラスタイオン誘発加熱の結果、ガスクラスタイオンが励起および/または加熱されて、ビームからさらにモノマーを発生させる。別の機構では、GCIBの形成に使用されるソースガス(またはその他の非汚染ガス)と同一のガスまたは混合物のガスジェットにガスクラスタイオンビームを交差させることによって、ガスジェット内のガスのモノマーとイオンビーム内のガスクラスタとが衝突して、ビームのガスクラスタイオンを励起および/または加熱させ、励起されたガスクラスタイオンからさらにモノマーを発生させる。最初のイオン化中の電子衝突、および/またはビーム内の(他のクラスタイオンまたはGCIBを形成するのに使用されるのと同一のガスの背景ガス分子との)衝突、および/またはレーザまたは熱放射、および/またはGCIBの解離および/または断片化を生じさせる非汚染ガスの横断ジェット衝突に完全に依存することによって、他の材料との衝突によるビーム汚染が回避される。
【0039】
ノズルからの中性ガスクラスタジェットが、電子がクラスタをイオン化するように方向付けられるイオン化領域を移動していく間、クラスタは非イオン化状態を保つ、あるいは一つまたはそれ以上の電荷(入射電子によるクラスタからの電子の放射)の荷電状態qを得ることができる。イオン化装置動作状態は、ガスクラスタが特定の荷電状態をとる可能性に影響し、イオン化装置の状態が強力であるほど、より高い荷電状態が達成される可能性が高くなる。高イオン化効率につながる強力なイオン化装置状態は、より高い電子束および/またはより高い(限界内)電子エネルギーをもたらすことができる。いったんガスクラスタがイオン化されると、一般的には、イオン化装置から抽出され、ビームへと集束
され、電界を下ることによって加速される。ガスクラスタイオンの加速量は加速電界の大きさを制御することによって容易に制御される。通常、一般的な市販のGCIB処理ツールは調節可能な加速電位V
Acc、たとえば約1kV〜70kV(しかしこの範囲に限定されず、最大200kVまたはそれ以上のV
Accが実現可能である)を有する電界によってガスクラスタイオンを加速させる。よって、単独に荷電されたガスクラスタイオンは、1〜70keV(より大きいV
Accが使用される場合はそれ以上)の範囲のエネルギーを達成し、複数で荷電された(たとえば、制限なく、荷電状態q=3電子電荷)ガスクラスタイオンは3〜210keV(V
Accがより大きい場合はそれ以上)−のエネルギーを達成する。他のガスクラスタイオン荷電状態および加速電位の場合、クラスタ当たりの加速エネルギーはqV
AcceVである。所与のイオン化効率を有する所与のイオン化装置から、ガスクラスタイオンはゼロ(未イオン化)〜6などのさらに高い値(またはイオン化装置効率がより高い場合はそれ以上)まで分布された荷電状態を有し、荷電状態分布の最も起こりやすい平均値もイオン化装置効率(電子束および/またはエネルギー)の上昇と共に増加する。イオン化装置効率が高い場合も、イオン化装置で形成されるガスクラスタイオンの数が増える。多くの場合、高効率でイオン化装置を動作する際にGCIB処理量が増大する結果、GCIB電流が増加する。このような動作のマイナス面は、中サイズのガスクラスタイオンで生じ得る複数の荷電状態がイオンによる孔および/または粗境界面の形成を引き起こし、これらの作用が処理の目的にとって逆効果に働く場合が多いことである。よって、多数のGCIB表面処理法では、イオン化装置動作パラメータの選択は単にビーム電流を最大化するよりも多くの考慮事項を含む傾向がある。プロセスによっては、「圧力セル」(米国特許第7,060,989号、Swensonらを参照)を採用して、高圧「圧力セル」内でのガス衝突によるビームエネルギーを穏やかにすることによって許容可能なビーム処理性能を得つつ、高イオン化効率でイオン化装置を動作させる。
【0040】
