【文献】
K. Nagaiah et al.,Preparation of nitriles from carboxylic acids over zeolite catalysts,Indian Journal of Chemical Technology,1994年,1(Nov.),pp. 356-8
(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明者らは、反応成績、触媒寿命に優れる固体酸触媒の存在下、先行技術文献に記載の方法で酢酸とアンモニアの気相反応によりアセトニトリルを製造した。その結果、かかる従来方法には全く触れられていない現象、すなわち製造される含水粗アセトニトリル中にアセトン、メチルエチルケトン、エチレン、プロピレン、ブテン;アクリロニトリルやプロピオニトリル等のニトリル化合物;ベンゼン、トルエン、キシレン等の芳香族化合物類;ピリジン類等が微量副生不純物として含有されることが、判明した。
【0010】
これら不純物の中でもトルエン等の芳香族化合物類は、波長200nm領域の紫外線吸収に多大な影響を及ぼす物質であることが知られている。また、芳香族化合物類の中でアセトニトリルとの沸点、共沸組成形成から蒸留分離が問題となることが推定されるトルエンは、アセトニトリルに対してわずか1.0質量ppm存在した場合でも、波長200nmでの紫外線吸収の吸光度は0.3以上にまで上昇してしまう。従って、極微量であっても、トルエンの副生とその精製は、アセトニトリル製品品質への大きな課題となる。
【0011】
しかしながら、特許文献1、2に記載の方法には、微量副生不純物に関する検討が全く為されておらず、かかる課題の提起がない。例えば、特許文献1では、酢酸原料の溶媒として芳香族炭化水素に溶解させて供給する方法を提案している程である。
【0012】
また、気相反応により得られる含水粗アセトニトリルを、上述した溶媒や洗浄剤に用いられる高純度なアセトニトリルへ精製するためには、複数の精製工程を経由して製造する必要がある。そのため、水分量を制御せずに気相反応工程を実施すると、精製工程が煩雑となり、精製に用いられるエネルギー消費量が増えることによって、コストが大きく増加するという問題が生じる。
【0013】
本発明は、上記課題に鑑みてなされたものであり、固体酸触媒を用いて酢酸とアンモニアとの気相反応により得られる含水粗アセトニトリルの精製に用いられるエネルギー消費量が少なく、精製設備及び精製工程も簡易であるアセトニトリルの製造方法を提供することを目的とする。また、このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒及び精製用溶媒、或いは、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。
【課題を解決するための手段】
【0014】
本発明者らは、前記課題を解決するために鋭意、検討を重ねた結果、気相反応において、所定の触媒を用い、かつ、含水粗アセトニトリルの水分量を制御することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明は以下のとおりである。
〔1〕
酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る気相反応工程と、
前記含水粗アセトニトリルを精製して、製品アセトニトリルを得る精製工程と、を有し、
前記含水粗アセトニトリル中、
水の含有量が、前記含水粗アセトニトリル100質量%に対して、47質量%以上であり、かつ
トルエンの含有量が、アセトニトリル100質量%に対して、1質量ppm以上である、
アセトニトリルの製造方法。
〔2〕
前記固体酸触媒が、中間細孔径ゼオライトであることを特徴とする、前項〔1〕に記載のアセトニトリルの製造方法。
〔3〕
前記精製工程が、
前記含水粗アセトニトリルからアンモニアを分離し、粗アセトニトリルを得る濃縮工程と、
前記粗アセトニトリルから水を分離し、脱水アセトニトリルを得る脱水工程と、を含む、前項〔1〕又は〔2〕に記載のアセトニトリルの製造方法。
〔4〕
前記製品アセトニトリル中のトルエン含有量が、アセトニトリル100質量%に対して、1.0質量ppm未満である、前項〔1〕〜〔3〕のいずれか1項に記載のアセトニトリルの製造方法。
〔5〕
前記酢酸が、10〜40質量%の水を含む水溶液である、前項〔1〕〜〔4〕のいずれか1項に記載のアセトニトリルの製造方法。
〔6〕
前記気相反応工程において、WHSVが、0.5〜20h
−1である、前項〔1〕〜〔5〕のいずれか1項に記載のアセトニトリルの製造方法。
〔7〕
前記中間細孔径ゼオライトが、ZSM−5型ゼオライトを含む、前項〔2〕〜〔6〕のいずれか1項に記載のアセトニトリルの製造方法。
〔8〕
前項〔1〕〜〔7〕のいずれか1項に記載のアセトニトリルの製造方法により製造された、アセトニトリル。
【発明の効果】
【0016】
