【実施例】
【0041】
(比較例1)
図5を参照しつつ説明する方法に従って、弾性波素子15を作製した。
具体的には、オリエンテーションフラット部(OF部)を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を圧電性材料基板2として使用した。また、支持基板3として、OF部を有し、直径が4インチ,厚さが230μmのシリコン基板を用意した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬LT基板を用いた。圧電性材料基板2の表面2aと支持基板3の表面3aは、算術平均粗さRaが1nmとなるように鏡面研磨しておいた。算術平均粗さは原子間力顕微鏡(AFM)で、縦10μm×横10μmの正方形の視野を評価した。
【0042】
次いで、圧電性材料基板2の表面2aに酸化珪素膜9を厚さ 3.0μmスパッタリング法で成膜した。成膜後の算術平均粗さRaは、2nmであった。また、支持基板3の表面3aに酸化珪素膜8を厚さ 3.0μmスパッタリング法で成膜した。成膜後の算術平均粗さRaは、2nmであった。次に、各酸化珪素膜を化学機械研磨加工(CMP)し、各膜厚を2.5μmとし、Raを0.3nmとした。
【0043】
次いで、各酸化珪素膜の接合面8a、9aを洗浄し、汚れを取った後、真空チャンバーに導入した。各接合面8a、9aをプラズマ活性化法で活性化した後、互いに接合した(
図5(b)参照)。10は接合層である。チャンバーの圧力は10Pa、プラズマはO2プラズマを60s照射し、接合荷重は1000N、100sとした。
【0044】
次いで、圧電性材料基板2の表面2bを厚みが当初の250μmから3μmになるように研削及び研磨した(
図5(c)参照)。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、0.6J/m
2であった。そして、研削及び研磨後の圧電性材料基板2Aの加工面2cに電極4を形成して、弾性波素子15を得た。
【0045】
次いで、弾性波素子15から弾性波素子チップを作製し、伝搬損失および周波数の温度特性を測定した。
具体的には、弾性表面波を発生させるIDT電極4は、フォトリソグラフィー工程を経て形成した。電極4を形成後、ダイシングにより小片化し、伝搬方向5mm、その垂直方向4mmの素子を得た。また、IDT電極4を形成せず、線膨張係数を計測するための同サイズの参照用基板も用意した。
【0046】
IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、−20ppm/Kとなった。また、伝搬損失は、−2.4dBに達した。
なお、本例の測定結果は表1に要約して示す。
【0047】
(比較例2)
本例では、LT基板と水晶基板とをプラズマ活性化法によって直接接合し、弾性波素子15を作製した。
具体的には、オリエンテーションフラット部(OF部)を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を圧電性材料基板2として使用した。また、支持基板3として、OF部を有し、直径が4インチ,厚さが230μmの水晶基板を用意した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬LT基板を用いた。圧電性材料基板2の表面2aと支持基板3の表面3aは、算術平均粗さRaが1nmとなるように鏡面研磨しておいた。
【0048】
次いで、圧電性材料基板2の表面2aと支持基板3の表面3aとを、比較例1と同様の条件で直接接合した。ただ、比較例1とは異なり、比較例2では、接合層として、酸化珪素膜8、9を形成しなかった。次いで、圧電性材料基板2の表面2bを厚みが当初の250μmから3μmになるように研削及び研磨した。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、0.6J/m
2であった。そして、研削及び研磨後の圧電性材料基板2Aの加工面2cに電極4を形成して、弾性波素子15を得た。
【0049】
次いで、弾性波素子15から弾性波素子チップを作製し、比較例1と同様にして伝搬損失および周波数の温度特性を測定した。この結果を表1に示す。IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、−22ppm/Kとなった。また、伝搬損失は、−2.5dBに達した。
【0050】
(実施例1)
図1、
図2を参照しつつ説明した方法に従って、弾性波素子5を作製した。
具体的には、オリエンテーションフラット部(OF部)を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を圧電性材料基板2として使用した。また、直径が4インチ、厚さが250μmの水晶板1を準備した。更に、支持基板3として、OF部を有し、直径が4インチ,厚さが230μmのシリコン基板を用意した。LT基板は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬LT基板を用いた。圧電性材料基板2の表面2aと支持基板3の表面3aは、算術平均粗さRaが1nmとなるように鏡面研磨しておいた。
【0051】
次いで、圧電性材料基板2の接合面2a、水晶板1の接合面1aを化学機械研磨加工することでRaが0.3nm以下となるようにした。次いで、接合面2a、1aを洗浄し、汚れを取った後、真空チャンバーに導入した。各接合面2a、1aをプラズマ活性化法で活性化した後、互いに接合した。チャンバーの圧力は10Pa、プラズマはO2プラズマを60s照射し、接合荷重は1000N、100sとした。
【0052】
次いで、水晶板1を研削および研磨加工し、厚さが0.1μmとなるようにし、接合層1Aを得た(
図1(c)参照)。接合層1Aの接合面1c、支持基板3の接合面3aを化学機械研磨加工することでRaを0.3nm以下となるようにした。接合面1c、3aを洗浄し、汚れを取った後、真空チャンバーに導入した。各接合面をプラズマ活性化法で活性化した後、互いに接合した(