本発明では、高効率でイオン化装置を動作させることのマイナス面が発生しない。事実、このような動作が好ましいことがある。イオン化装置が高効率で動作するとき、イオン化装置によって生成されるガスクラスタイオンは幅広い荷電状態をとりうる。結果として、イオン化装置と加速電極間の抽出領域、およびビームの下流で、ガスクラスタイオンは幅広い速度を有する。このため、ビーム内のガスクラスタイオン間の衝突頻度が増し、通常は最も大きなガスクラスタイオンが高割合で断片化する。このような断片化はビーム内のクラスタサイズを再分配させ、小さなクラスタサイズの方に偏向させる。これらのクラスタ断片は新たなサイズ(N)に比例してエネルギーを保持するため、最初の非断片化ガスクラスタイオンの加速度をほぼ保持しつつエネルギーは小さくなる。衝突後の速度保持に伴うエネルギーの変化は実験で実証されている(たとえば、Toyoda,N.らの「クラスタサイズは残留ガスとの衝突後におけるガスクラスタイオンのエネルギーおよび速度分布に依存する」、Nucl.Instr.&Meth.in Phys.Research B 257(2007)、662〜665ページで報告されている)。さらに、断片化はクラスタ断片内の電荷も再配分させる。一部の非荷電断片が生じやすく、複数の荷電ガスクラスタイオンがいくつかの荷電ガスクラスタイオンと場合によってはいくつかの未荷電断片とに断片化されることがある。発明者の理解するところでは、イオン化装置の集束場と抽出領域の設計は、小さなガスクラスタイオンおよびモノマーイオンの集束を推進し、ビーム抽出領域および下流ビームにおける大きなガスクラスタイオンとの衝突の可能性を高めることによってガスクラスタイオンの解離および/または断片化に貢献する。
【0041】
本発明の一実施形態では、イオン化装置、加速領域、ビームラインの背景ガス圧は任意で、良好なGCIB送信のために通常利用される高圧を有するように構成することができる。この結果、ガスクラスタイオンから(最初のガスクラスタイオン化事象から生じる加熱および/または励起が招くよりも)さらにモノマーを発生させることができる。圧力は
、ガスクラスタイオンが背景ガス分子との複数の衝突を受けなければならないイオン化装置とワークピース間の十分に短い平均自由軌道および十分に長い飛行軌道を有するように構成することができる。
【0042】
N個のモノマーを含み、荷電状態qを有し、V
Accボルトの電位低下を通じて加速された均一ガスクラスタイオンの場合、クラスタはモノマー当たり約qV
Acc/N
1eVのエネルギーを有する。ただしN
1は加速時のクラスタイオン中のモノマーの数である。最も小さなガスクラスタイオンを除けば、イオンとクラスタソースガスと同一のガスの背景ガスモノマーとの衝突の結果、ガスクラスタイオンに約qV
Acc/N
1eVが追加して蒸着される。このエネルギーは全ガスクラスタイオンエネルギー(qV
Acc)と比べて相当小さく、通常はクラスタを励起または加熱させ、クラスタからモノマーをさらに発生させる。このような大きなクラスタと背景ガスとの衝突は滅多にクラスタを断片化せず、クラスタを加熱および/または励起して、気化または類似の機構によってモノマーを発生させると考えられる。励起源から生じたモノマーかガスクラスタイオンからのモノマーかにかかわらず、発生したモノマーはほぼ同一の粒子当たりのエネルギーqV
Acc/N
1eVを有し、モノマーが発生したガスクラスタイオンとほぼ同じ速度と軌道を保持する。このようなモノマーの発生がガスクラスタイオンから生じるとき、最初のイオン化事象、衝突、または輻射加熱によるどの励起または加熱から生じたかにかかわらず、大きな残留ガスクラスタイオンと共に電荷が残る可能性が高い。よって、一連のモノマー発生後、大きなガスクラスタイオンは、場合によっては小さな残留ガスクラスタイオンと共に移動するモノマー群(断片化も生じている場合は数個の場合もある)まで還元させることができる。最初のビーム軌道に沿った共に移動するモノマーはすべて最初のガスクラスタイオンとほぼ同じ速度を有し、それぞれが約qV
Acc/N
1eVのエネルギーを有する。小さなガスクラスタイオンの場合、背景ガスモノマーとの衝突エネルギーは小さなガスクラスタを完全に激しく解離させる可能性が高く、このような場合、結果として生じるモノマーがビームと共に移動し続けるのか,あるいはビームから放射されるのかは不確実である。
【0043】
GCIBがワークピースに到達する前に、ビーム中の残りの荷電粒子(ガスクラスタイオン、特に小中サイズのガスクラスタイオンといくらかの荷電モノマーだが、残りの任意の大きなガスクラスタイオンも含む)はビームの中性部分から分離されて、ワークピース処理用に中性ビームだけが残る。
【0044】