本発明によれば、固体酸触媒を用いて酢酸とアンモニアの気相反応により得られる含水粗アセトニトリルの精製に用いられるエネルギー消費量が少なく、精製設備及び精製工程も簡易であるアセトニトリルの製造方法を提供することができる。また、このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒及び精製用溶媒、或いは、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、数値範囲における「A〜B」の表現は、特に記載がない限り「A以上B以下」の数値範囲を示すものとする。
【0018】
〔アセトニトリルの製造方法〕
本実施形態のアセトニトリルの製造方法は、酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る気相反応工程と、前記含水粗アセトニトリルを精製して、製品アセトニトリルを得る精製工程と、を有し、前記含水粗アセトニトリル中、水の含有量が、前記含水粗アセトニトリル100質量%に対して、47質量%以上であり、かつトルエンの含有量が、アセトニトリル100質量%に対して、1質量ppm以上である。
【0019】
本実施形態によれば、固体酸触媒を用いることにより、高活性、高収率でかつ、長期に安定に気相反応を行うことができる。また、該触媒を用いる系において問題となる副生物であるトルエンを、精製工程で簡便に除去することができるため、高純度なアセトニトリルを、少ないエネルギー消費量で、簡易な精製設備及び精製工程により得ることができる。
【0020】
〔気相反応工程〕
気相反応工程は、酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る工程である。具体的には、固体酸触媒を充填した反応器内で、所定の温度にて、酢酸とアンモニアと触媒とを気相接触させることにより、実施することができるが、特に限定されない。
【0021】
(原料)
気相反応の原料となる酢酸及びアンモニアとしては、特に限定されず、各種化学合成法などから製造されたものを用いることができる。酢酸及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものでよい。例えば、酢酸としては、一般に工業的に用いられる酢酸水溶液を用いることができる。
【0022】
酢酸水溶液の水の含有量は、好ましくは10質量%以上であり、より好ましくは15質量%以上であり、さらに好ましくは18質量%以上である。また、酢酸水溶液の水の含有量は、好ましくは40質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは25質量%以下である。酢酸水溶液の水の含有量が10質量%以上であることにより、含水粗アセトニトリルからの不純物(トルエンなど)の分離効率がより向上する傾向にある。また、酢酸水溶液の水の含有量が40質量%以上であることにより、気相反応効率がより向上し、含水粗アセトニトリル又は粗アセトニトリルからの水の分離に関するエネルギー効率がより向上する傾向にある。また、含水率が0質量%の酢酸の融点は約17℃であるが、含水率40質量%の酢酸の融点は約−27℃まで低下し、冬期における原料酢酸水溶液の凍結防止できるため、工業的に実施する場合に、有利である。なお、酢酸の水分量とは、JIS−K−1351に基づく酢酸中に含まれる水の重量分率を意味する。
【0023】
(固体酸触媒)
本実施形態で用いる固体酸触媒は、ブレンステッド酸点を有する固体状のものであれば特に限定されず、従来公知の触媒が用いられ、例えば、カオリン等の粘土鉱物;粘土鉱物等の担体に硫酸、リン酸等の酸を含浸・担持させたもの:酸性型イオン交換樹脂;中間細孔径ゼオライト等のゼオライト類;活性アルミナ類;リン酸アルミニウム類;メソポーラスシリカアルミナ等が挙げられる。
【0024】
これら固体酸触媒のうちでも、中間細孔径ゼオライトを含有する触媒等のゼオライト類、活性アルミナ類が好ましく、中間細孔径ゼオライトを含有する触媒がより好ましい。このような固体酸触媒を用いることにより、本実施形態の効果をより有効に発揮させることができる。
【0025】
(中間細孔径ゼオライトを含有する触媒)
中間細孔径ゼオライトを含有する触媒について以下説明する。「ゼオライト」とは一般的に結晶性の多孔質アルミノシリケートの総称である。ゼオライトは、四面体構造である(SiO
4)
4−と(AlO
4)
5−とを基本構造単位として有し、これらが三次元的に連結することで結晶が形成される。また、アルミニウムイオン以外の3価あるいは4価の元素をシリケート骨格に組み込んだメタロシリケートもゼオライトに含まれる。ゼオライトは構造及び組成が多様であるため、構造コード、生成過程、鉱物学、細孔径、細孔の次元、アルミニウム濃度、他のカチオン濃度及び構造元素などのさまざまな観点から異なる分類がなされている(ゼオライトの科学と工学、小野嘉夫・八嶋建明/編、講談社サイエンティフィック参照)。また、国際ゼオライト学会(IZA)により多様なフレームワーク型コードが規定されている。
【0026】
(中間細孔径ゼオライト)
ここで、「中間細孔径ゼオライト」とは、細孔径の範囲が、A型ゼオライトに代表される小細孔径ゼオライトの細孔径と、モルデナイトやX型やY型ゼオライトに代表される大細孔径ゼオライトの細孔径との中間にある細孔径を有するゼオライトを意味し、その結晶構造中に、例えば酸素10員環を有するゼオライトを意味する。中間細孔径ゼオライトの有する細孔径は、好ましくは5〜6.5Åである。
