特許第6391187号(P6391187)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ハーモニック・ドライブ・システムズの特許一覧

<>
  • 特許6391187-波動歯車装置の潤滑方法 図000002
  • 特許6391187-波動歯車装置の潤滑方法 図000003
  • 特許6391187-波動歯車装置の潤滑方法 図000004
  • 特許6391187-波動歯車装置の潤滑方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6391187
(24)【登録日】2018年8月31日
(45)【発行日】2018年9月19日
(54)【発明の名称】波動歯車装置の潤滑方法
(51)【国際特許分類】
   C10M 171/06 20060101AFI20180910BHJP
   F16H 57/04 20100101ALI20180910BHJP
   F16H 1/32 20060101ALI20180910BHJP
   C10M 103/02 20060101ALI20180910BHJP
   C10M 103/06 20060101ALI20180910BHJP
   C10N 10/12 20060101ALN20180910BHJP
   C10N 20/00 20060101ALN20180910BHJP
   C10N 20/06 20060101ALN20180910BHJP
   C10N 30/00 20060101ALN20180910BHJP
   C10N 30/06 20060101ALN20180910BHJP
   C10N 40/04 20060101ALN20180910BHJP
【FI】
   C10M171/06
   F16H57/04 Z
   F16H1/32 B
   C10M103/02 Z
   C10M103/06 C
   C10N10:12
   C10N20:00 Z
   C10N20:06 Z
   C10N30:00 Z
   C10N30:06
   C10N40:04
【請求項の数】5
【全頁数】7
(21)【出願番号】特願2016-561197(P2016-561197)
(86)(22)【出願日】2014年11月28日
(86)【国際出願番号】JP2014081578
(87)【国際公開番号】WO2016084235
(87)【国際公開日】20160602
【審査請求日】2017年4月6日
(73)【特許権者】
【識別番号】390040051
【氏名又は名称】株式会社ハーモニック・ドライブ・システムズ
(74)【代理人】
【識別番号】100090170
【弁理士】
【氏名又は名称】横沢 志郎
(72)【発明者】
【氏名】小林 優
【審査官】 ▲吉▼澤 英一
(56)【参考文献】
【文献】 特開2002−349681(JP,A)
【文献】 実開平04−018746(JP,U)
【文献】 特開平07−018280(JP,A)
【文献】 特開平07−205899(JP,A)
【文献】 特開2007−169426(JP,A)
【文献】 特開2003−042354(JP,A)
【文献】 特開平02−275166(JP,A)
【文献】 実開平01−136752(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
C10M 101/00−177/00
F16H 1/00−1/48
F16H 57/00−57/12
(57)【特許請求の範囲】
【請求項1】
波動歯車装置における外歯歯車および内歯歯車の歯部を除く潤滑対象の接触部のそれぞれを、層状の結晶構造を持つ無機系の潤滑性粉体を粉体の状態で用いて潤滑する波動歯車装置の潤滑方法であって、
前記潤滑性粉体として、モース硬さが1.5以下、平均粒径が15μm以下であり、圧延して鱗片状に砕いて得られる鱗片状粉体を用いる波動歯車装置の潤滑方法。
【請求項2】
前記潤滑性粉体は、二硫化モリブデン、二硫化タングステン、およびグラファイトのうちの少なくともいずれか一つである請求項1に記載の波動歯車装置の潤滑方法。
【請求項3】