典型的な動作時、処理目標に送達されたフル(荷電プラス中性)ビームのパワーに対して中性ビーム成分のパワー部分は約5%〜95%であるため、本発明の分離方法および装置によって、フル加速荷電ビームのその運動エネルギーの部分を中性ビームであるターゲットに送達させることができる。
【0045】
ガスクラスタイオンの解離とそれによる高中性モノマービームエネルギーの生成は、1)より高い加速電圧で動作することによって推進される。このため、任意の所与のクラスタサイズでのqV
Acc/Nが増大する。また、2)高イオン化装置効率で動作することによって推進される。これによりqを増大することによって任意の所与のクラスタサイズのqV
Acc/Nが増大し、クラスタ間の荷電状態の差により、抽出領域におけるクラスタ−イオン衝突時のクラスタ−イオンが増大する。3)高イオン化装置、加速領域、またはビームライン圧力で動作する、あるいはビームを横断するガスジェットで、またはより長いビーム軌道で動作することによって推進される。これらはすべて所与のサイズのガスクラスタイオンの場合の背景ガス衝突の可能性を高める。4)ガスクラスタイオンからのモノマーの発生を直接促進するレーザ照射またはビームの輻射加熱で動作することによって推進される。5)より高いノズルガス流で動作することによって推進される。この結果、クラスタ化および場合によっては未クラスタ化ガスのGCIB軌道への輸送が推進され
て衝突が増し、モノマーをより発生させる。
【0046】
中性ビームの測定は、ガスクラスタイオンビームの場合簡便である電流測定によって実行することができない。中性ビームパワーセンサは、ワークピースに中性ビームを照射する際に線量測定を簡易化するために使用される。中性ビームセンサはビーム(または任意で、ビームの既知のサンプル)を捕捉する熱センサである。センサの温度上昇速度はセンサのエネルギービーム照射から生じるエネルギー束に関連する。熱測定は、センサに入射するエネルギーの熱再放射が原因のエラーを避けるためにセンサの限られた範囲の温度内で実行しなければならない。GCIBプロセスの場合、ビームパワー(ワット)はビーム電流(アンペア)×ビーム加速電圧V
Accに等しい。GCIBがある期間(秒)ワークピースを照射すると、ワークピースが受け取るエネルギー(ジュール)はビームパワーと照射時間の積である。拡張領域を処理する際のこのようなビームの処理作用は、領域(たとえば、cm
2)全体に分散される。イオンビームの場合、照射イオン/cm
2に関して処理量を明示することが従来から好都合であった。その場合、イオンは加速時に平均荷電状態qを有し、各イオンがqV
AcceV(eVは約1.6×10
−19ジュール)のエネルギーを担持するようにV
Accボルトの電位差を通じて加速されていることが既知である、あるいは推定される。よって、V
Accによって加速されイオン/cm
2で明示される平均荷電状態qの場合のイオンビームの線量は、ジュール/cm
2で表される容易に算出可能なエネルギー量に相当する。本発明で利用されるような加速GCIBから得られる加速中性ビームの場合、加速時のqの値とV
Accの値は、(後で形成され分離される)ビームの荷電部分と未荷電部分の両方で同一である。GCIBの二つ(中性および荷電)部分のパワーは各ビーム部分の質量に比例して分割される。よって、本発明で採用されるような加速中性ビームの場合、等しい面積が等しい時間照射されるとき、中性ビームによって蓄積されるエネルギー量(ジュール/cm
2)は必然的にフルGCIBによって蓄積されるエネルギー量よりも小さい。熱センサを使用してフルGCIBPGのパワーと中性ビームP
Nのパワー(一般的にはフルGCIBの約5%〜95%と考えられる)を測定することによって、中性ビーム処理線量測定で使用される相殺係数を算出することができる。P
NがP
Gのとき、相殺係数kは1/aである。よって、ワークピースがGCIBから得られる中性ビームを用いて処理される場合、時間はDイオン/cm
2の量を達成するのに必要なフルGCIB(荷電部分と中性ビーム部分を含む)の処理時間よりもk倍長く設定され、その場合、中性ビームとフルGCIBの両方によってワークピースに蓄積されるエネルギー量は同一である(ただし、二つのビームの粒子サイズの差異による処理作用の量的差異が原因で、結果は異なるかもしれない)。本願で使用されるように、このようにして相殺される中性ビーム処理線量は、Dイオン/cm