【0027】
(中間細孔径ゼオライトの構造)
中間細孔径ゼオライトの構造としては、特に限定されないが、例えば、国際ゼオライト学会(IZA)が規定するフレームワーク型コード(FTC)において、AEL、EUO、FER、HEU、MEL、MFI、NES、TON、及びWEI等で示される構造が挙げられる。このなかでも、MFIで示される構造を有する中間細孔径ゼオライトが好ましい。MFIで示される構造を有する中間細孔径ゼオライトとしては、具体的にはZSM−5型ゼオライトが挙げられる。このような中間細孔径ゼオライトを用いることにより、触媒活性がより向上する傾向にある。
【0028】
また、中間細孔径ゼオライトとしては、ゼオライト骨格を構成するアルミニウム(Al)原子の一部がガリウム(Ga)、鉄(Fe)、ホウ素(B)、クロム(Cr)などの元素で置換されたメタロアルミノシリケートや、ゼオライト骨格を構成するアルミニウム原子が全て上記の元素で置換されたメタロシリケートを用いることもできる。
【0029】
(シリカ/アルミナ比)
中間細孔径ゼオライトのシリカ/アルミナ比(モル比、以下同様。)は、好ましくは20〜1000であり、より好ましくは20〜500であり、さらに好ましくは20〜300である。シリカ/アルミナ比が20以上であることにより、触媒としての安定性がより向上する傾向にある。また、シリカ/アルミナ比が上記範囲内であることにより、触媒活性がより向上する傾向にある。ゼオライトのシリカ/アルミナ比は、公知の方法、例えばゼオライトをアルカリ水溶液に完全に溶解し、得られる溶液をプラズマ発光分光分析法により分析することで求めることができる。なお、中間細孔径ゼオライトがメタロアルミノシリケート又はメタロシリケートである場合のシリカ/アルミナ比は、上記元素に置換されたアルミニウム原子の量をAl
2O
3(アルミナ)のモル数に換算した上で、算出される。
【0030】
(中間細孔径ゼオライトを含有する触媒の調製方法)
中間細孔径ゼオライトを含有する触媒の調製方法としては、特に限定されず、公知の方法を用いることが可能である。なお、中間細孔径ゼオライトは、水熱合成後にイオン交換、脱アルミニウム処理、含侵や担持などの修飾により組成を変えることが可能である。本実施の形態においては、中間細孔径ゼオライトのイオン交換サイトの少なくとも一部が、プロトンで交換されていることが好ましい。このような中間細孔径ゼオライトを含有する触媒を用いることにより、触媒活性がより向上する傾向にある。
【0031】
(中間細孔径ゼオライトを含有する触媒の成形方法)
中間細孔径ゼオライトを含有する触媒の形状は、粉状でも粒状でもよく、気相反応工程等のプロセスに応じて適した形状に成型加工した成形体とすることができる。中間細孔径ゼオライトを含有する触媒の成形方法としては、特に限定されず、公知の方法を用いることが可能である。具体的には、触媒の前駆体を噴霧乾燥する方法、触媒成分を圧縮成型する方法、触媒成分を押出成型する方法が挙げられる。これら成形方法においては、バインダーや成形用希釈剤(マトリックス)を用いてもよい。バインダー及び成形用希釈剤としては、特に限定されないが、アルミナ、シリカ、ジルコニア、チタニア、カオリン、ケイソウ土、粘土等の多孔性耐火性無機酸化物が挙げられる。これらは、一種単独で用いても、二種以上を併用してもよい。これらのバインダー及び成形用希釈剤は、市販のものを用いてもよく、常法により合成してもよい。中間細孔径ゼオライトを含有する触媒をバインダーを用いて成型加工する場合における、中間細孔径ゼオライト/(バインダー及び成形用希釈剤)の質量比率は、好ましくは10/90〜90/10であり、より好ましくは20/80〜80/20である。
【0032】
(活性アルミナ類)
次いで、活性アルミナ類について以下説明する。活性アルミナ類としては、特に限定されないが、例えば、市販の活性アルミナが挙げられる。活性アルミナ類の形状は、粉状でも粒状でもよく、気相反応工程等のプロセスに応じて適したものとすることができる。
【0033】
(反応器)
気相反応工程において用いられる反応器としては、特に限定されないが、例えば、固定床式反応器、流動床式反応器、移動床式反応器等が挙げられる。反応方式としては、バッチ式及び流通式のいずれもが使用可能であるが、生産性を考慮すれば、流通式が好ましい。なお、本明細書の記載は当業者が容易に調節しうる程度の反応条件の変更を妨げるものではない。
【0034】
なお、反応器に固体酸触媒を充填する場合、触媒層の温度分布を小さく抑えるために、石英砂やセラミックボール等の反応に不活性な粒状物を、触媒と混合して充填してもよい。この場合、石英砂等の反応に不活性な粒状物の使用量は特に限定はない。なお、この粒状物は、触媒との均一混合性の観点から、触媒と同程度の粒径であることが好ましい。
【0035】
また、気相反応は吸熱反応であるため、所望反応温度に制御するには、熱供給機構を備えることが好ましい。例えば、工業的に固定床で実施する場合には、多管式シェル&チューブ方式反応器を採用することが考えられる。また、反応器には、反応に伴う吸熱を分散させることを目的に、反応基質(反応原料)を分割して供給してもよい。