剛性の内歯歯車、当該内歯歯車の内側に同軸に配置した可撓性の外歯歯車、および当該外歯歯車の内側に同軸に装着され、当該外歯歯車を非円形に撓めて前記内歯歯車にかみ合わせ、これら両歯車のかみ合い位置を周方向に移動させる波動発生器を備え、
前記外歯歯車の内側および前記波動発生器の内部には、潤滑剤として、層状の結晶構造を持つ無機系の潤滑性粉体が粉体の状態で充填されており、
前記潤滑性粉体は、モース硬さが1.5以下、平均粒径が15μm以下であり、圧延して鱗片状に砕かれた状態の鱗片状粉体である波動歯車装置。
【請求項4】
前記外歯歯車と前記波動発生器の間の接触面、および、前記波動発生器の内部の接触面は、それぞれ、前記潤滑性粉体を移着して形成された表面膜によって覆われている請求項3に記載の波動歯車装置。
【請求項5】
前記潤滑性粉体は、二硫化モリブデン、二硫化タングステン、およびグラファイトのうちの少なくともいずれか一つである請求項3に記載の波動歯車装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は波動歯車装置に関し、特に、潤滑性粉体を用いた波動歯車装置の潤滑方法に関する。
【背景技術】
【0002】
波動歯車装置の多くは、オイルおよびグリースで潤滑している。特許文献1に開示の波動歯車装置では、グリース溜まりから潤滑が必要な部分にグリースを供給する機構を備えている。特許文献2に記載の波動歯車装置では、カップ形状の外歯歯車の内部に、外歯歯車と一体回転するオイルタンクを配置し、遠心力を利用してオイルタンクから潤滑が必要な部分にオイルを供給している。特許文献3に開示の動力伝達装置においては、摺動部材間の摩擦・摩耗を低減するために、摺動面を所定の表面粗さの面とし、当該面を炭素系皮膜で覆い、さらに、炭素系皮膜で覆われた摺動面の間をグリース潤滑している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2013−92217号公報
【特許文献2】特開2011−64304号公報
【特許文献3】特開2009−41747号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
波動歯車装置は一般に減速機として用いられ、波動発生器がモーター等によって高速回転する。波動発生器における外歯歯車との接触部分、および、波動発生器内部の接触部分を、オイルあるいはグリースで潤滑すると、高速回転する波動発生器による粘性抵抗ロスが大きくなる。このため、波動歯車装置における低負荷域、高速回転域での効率が低下する。
【0005】
本発明の課題は、潤滑剤としてグリースあるいはオイルを用いる場合に比べて、低負荷域、高速回転域での効率を大幅に向上させることが可能な波動歯車装置の潤滑方法を提案することにある。
【0006】
また、本発明の課題は、潤滑剤としてグリースあるいはオイルを用いる場合に比べて、低負荷域および高速回転域での効率を大幅に向上させることが可能な波動歯車装置を提供することにある。
【課題を解決するための手段】
【0007】
上記の課題を解決するために、本発明の波動歯車装置の潤滑方法は、波動歯車装置における外歯歯車および内歯歯車の歯部を除く潤滑対象の接触部のそれぞれを、層状の結晶構造を持つ所定粒径および所定硬さの無機系の潤滑性粉体を用いて潤滑することを特徴としている。
【0008】
波動発生器における他部材との接触部、および、その内部の接触部を覆う状態に充填した潤滑性粉体は、層状の結晶構造を備えており、各層面に沿って滑る構造の固体潤滑剤である。潤滑性粉体は、波動歯車装置の運転時に、各接触面の間で押しつぶされ、接触部を形成している双方の接触面に移着して薄い表面膜を形成する。また、薄く圧延され、さらに細分化されて接触部の内部(接触面の間)に進入しやすい形状に変化する。
【0009】
このように形状変化した微粉末と、双方の接触面に形成された薄い表面膜とによって、接触部の潤滑が維持される。また、接触面に移着した薄い表面膜および圧延され細分化された微粉末も粘性が無いので、波動歯車装置の低負荷域および高速回転域での高効率を実現できる。さらに、このように運転条件による効率変化が少なくなるので、波動歯車装置の制御性も向上する。