2の量と等価のエネルギー/cm
2を有すると説明されることがある。
【0047】
線量測定用の熱パワーセンサと組み合わせてガスクラスタイオンビームから得られる中性ビームを使用することは、多くの場合、ガスクラスタイオンと中性ガスクラスタおよび/または中性モノマーの混合物を不可避で含み、ビーム電流測定を用いて線量測定のために従来測定されるフルガスクラスタイオンビームあるいは捕捉または分流部分と比べて有利である。利点をいくつか次に述べる。
【0048】
1)線量測定は、ビームの総パワーが測定されるため、線量測定に熱センサを使用する中性ビームでより正確に行うことができる。線量測定に従来のビーム電流測定を採用するGCIBでは、線量測定にビームのイオン化部分の寄与のみが測定され採用される。GCIB装置の動作条件の分毎および環境毎の偏向によって、GCIBの中性モノマーおよび中性クラスタの部分が変動する場合がある。これらの変動は結果的に工程の変動を招き、線量測定がビーム電流の測定によって行われる際に制御性が低下する可能性がある。
【0049】
2)中性ビームを使用することで、ターゲット中性電子源を設ける必要なく、高絶縁性
材料、高電気抵抗材料(たとえば多数の薬剤)、電荷作用により損傷を受ける可能性のあるその他の材料などの任意の材料を処理し、イオン化ビームによってワークピースに送られる電荷によるワークピースの荷電を防ぐことができる。従来のGCIBを採用すると、電荷を低減するターゲット中性化が滅多に完全とならず、中性電子源自体、ワークピース加熱や、電子源での気化またはスパッタリングからの汚染などの問題を持ち込む場合が多い。中性ビームはワークピースに電荷を移送しないので、このような問題が軽減される。
【0050】
3)エネルギーモノマーイオンを中性ビームから分離する大開口高強度の磁石などの追加の装置が必要とされない。従来のGCIBの場合、エネルギーモノマーイオン(およびその他の小さなクラスタイオン)がワークピースに運ばれて貫入し深い損傷をもたらすリスクが大きく、粒子とビームとを分離するために高価な磁気フィルタが常に必要とされる。本発明の中性ビーム装置の場合、すべてのイオンをビームから分離して中性ビームを生成するために、全モノマーイオンが元から除去される。
【0051】
医療装置への薬剤の塗布はいくつかの方法で達成することができる。まず、たとえば金属、金属合金、セラミック、または多数のその他の材料から成る医療装置の表面を処理して、表面に一つまたはそれ以上の穴を形成する。次に、所望の薬剤を穴に蒸着させる。薬剤蒸着(穴装填)は噴射、浸漬、静電沈着、超音波噴射、蒸着、または離散液滴−オンデマンド流体噴射技術などの多数の方法のいずれかによって行うことができる。噴射、浸漬、静電沈着、超音波噴射、蒸着、または類似の技術が採用されるとき、従来のマスキングスキームを採用して蒸着を選択された位置に制限することができる。離散液滴−オンデマンド流体噴射は、正確な量の液体薬剤または溶液内薬剤を正確にプログラム可能な位置に導入できるため、好適な方法である。離散液滴−オンデマンド流体噴射は、(たとえば、制限なく)テキサス州プラノのMicroFab Technologies社製の市販の流体ジェットプリントヘッド噴射装置を用いて達成することができる。
【0052】
穴に薬剤を装填した後、本発明はイオンビーム照射、好ましくはGCIBまたは加速中性ビーム照射を使用して保持薬剤の極浅表面層を変質させて、表面膜上の拡散を制限するバリア特性を備えた薄表面膜を形成するように特性を変更すべく層内の薬剤を改変する。この結果、穴に保持される薬剤への水またはその他の体液の拡散速度、および穴からの薬剤溶出速度を制御することができる。バリア特性を有する表面膜となる薬剤の表面部分の変質は、薬剤の性質およびイオンビーム(好ましくは、GCIBまたは加速中性ビーム)処理の性質に応じて任意のいくつかの変質効果から成ることができる。可能な効果には、薬剤分子の架橋またはポリマー化、揮発性の高い原子を分子から排除することによる薬剤材料の炭化、薬剤の緻密化、溶解度、信頼性、および/または多孔度または拡散速度の低下を招くその他の形の変性などがある。