【0036】
(アンモニア/酢酸のモル比)
気相反応工程において、反応器に供給するアンモニア/酢酸のモル比は、好ましくは1.0以上であり、より好ましくは1.0〜1.5であり、さらに好ましくは1.1〜1.5である。アンモニア/酢酸のモル比が1.0以上であることにより、反応効率がより向上する傾向にある。また、アンモニア/酢酸のモル比が1.5以下であることにより、精製工程において、後述する含水粗アセトニトリルからアンモニアを分離除去するためのエネルギー消費量をより低減できる傾向にある。
【0037】
(WHSV(重量空間速度))
WHSV(重量空間速度)は、反応器への触媒充填重量に対する、1時間あたりに流れる原料重量であり、下式にて求めることができる。
WHSV[h
−1]=1時間あたりに流れる原料重量[g/h]/触媒充填重量[g]
【0038】
ここで、「触媒充填重量」とは、本実施形態における固体酸触媒の反応器への充填重量を意味し、固体酸触媒が成形体である場合は、該成形体を構成するバインダーや成形用希釈剤を含む成形体全体の反応器充填重量である。なお、上述の不活性な粒状物は触媒充填重量には含まれない。また、ここで「原料重量」とは、反応器へ流れる原料の合計重量であり、「原料」には、本実施形態における原料である酢酸又は酢酸水溶液及びアンモニアの他、後述する希釈剤も含まれる。
【0039】
WHSVは、生産性と触媒寿命、反応収率との兼ね合いで適宜調整することができる。例えば、気相反応工程におけるWHSVは、好ましくは0.5〜50h
−1であり、より好ましくは0.5〜20h
−1であり、さらに好ましくは0.5〜10h
−1である。WHSVが0.5h
−1以上であることにより、一定の生産量を得るのに必要な触媒量を低減でき、反応器をコンパクトにすることができ、アセトンやトルエン等の好ましくない副生物の副生を抑制でき、高純度アセトニトリルへの精製負荷をより小さくできる傾向にある。また、WHSVが50h
−1以下であることにより、酢酸の転化率がより向上し、また、アセトニトリルの選択率がより向上する傾向にある。
【0040】
(希釈剤)
気相反応工程においては、酢酸及びアンモニアの他に、希釈剤を用いてもよい、希釈剤としては、特に限定されないが、例えば、ヘリウム、アルゴン、窒素、水、パラフィン系炭化水素ガス類、及びそれらの混合物など、反応に不活性な気体が挙げられる。このなかでも、窒素及び水が好ましい。希釈剤は、反応原料に含まれている不純物をそのまま使用してもよいし、別途調製した希釈剤を反応原料と混合して用いてもよい。また、希釈剤は反応器に入れる前に反応原料と混合してもよいし、反応原料とは別に反応器に供給してもよい。また、後述する含水粗アセトニトリルの水分量を調整する目的で、酢酸とアンモニアとの気相反応により生成する含水粗アセトニトリルに、水を希釈剤として混合して精製に供してもよい。
【0041】
(反応温度)
気相反応の反応温度は、好ましくは250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは350℃以上である。また、気相反応の反応温度は、好ましくは600℃以下であり、より好ましくは550℃以下であり、さらに好ましくは520℃以下である。反応温度が250℃以上であることにより、反応収率がより向上する傾向にある。また、反応温度が600℃以下であることにより、副生物の生成をより抑制でき、触媒の劣化も抑制できる傾向にある。尚、本実施形態における気相反応は脱水反応(吸熱反応)であるので、反応器内を所望の反応温度に制御するためには、反応器に熱源を設置することが好ましい。例えば、固定床反応器で工業的に気相反応を実施する場合には、多管式シェル&チューブ方式反応器を用いることが考えられる。
【0042】
(反応圧力)
気相反応の反応圧力は、本実施形態の気相反応の反応平衡上は、低圧が有利であるが、圧力が高いと反応速度は向上する。従って、平衡転化率と反応速度の兼ね合いであり、好ましくは常圧〜0.3MPaG(ゲージ圧、以下同様。)であり、より好ましくは0.03〜0.25MPaGであり、さらに好ましくは、0.05〜0.20MPaGである。
【0043】
(含水粗アセトニトリル)
「含水粗アセトニトリル」とは、10質量%以上〜70質量%以下のアセトニトリルと、30質量%以上〜90質量%以下の水と、を含み、その他に0質量%以上〜60質量%以下の不純物を含み得る組成物である。不純物としては、特に限定されないが、例えば、アンモニア、酢酸、アセトアミド、アセトン、が挙げられる。
【0044】
含水粗アセトニトリル中の水の含有量は、含水粗アセトニトリル100質量%に対して、好ましくは47質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは52質量%以上である。また、含水粗アセトニトリル中の水の含有量は、含水粗アセトニトリル100質量%に対して、好ましくは90質量%以下であり、より好ましくは60質量%以下であり、さらに好ましくは58質量%以下である。含水粗アセトニトリル中の水の含有量が47質量%以上であることにより、後述する精製工程において、含水粗アセトニトリル又は粗アセトニトリル中のトルエン等の芳香族化合物をアンモニアと同時により効率よく除去できる傾向にある。また、含水粗アセトニトリル中の水の含有量が90質量%以下であることにより、後述する精製工程において、含水粗アセトニトリル又は粗アセトニトリル中の水をより効率よく除去できる傾向にある。なお、含水粗アセトニトリル中の水の含有量は、気相反応により得られた含水粗アセトニトリルに対して、水を希釈剤として混合することにより調整してもよい。この場合、含水粗アセトニトリル中の水の含有量は、混合した水の重量も加味して求める。