【0010】
所定の潤滑効果が得られ、波動発生器のスムーズな回転を実現するためには、潤滑性粉体として平均粒径が15μm以下の微小粉体を用いることが望ましい。また、潤滑性粉体は、モース硬さが1.5以下の柔らかい粉体であることが望ましい。
【0011】
特に、波動歯車装置の運転初期から、潤滑効果が発揮され、波動発生器のスムーズな回転を実現するためには、潤滑性粉体を圧延して鱗片状に砕いて得られる微粉末を用いることが望ましい。
【0012】
層状の結晶構造を持つ潤滑性粉体としては、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素のうちのいずれか一つを用いることができる。二硫化モリブデン、グラファイトは、六方晶という層状の結晶構造を持ち、窒化ホウ素は、燐片状の結晶構造を持つ。なお、これらのうちの2種類以上の潤滑性粉体を組み合わせて使用することも可能である。
【0013】
次に、本発明の波動歯車装置は、剛性の内歯歯車、当該内歯歯車の内側に同軸に配置した可撓性の外歯歯車、および当該外歯歯車の内側に同軸に装着され、当該外歯歯車を非円形に撓めて前記内歯歯車にかみ合わせ、これら両歯車のかみ合い位置を周方向に移動させる波動発生器を備え、前記外歯歯車の内側および前記波動発生器の内部には、上記の潤滑性粉体が充填されていることを特徴としている。なお、内歯歯車と外歯歯車の歯部には、オイル潤滑剤あるいはグリース潤滑剤が塗布あるいは充填される。
【図面の簡単な説明】
【0014】
図1】波動歯車装置の一例を示す概略縦断面図および概略正面図である。
図2】粉体潤滑とグリース潤滑の場合の減速機効率の比較結果を示すグラフである。
図3】運転後に微粉末状態になった潤滑性微小粉体を示す顕微鏡写真である。
図4】圧延して薄い鱗片形状にした潤滑性微小粉体を示す顕微鏡写真である。
【発明を実施するための形態】
【0015】
以下に、図面を参照して本発明の波動歯車装置の潤滑方法を説明する。
【0016】
図1(a)、(b)は、本発明を適用可能な波動歯車装置の一例を示す概略縦断面図および概略正面図である。波動歯車装置1はカップ型と呼ばれ、円環状の剛性の内歯歯車2と、カップ形状をした可撓性の外歯歯車3と、楕円状輪郭の波動発生器4とを備えている。外歯歯車3は内歯歯車2の内側に同軸に配置されている。波動発生器4は、外歯歯車3における円筒状の外歯形成部分3aの内側に装着されている。波動発生器4によって楕円状に撓められた外歯形成部分3aの外周に形成されている外歯は、楕円形状の長軸Lの両端の位置において、内歯歯車2の内歯にかみ合っている。
【0017】
波動歯車装置1を減速機として用いる場合には、波動発生器4が不図示のモーター等によって高速回転する。例えば、内歯歯車2が不図示のケーシング等に固定され、外歯歯車3が減速回転する。減速回転が、外歯歯車3に形成されている剛性のボス3bに同軸に連結される不図示の出力軸に取り出される。
【0018】
波動歯車装置1の主要な潤滑部分は、内歯歯車2および外歯歯車3の間の接触部(歯部)A、外歯歯車3の外歯形成部分3aの内周面と波動発生器4の外周面との接触部B、および、波動発生器4の内部の接触部Cである。波動発生器4の内部の接触部Cは、ウエーブプラグ4aとウエーブベアリング4bの間の接触部分、ウエーブベアリング4bの構成部品の間の接触部分等である。これらのうち、接触部(歯部)Aについては一般的に行われるオイル潤滑あるいはグリース潤滑を行う。
【0019】
これに対して、接触部Bおよび接触部Cについては、微小粉体潤滑を行う。すなわち、層状の結晶構造を持つ柔らかい無機系の潤滑性微小粉体を用いて潤滑を行う。本発明者等の実験によれば、所定の潤滑効果が得られ、波動発生器4のスムーズな回転を実現するために、潤滑性微小粉体として、平均粒径が15μm以下の微小粉体を用いることが望ましく、モース硬さが1.5以下の柔らかい微小粉体であることが望ましいことが確認された。
【0020】
層状の結晶構造を持つ潤滑性微小粉体としては、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素のうちのいずれか一つを用いることができる。これらのうちの2種類以上の潤滑性粉体を組み合わせて使用することも可能である。