図2(a)参照)。
【0053】
次いで、圧電性材料基板2の表面2bを厚みが当初の250μmから3μmになるように研削及び研磨した(
図2(b)参照)。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、0.6J/m
2であった。
【0054】
次いで、比較例1と同様にして、弾性波素子5から弾性波素子チップを作製し、伝搬損失および周波数の温度特性を測定した。IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、−15ppm/Kとなった。また、伝搬損失は、−1.9dBとなった。測定結果を表1に示す。このことより、実施例1で作製した弾性波素子5では、接合強度を保ったまま、弾性波の伝搬損失が少なく、かつ、周波数の温度特性が良いことが分かった。
【0055】
(実施例2〜5)
実施例1と同様にして各例の弾性波素子5を作製した。ただし、水晶からなる接合層1Aの厚さは、表1に示すように種々変更した。具体的には、実施例2では、接合層1Aの厚さが0.5μm、実施例3では、接合層1Aの厚さが5.0μm、実施例4では、接合層1Aの厚さが10.0μm、実施例5では、接合層1Aの厚さが20μmとした。
各例について、接合体の接合強度、得られた弾性波素子5の伝搬損失および周波数の温度特性を表1に示す。IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、実施例2では−14ppm/K、実施例3では−15ppm/K、実施例4では−16ppm/K、実施例5では−21ppm/Kとなった。また、伝搬損失は、実施例2では−1.1dB、実施例3では−1.1dB、実施例4では−1.2dB、実施例5では−2.3dBとなった。このことより、実施例2〜5で作製した弾性波素子5では、接合層1Aを厚くした場合でも、接合強度を保ったまま、弾性波の伝搬損失が少なく、かつ、周波数の温度特性が良いことが分かった。
【0056】
【表1】
【0057】
(実施例6)
図3、
図4を参照しつつ説明した方法に従って、弾性波素子5Aを作製した。
具体的には、実施例1と同様の圧電性材料基板2、水晶板1、支持基板3を準備した。
【0058】
次いで、水晶板1の接合面1a上に、スパッタリング法によって、厚さ0.05μmの五酸化タンタルからなる圧電性材料基板側中間層6を成膜した。次いで、圧電性材料基板2の接合面2a、圧電性材料基板側中間層6の接合面6aを洗浄し、汚れを取った後、真空チャンバーに導入した。10
−6Pa台まで真空引きした後、それぞれの基板の接合面に高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、圧電性材料基板2の接合面2aと圧電性材料基板側中間層6の接合面6aとを接触させた後、10000Nで2分間加圧し、圧電性材料基板2と水晶板1とを接合した(
図3(b))。
【0059】
次いで、水晶板1を研削および研磨加工し、厚さが5.0μmとなるようにし、接合層1Aを得た(
図3(c)参照)。次いで、接合層1Aの接合面1c上に、スパッタリング法によって、厚さ0.05μmの五酸化タンタルからなる支持基板側中間層7を成膜した。次いで、支持基板3の接合面3a、支持基板側中間層7の接合面7aを洗浄し、汚れを取った後、真空チャンバーに導入した。10
−6Pa台まで真空引きした後、それぞれの基板の接合面3a、7aに高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、支持基板3の接合面3aと支持基板側中間層7の接合面7aとを接触させた後、10000Nで2分間加圧し、支持基板3と圧電性材料基板2とを接合した(
図4(a))。
【0060】
次いで、圧電性材料基板2の表面2bを厚みが当初の250μmから3μmになるように研削及び研磨した(
図4(b)参照)。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、1.5J/m
2であった。
【0061】
次いで、比較例1と同様にして、弾性波素子5Aから弾性波素子チップを作製し、伝搬損失および周波数の温度特性を測定した。測定結果を表2に示す。実施例5では、IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、−15ppm/Kとなった。また、伝搬損失は、−0.9dBしかなかった。また、接合強度は、1.5J/m
2となった。
【0062】
(実施例7、8)
実施例6と同様にして、弾性波素子5Aを作製し、接合強度、伝搬損失および周波数の温度特性を測定した。測定結果を表2に示す。
ただし、支持基板3の材質は、実施例7ではサイアロンに、実施例8ではムライトに変更した。IDT電極4を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、実施例7では−10ppm/K、実施例8では−14ppm/Kとなった。また、伝搬損失は、実施例7では−0.7dB、実施例8では−0.7dBしかなかった。また、接合強度は、実施例6と同様、1.5J/m
2となった。このことより、実施例6〜8で作製した弾性波素子5では、接合強度が向上する上に、弾性波の伝搬損失が少なく、かつ、周波数の温度特性が良いことが分かった。
【0063】
【表2】
【0064】
以上述べたように、本発明によれば、接合強度は比較例と同等であり、挿入損失、周波数の温度特性は全体として改善されることがわかった。
【0065】
なお、実施例1〜5では、水晶からなる接合層1Aの厚さが、0.1μm〜20μmであったが、接合層1Aの厚さが、0.05μm〜30μmであれば、接合強度を保ったまま、弾性波の伝搬損失が少なく、かつ、周波数の温度特性が良い弾性波素子を作製することができる。