【0045】
気相反応により得られる含水粗アセトニトリル中のトルエンの含有量は、反応条件により影響されるものであるが、アセトニトリル100質量%に対して、好ましくは1〜1000質量ppmであり、より好ましくは1〜500質量ppmであり、さらに好ましくは1〜100質量ppmである。含水粗アセトニトリル中のトルエンの含有量が上記範囲内であっても、本実施形態の製造方法によれば、トルエンを十分に除去することができる。なお、含水粗アセトニトリル中のトルエンの含有量は、実施例に記載の方法により測定することができる。
【0046】
〔精製工程〕
精製工程は、含水粗アセトニトリルを精製して、製品アセトニトリルを得る工程である。精製工程に含まれる工程としては、含水粗アセトニトリルから水、アンモニア及びその他不純物を除去するように構成されていれば特に限定されないが、例えば、濃縮工程、脱水工程などが挙げられる。
【0047】
(濃縮工程)
濃縮工程は、含水粗アセトニトリルからアンモニアを分離し、粗アセトニトリルを得る工程である。アンモニアの分離方法としては、特に限定されないが、例えば、蒸留塔を用いる方法が挙げられる。ここで、「粗アセトニトリル」とは、含水粗アセトニトリルから、大部分のアンモニアが除かれて濃縮されたアセトニトリルであり、主に50質量%以上75質量%未満のアセトニトリルと、25質量%以上50質量%以下の水と、その他不純物と、を含み得る混合物である。
【0048】
後述する脱水工程を実施する前に濃縮工程を実施することにより、含水粗アセトニトリル中のトルエンをアンモニアと同時に効率よく除去することができる。特に、精製に供する含水粗アセトニトリル中の水の含有量が多いほど、この効果がより向上する傾向にある。
【0049】
(脱水工程)
脱水工程は、粗アセトニトリルから水を分離し、脱水アセトニトリルを得る工程である。水の分離方法としては、特に限定されないが、例えば、粗アセトニトリルにアルカリを添加し、抽出脱水を行う方法が挙げられる。用い得るアルカリとしては、特に限定されないが、例えば、苛性ソーダが挙げられる。また、アルカリの使用量は、粗アセトニトリル中の水分含有量によって適宜調整することができ、粗アセトニトリルの水分含有量に対して、好ましくは10〜90質量%であり、より好ましくは30〜60質量%である。抽出温度は、好ましくは5〜60℃であり、より好ましくは10〜35℃である。
【0050】
抽出脱水方法としては、特に限定されないが、例えば、連続式向流接触塔を用いる方法が好ましい。連続式向流接触塔の充填物としては、特に限定されないが、例えば、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インターロックサドル、テラレットパッキング、ディクソンリング、マクマホンパッキングが好ましく、規則充填物としては、特に限定されないが、例えば、網目構造の充填物が好ましい。
【0051】
(脱水アセトニトリル)
ここで、「脱水アセトニトリル」とは、75質量%以上99質量%以下のアセトニトリルと、0質量%以上〜25質量%未満の水と、その他不純物と、を含み得る混合物である。
【0052】
(その他の工程)
精製工程は、低沸分除去工程及び高沸分除去工程等のその他の工程を有していてもよい。低沸分除去工程及び高沸分除去工程は、脱水アセトニトリルからアセトニトリルの沸点未満の低沸成分と、アセトニトリルの沸点超過の高沸成分と、を除去し、後述する製品アセトニトリルを得る工程である。低沸分除去方法及び高沸分除去方法としては、特に限定されないが、例えば、蒸留塔を用いる方法が挙げられる。
また、含水粗アセトニトリルは、既に公知であるプロピレン又はイソブテンとアンモニア及び分子状酸素との接触的アンモ酸化反応によってアクリロニトリル又はメタクリロニトリルを製造する際に副生成物として得られる粗アセトニトリルの蒸留精製方法と同様に、或いは、該蒸留精製方法に倣って精製することもできる。参考となる従来技術としては、特に限定されないが、例えば、特開昭55−153757号公報、特許第3104312号公報、WO2013/146609号パンフレット等を挙げることができる。
【0053】
上記精製工程を経ることにより、製品アセトニトリルを得ることができる。
【0054】
(製品アセトニトリル)
「製品アセトニトリル」とは、アセトニトリルの含有量が99質量%超であり、アセトニトリル以外の不純物の含有量が1質量%未満のアセトニトリルをいう。製品アセトニトリルに含まれるアセトニトリルの含有量は、好ましくは99.5質量%以上100質量%以下であり、より好ましくは99.9質量%以上100質量%以下であり、さらに好ましくは99.99質量%以上100質量%以下である。