【0053】
上述したようなGCIBまたは加速中性ビーム表面改質を介した薬剤の塗布は合併症を低減させ、正真正銘のコスト節減と患者の生活の質の向上につながり、血栓症および再狭窄の問題を解決する。本発明の薬剤送達システムにおける送達に適した治療薬は、抗凝血剤、抗生物質、免疫抑制剤、血管拡張薬、抗多産薬、抗血栓剤、抗血小板剤、コレステロール降下薬、抗癌剤、およびそれらの組み合わせがあげられる
【0054】
本発明の一実施形態は、医療装置の表面の改質方法であって、医療装置の表面に一つまたはそれ以上の穴を形成するステップと、一つまたはそれ以上の穴のうち少なくとも一つに第一の薬剤を装填する第一装填ステップと、露出表面に第一のバリア層を形成するために、少なくとも一つの装填穴内の第一の薬剤の露出表面に第一の加速中性ビームを照射する第一照射ステップと、を備える方法を提供する。
【0055】
第一の加速中性ビームは第一のガスクラスタイオンビームから得ることができる。該方
法は、装填ステップの前に、第二のビームを形成するステップと、穴の少なくとも一部を清掃し、および/または穴の前記少なくとも一部の鋭利なまたはギザギザの縁部を除去するために、医療装置の前記一つまたはそれ以上の穴の少なくとも一部に第二のビームを照射する第二照射ステップと、をさらに備えることができる。第二のビームは加速中性ビームとすることができる。第二のビームはガスクラスタイオンビームとすることができる。加速中性ビームは加速ガスクラスタイオンビームから得ることができる。
【0056】
第一の照射ステップは、第一の薬剤分子を架橋する、第一の薬剤を緻密化する、第一の薬剤を炭化する、第一の薬剤をポリマー化する、または第一の薬剤を変性することによって、露出表面において第一の薬剤を変質させることにより第一のバリア層を形成することができる。第一の装填ステップは、噴射、浸漬、静電沈着、超音波噴射、蒸着、または離散液滴−オンデマンド流体噴射によって一つまたはそれ以上の穴に第一の薬剤を導入することを備えることができる。第一の装填ステップは、マスクを採用して、少なくとも一つまたはそれ以上の穴のうちどの穴に第一の薬剤が装填されるかを制御することを備えることができる。
【0057】
第一のバリア層は、少なくとも一つの装填穴への流体の内方拡散速度を制御することができる。一つまたはそれ以上の穴を所定パターンで表面に配置して、所定の分布プランにしたがい表面に第一の薬剤を分布することができる。該方法は、一つまたはそれ以上の穴のうち少なくとも一つに第一の薬剤と異なる第二の薬剤を装填する第二装填ステップをさらに備えることができる。一つまたはそれ以上の穴のうち少なくとも一つは、一つまたはそれ以上の穴のうち別の少なくとも一つの穴に装填される第二の量の第一の薬剤と異なる第一の量の第一の薬剤を装填することができる。
【0058】
第一装填ステップは少なくとも一つの穴を完全には充填しなくともよく、該方法は、少なくとも一つの不完全に充填された穴に第一のバリア層を覆う第二の薬剤を装填する第二装填ステップと、少なくとも一つの第二の装填穴内の第二の薬剤の露出表面に第二のバリア層を形成するために、少なくとも一つの第二の装填穴内の第二の薬剤の露出表面を第三のビームで照射する第三照射ステップと、をさらに備えることができる。第三のビームはガスクラスタイオンビームとすることができる。第三のビームは加速中性ビームとすることができる。第一のバリア層および第二のバリア層は、第一および第二の薬剤の溶出速度を異なって制御するために異なる特性を有することができる。第三のイオンビームは第三のガスクラスタイオンビームとすることができる。形成ステップはレーザ加工または集束イオンビーム加工によって一つまたはそれ以上の穴を形成することを備えることができる。
【0059】
本発明の別の実施形態は、一つまたはそれ以上の薬剤コーティング層を有する領域を備えた薬剤溶出医療装置であって、薬剤コーティング層のうち少なくとも一つが中性ビーム照射薬剤から形成されるバリア層を備え、バリア層がバリアをわたる材料流速を制御するように構成される薬剤溶出医療装置を提供する。領域は医療装置表面の穴内に配置することができる。材料流速は薬剤溶出速度とすることができる。材料流速は流体拡散速度とすることができる。装置は薬剤溶出ステントとすることができる。