【0021】
図2は、波動歯車装置を、グリースを用いて潤滑した場合と、歯部を除き潤滑性微小粉体を用いて潤滑した場合の減速機効率の比較結果の一例を示すグラフである。図1に示す波動歯車装置1(タイプA)をグリースで潤滑した場合および潤滑性微小粉体で潤滑した場合における各回転数における出力トルクと効率の関係を、それぞれ、図2(a)および(b)に示す。また、波動歯車装置1とは異なる形状のカップ型の波動歯車装置(タイプB)をグリースで潤滑した場合および潤滑性微小粉体で潤滑した場合の関係を、それぞれ、図2(c)および(d)に示す。
【0022】
これらのグラフから分かるように、微小粉体潤滑の場合には、グリース潤滑に比べて、低負荷域での効率が向上しており、また、入力回転数による効率差も殆どなくなることが分かる。さらに、効率がほぼ全ての運転域において、ほぼ90%を示している(ほぼ波動歯車装置の歯車かみ合い効率に近い値である)。したがって、本発明の微小粉体潤滑を用いることにより、運転条件による効率変化が少なくなるので、制御性が向上する。
【0023】
次に、本発明者等が波動歯車装置の運転後の潤滑性微小粉体の状態を観察したところ、次のような挙動が確認された。
【0024】
すなわち、充填された潤滑性微小粉体は、波動歯車装置の運転時に、各接触部の接触面の間で押しつぶされ、双方の接触面に移着して薄い表面膜を形成する。また、薄く圧延され、さらに細分化されて接触面内に進入しやすい微粉末に変化する。図3(a)は運転後に各接触部において生成された微粉末を示す顕微鏡写真(×100)であり、図3(b)はその一部を示す拡大顕微鏡写真(×1000)である。
【0025】
このように形状変化した微粉末と、双方の接触面に形成された薄い表面膜とによって、接触部の潤滑が維持され、各摩擦部の摩擦抵抗低減にも効果がある。また、接触面に移着した薄い表面膜および圧延され細分化された微粉末も粘性が無いので、粘性抵抗ロスを示さない。
【0026】
さらに、層状の結晶構造を持つ潤滑性微小粉体を用いた潤滑方法によれば、次のような効果が得られることも確認された。
(a)低温(−75℃)から高温(250℃:微粉末の酸化温度の低い二硫化モリブデンでも酸化しない温度)の幅広い使用温度での潤滑が可能である。
(b)オイル、グリースによる潤滑に比べて、潤滑性微小粉体による潤滑は発熱が少ない。例えば、本発明者等の実験によれば、グリース潤滑時の波動歯車装置の内部温度に比べて、潤滑性微小粉体による潤滑の場合には内部温度が約15〜18℃低いことが確認された。
(c)オイル、グリースによる潤滑では静荷重時に接触面からの潤滑剤の抽出が生じるが、潤滑性微小粉体による潤滑では静荷重による接触面からの潤滑剤の抽出が無い。したがって、停止期間が長く、低頻度の動作時にも接触部が確実に潤滑できる。
(d)潤滑性微小粉体による潤滑は、低速入力回転の場合にも対応可能である。
【0027】
ここで、波動歯車装置の運転初期から、十分な潤滑効果、よりスムーズな波動発生器の回転を実現するためには、低負荷での慣らし運転(エージング)を行うことが有効であることが確認された。
【0028】
また、波動歯車装置の組立前に、各接触部の接触面毎に、低い面圧下での滑り、転がり運動により、潤滑性微小粉体を各接触面に移着させておけば、慣らし運転を省略可能であることが確認された。各接触面に対して、潤滑性微小粉体のショットピーニングを行うことによる移着も有効であることが確認された。
【0029】
さらに、外歯歯車の内側および波動発生器の内部に充填する潤滑性微小粉体を、予め圧延して薄い鱗片形状の微小粉体にしておいてもよい。図4(a)および(b)は、圧延して薄い鱗片形状にした微小粉体を示す顕微鏡写真(×100)であり、図4(c)はその一部を示す顕微鏡写真(×1000)である。このような鱗片形状の微小粉体を充填すると、特に運転初期の波動発生器のスムーズな回転を実現するために効果があることが確認された。
【0030】
以上説明したように、本発明による潤滑性微小粉体によって接触部が潤滑される波動歯車装置では、波動発生器が粘性抵抗ロスを示さず、低負荷域、高速回転域での高効率を実現できる。
図1
図2
図3
図4