【0055】
(製品アセトニトリル中のトルエンの含有量)
製品アセトニトリル中のトルエンの含有量は、アセトニトリル100質量%に対して、好ましくは1.0質量ppm未満であり、より好ましくは0.5質量ppm以下であり、さらに好ましくは0.1質量ppm以下であり、よりさらに好ましくは0.1質量ppm未満である。製品アセトニトリルに含まれるトルエンの含有量の下限は、特に限定されないが、好ましくは検出限界量以下であり、より好ましくはアセトニトリル100質量%に対して0質量%である。製品アセトニトリル中のトルエンの含有量が上記範囲内であることにより、より高品質なアセトニトリルとなる。
【0056】
また、製品アセトニトリルの波長200nmでの紫外線吸収の吸光度は、好ましくは0.3以下であり、より好ましくは0.25以下であり、さらに好ましくは0.2以下である。また、製品アセトニトリルの波長200nmでの紫外線吸収の吸光度の下限は特に制限されず、低いほど好ましく、より好ましくは0である。波長200nmでの紫外線吸収の吸光度は、製品アセトニトリル中の芳香族化合物の含有量の指標となる。この観点から、製品アセトニトリルの波長200nmでの紫外線吸収の吸光度が上記範囲内であることにより、より高品質なアセトニトリルとなる。
【0057】
〔アセトニトリル〕
本実施形態のアセトニトリルは、上記製造方法により得られる。このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒、精製用溶媒、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。なお、本実施形態のアセトニトリルは、製品アセトニトリルと同義である。
【実施例】
【0058】
以下、実施例及び比較例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0059】
[実施例1]
<アセトニトリルの製造>
日揮触媒化成株式会社製H−ZSM−5ゼオライトの押出成型触媒(MFI−30/Al
2O
3=80/20)を用いて、酢酸とアンモニアの気相反応を行い、含水粗アセトニトリルの製造実験を行った。反応には、流通式固定床反応装置を用いた。内径21.2mmのSUS製反応管に、上記触媒73.3gを充填した。触媒層高さは340mmであった。この反応管に水分量20質量%の酢酸水溶液(80%酢酸水溶液)及びアンモニアを供給した。
【0060】
原料組成はアンモニア/酢酸=1.3(モル比)とし、反応原料のWHSV(重量空間速度)は3.88h
−1、反応温度は440℃、反応圧力は0.11MPaGとした。なお、反応温度は触媒層の平均温度とした。反応管から流出する反応生成ガスは、反応管下部に接続した冷却器で冷却凝縮させ、含水粗アセトニトリルの溶液を得た。反応は200時間継続し、含水粗アセトニトリルを適宜サンプリングし、ガスクロマトグラフィー(株式会社島津製作所製「GC2010」)によって組成分析を行った。なお、組成分析は以下の条件で実施した(以下同様)。
・装置:株式会社島津製作所製「GC2010」
・カラム:アジレント・テクノロジー株式会社製「HP−INNOWAX」
・検出器:TCD
・カラム温度:60℃(1分保持)→100℃(昇温速度10℃/分)→180℃(昇温速度20℃/分)
・インジェクション温度:200℃
・検出器温度:200℃
・キャリアガス:ヘリウム
【0061】
上記条件での経過時間120h、及び200h後の含水粗アセトニトリルの組成を分析した結果は以下の通りであった。
経過時間 (h) 120 200
酢酸転化率 (モル%) 98.8 98.9
アセトニトリル収率 (モル%) 97.8 98.0
(含水粗アセトニトリル組成)
アンモニア (質量%) 5.5 5.4
水 (質量%) 51.9 52.0
アセトニトリル (質量%) 41.4 41.5
酢酸 (質量%) 0.7 0.7
アセトン (質量%) 0.2 0.2
アセトアミド (質量%) 0.2 0.2
【0062】
なお、気相反応においては、下記反応式に示した酢酸2モルからアセトンと二酸化炭素が等モル量生成する副反応が起きる。本実施例では、含水粗アセトニトリルのみをガスクロマトグラフィーで分析しており、含水粗アセトニトリルに溶解しない二酸化炭素は分析できない。そのため、分析によって検出されたアセトンの生成量から二酸化炭素の生成量を推定し、酢酸の転化率(モル%)及びアセトニトリルの収率(モル%)を求めた。
2CH
3COOH→CH
3COCH
3+CO
2+H
2O
【0063】
また、得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して20質量ppmであった。なお、トルエン含有量の詳細分析は以下の条件で実施した(以下同様)。
・装置:株式会社島津製作所製「GC−17A」
・カラム:アジレント・テクノロジー株式会社製「HP−5」
・検出器:FID
・カラム温度:50℃(3分保持)→200℃(昇温速度10℃/分)
・インジェクション温度:250℃
・検出器温度:250℃
・キャリアガス:窒素
【0064】
次いで、以下の手順にて含水粗アセトニトリルを蒸留精製し、製品アセトニトリルを得た。
【0065】
手順1:アセトニトリル濃縮塔想定実験−1
段数20段を有するガラス製オールダーショー蒸留塔を用い還流比20の条件で含水粗アセトニトリルの常圧連続蒸留を行い、塔頂より回収されたアンモニアガスを冷却回収した。得られたアンモニア溶液の組成は、以下の通りであった。
(アンモニア溶液組成)
アンモニア (質量%) 92.8
アセトニトリル (質量%) 5.1
アセトン (質量%) 1.9
トルエン (質量%) 0.02
【0066】
手順2:アセトニトリル濃縮塔想定実験−2
アセトニトリル濃縮塔想定実験−1でアンモニアを除去して得られた含水粗アセトニトリル溶液を同蒸留塔にて再蒸留し、塔頂より回収されたガスを冷却回収した。得られた粗アセトニトリルの組成は、以下の通りであった。
(粗アセトニトリル組成)
アンモニア (質量%) 0.03
水 (質量%) 34.62
アセトニトリル (質量%) 64.57
酢酸 (質量%) 0.66
アセトン (質量%) 0.12
【0067】
粗アセトニトリル中のトルエンをガスクロマトグラフィー、及び、ガスクロマトグラフィー質量分析法(GC−MS)により分析したところ、ガスクロマトグラフィー検出限界以下(アセトニトリル100質量%に対して0.1質量ppm未満)となっていた。なお、GC−MSは以下の条件で分析した(以下同様)。
・装置:アジレント・テクノロジー株式会社製「HP−6890/5973N」
・カラム:アジレント・テクノロジー株式会社製「HP−INNOWAX」
・オーブン温度:40℃(5分保持)→200℃(昇温速度10℃/分)
・インジェクション温度:200℃
・インターフェース温度:240℃
・キャリアガス:ヘリウム
【0068】
手順3:脱水塔想定実験
粗アセトニトリル中の水分量を共沸組成以下にするため、アルカリを加えて抽出脱水した。即ち、ディクソンパッキング充填塔により、48%苛性ソーダ水溶液と向流接触させ、水分を5質量%以下にした脱水アセトニトリルを得た。
【0069】
手順4:低沸、高沸分離塔
50段を有するガラス製オールダーショー蒸留塔を用い、還流比15の条件で、脱水アセトニトリルの常圧連続蒸留を2回実施することにより、微量低沸、高沸物質の除去精製を行い、製品アセトニトリルを得た。
【0070】
この製品アセトニトリル中のトルエンをガスクロマトグラフィーにより分析したところ、ガスクロマトグラフィー検出限界以下(アセトニトリル100質量%に対して0.1質量ppm未満)であった。
【0071】
[実施例2]
水分量20質量%の酢酸水溶液に代えて、水分量8質量%の酢酸を用いたこと以外は、実施例1と同様に気相反応を行った。気相反応開始後120h経過した時の含水粗アセトニトリルを回収し、ガスクロマトグラフィーによって組成分析を行った。結果は以下の通りであった。反応製品液の水分量は約47質量%であった。反応は120h継続して実施し、含水粗アセトニトリルを得た。
経過時間 (h) 120
酢酸転化率 (モル%) 98.7
アセトニトリル収率 (モル%) 97.7
(含水粗アセトニトリル組成)
アンモニア (質量%) 6.0
水 (質量%) 47.0
アセトニトリル (質量%) 45.6
酢酸 (質量%) 0.9
アセトン (質量%) 0.2
アセトアミド (質量%) 0.2
【0072】
また、得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して19質量ppmであった。
【0073】
次いで、得られた含水粗アセトニトリルの蒸留精製を、実施例1と同様にして行った。なお、アセトニトリル濃縮塔想定実験−2で塔頂より回収されたガスを冷却回収して得られた粗アセトニトリルの組成は、以下の通りであった。
(粗アセトニトリル組成)
アンモニア (質量%) 0.05
水 (質量%) 34.80
アセトニトリル (質量%) 64.25
酢酸 (質量%) 0.73
アセトン (質量%) 0.17
【0074】
粗アセトニトリル中のトルエンを詳細ガスクロマトグラフィー分析したところ、アセトニトリル100質量%に対して0.1質量ppmであった。さらに、実施例1と同様の操作により得られた製品アセトニトリル中のトルエンについて、ガスクロマトグラフィーにより分析したところ、ガスクロマトグラフィー検出限界以下(アセトニトリル100質量%に対して0.1質量ppm未満)であった。
【0075】
本実施例から、酢酸とアンモニアとの気相反応で得られる含水粗アセトニトリルの水分量を47〜60質量%とすることにより、含水粗アセトニトリル中に含まれるトルエンをごく一般的な蒸留分離方法で簡便に除去して濃縮アセトニトリルを得ることができることが判った。これにより該濃縮アセトニトリルを公知の精製方法で精製することにより、中間細孔径ゼオライトを触媒とする酢酸とアンモニアとの気相反応で得られるアセトニトリルか、トルエンを含有しない高純度アセトニトリルを得ることができることが判る。
【0076】
[比較例1]
水分量20質量%の酢酸水溶液に代えて、水分量0質量%の酢酸を用いたこと以外は、実施例1と同様に気相反応を行った。気相反応開始後11.0h経過した時の含水粗アセトニトリルを回収し、ガスクロマトグラフィーによって組成分析を行った。結果は以下の通りであった。反応製品液の水分量は約43質量%であった。反応は120時間継続して実施し、含水粗アセトニトリルを得た。
経過時間 (h) 11.0
酢酸転化率 (モル%) 98.6
アセトニトリル収率 (モル%) 98.0
(含水粗アセトニトリル組成)
アンモニア (質量%) 6.4
水 (質量%) 43.3
アセトニトリル (質量%) 49.1
酢酸 (質量%) 0.7
アセトン (質量%) 0.2
アセトアミド (質量%) 0.3
【0077】
また、得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して21質量ppmであった。
【0078】
次いで、得られた含水粗アセトニトリルの蒸留精製を、実施例1と同様にして行った。なお、アセトニトリル濃縮塔想定実験−2で塔頂より回収されたガスを冷却回収して得られた粗アセトニトリルの組成は、以下の通りであった。
(粗アセトニトリル組成)
アンモニア (質量%) 0.10
水 (質量%) 34.41
アセトニトリル (質量%) 64.51
酢酸 (質量%) 0.80
アセトン (質量%) 0.17
【0079】
粗アセトニトリル中のトルエンを詳細ガスクロマトグラフィー分析したところ、アセトニトリル100質量%に対して1.3質量ppmであった。さらに、実施例1と同様の操作により得られた製品アセトニトリル中のトルエンについて、ガスクロマトグラフィーにより分析したところ、アセトニトリル100質量%に対して1.1質量ppmであった。
【0080】
本比較例から、酢酸とアンモニアとの気相反応で得られる含水粗アセトニトリルの含水率が47質量%を下回る場合、含水粗アセトニトリル中に含まれるトルエンをアセトニトリル濃縮塔で分離精製せしめることが適わず、従って、公知の一般的蒸留分離方法で簡便には、除去することができないことが判った。
【0081】
[実施例3]
比較例1の反応器出口で得られた含水粗アセトニトリルに水を加え、水分量を52質量%にまで増やした下記組成の含水粗アセトニトリルを用いて、実施例1と同様に製品アセトニトリルを製造した。
(含水粗アセトニトリル組成)
アンモニア (質量%) 5.4
水 (質量%) 52.0
アセトニトリル (質量%) 41.5
酢酸 (質量%) 0.6
アセトン (質量%) 0.2
アセトアミド (質量%) 0.3
【0082】
得られた製品アセトニトリル中のトルエンについて、ガスクロマトグラフィーにより分析したところ、アセトニトリル100質量%に対して検出限界(0.1質量ppm)未満であった。
【0083】
[実施例4〜6]
触媒として、日揮ユニバーサル株式会社製ゼオライトサンプルキットのH−ベータ型ゼオライト粉末(シリカ/アルミナ=25)の圧縮成型破砕触媒(8〜40メッシュ分級品、以下「H−β」ともいう。)、住友化学株式会社製活性アルミナKHD−46(以下「KHD」ともいう。)、日揮ユニバーサル株式会社製ゼオライトサンプルキットのZSM−5型ゼオライト含有触媒(H−MFIゼオライト/アルミナ成型体、シリカ/アルミナ=40、以下「MFI」ともいう。)を用いて、酢酸とアンモニアの気相反応を行い、含水粗アセトニトリルの製造を行った。
【0084】
反応には、流通式固定床反応装置を用いた。内径20mmの石英ガラス製反応管に、上記触媒10gをそれぞれ充填した。触媒層高さは48mmであった。この反応管に水分量20質量%の酢酸及びアンモニアを供給した。原料組成はアンモニア/酢酸=1.3(モル比)とし、反応原料のWHSV(重量空間速度)は2.0h
−1、反応温度は424〜433℃、反応圧力は常圧とした。なお、反応温度は触媒層の平均温度とした。反応管から流出する反応生成ガスは、反応管下部に接続した冷却器で冷却凝縮させ、含水粗アセトニトリルを得た。含水粗アセトニトリルをサンプリングし、ガスクロマトグラフィーによって組成分析を行った。結果は以下の通りであった。
実施例4 実施例5 実施例6
触媒 H−β KHD MFI
酢酸転化率 (モル%) 86.4 98.8 96.4
アセトニトリル収率 (モル%) 83.1 85.4 96.0
(含水粗アセトニトリル組成)
アンモニア (質量%) 5.9 5.2 5.8
水 (質量%) 52.9 51.4 51.3
アセトニトリル (質量%) 31.9 38.3 40.6
酢酸 (質量%) 7.7 0.8 1.8
アセトン (質量%) 0.1 4.1 0.1
アセトアミド (質量%) 1.6 0.3 0.5
【0085】
また、実施例4〜6により得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して1質量ppm以上であった。この含水粗アセトニトリルを用いて、実施例1と同様に製品アセトニトリルを製造した。その結果、この製品アセトニトリル中のトルエンをガスクロマトグラフィーにより分析したところ、ガスクロマトグラフィー検出限界以下(アセトニトリル100質量%に対して0.1質量ppm未満)であった。
【0086】
本出願は、2014年10月31日に日本国特許庁へ出願された日本特許出願(特願2014−223300)に基づくものであり、その内容はここに参照として取り込まれる。