特許第6393520号(P6393520)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シャープ株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6393520
(24)【登録日】2018年8月31日
(45)【発行日】2018年9月19日
(54)【発明の名称】自走式電子機器
(51)【国際特許分類】
   A47L 9/28 20060101AFI20180910BHJP
   G05D 1/02 20060101ALI20180910BHJP
【FI】
   A47L9/28 E
   A47L9/28 U
   G05D1/02 L
   G05D1/02 H
   G05D1/02 Z
【請求項の数】3
【全頁数】21
(21)【出願番号】特願2014-107039(P2014-107039)
(22)【出願日】2014年5月23日
(65)【公開番号】特開2015-221148(P2015-221148A)
(43)【公開日】2015年12月10日
【審査請求日】2017年3月23日
(73)【特許権者】
【識別番号】000005049
【氏名又は名称】シャープ株式会社
(74)【代理人】
【識別番号】100065248
【弁理士】
【氏名又は名称】野河 信太郎
(74)【代理人】
【識別番号】100159385
【弁理士】
【氏名又は名称】甲斐 伸二
(74)【代理人】
【識別番号】100163407
【弁理士】
【氏名又は名称】金子 裕輔
(74)【代理人】
【識別番号】100166936
【弁理士】
【氏名又は名称】稲本 潔
(74)【代理人】
【識別番号】100174883
【弁理士】
【氏名又は名称】冨田 雅己
(72)【発明者】
【氏名】岸田 裕之
【審査官】 片岡 弘之
(56)【参考文献】
【文献】 特表平10−502274(JP,A)
【文献】 特開2013−070571(JP,A)
【文献】 特開2007−272301(JP,A)
【文献】 特開2008−181177(JP,A)
【文献】 特開2013−146302(JP,A)
【文献】 特開2004−275716(JP,A)
【文献】 特開2007−066292(JP,A)
【文献】 特開2006−127448(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A47L 9/28
G05D 1/02
(57)【特許請求の範囲】
【請求項1】
目標対象物の位置に向かって自動走行する自走式電子機器であって、
車輪の回転を制御して直線走行および回転動作をさせる走行制御部と、
前記目標対象物から送信された無線信号を受信する信号通信部と、
前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、
自動走行中に前記距離測定部によって測定された最新の現在位置での測定距離と、自動走行中の過去の複数の測定距離のうち最小の測定距離とを比較して大小関係を判定する距離判定部と、
制御部とを備え、
前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定し、
前記直線走行では一定の前進距離だけの直進的な前進走行を行い、
前進走行での前記前進距離は可変とし、
現在位置での前記目標対象物までの測定距離が比較的長い場合は、前記前進距離を長く設定し、現在位置での前記目標対象物までの測定距離が所定値よりも短くなった場合は、前記前進距離を短く設定し、前記直線走行において、前記設定された前進距離だけ前進走行を行い、
前記距離判定部が、前記現在位置での測定距離が、前記最小の測定距離よりも大きくなったと判定した場合に、前記制御部が、前記現在位置で所定の回転動作を行わせた後、
前記目標対象物に近づく方向に直線走行と回転動作を繰り返し行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする自走式電子機器。
【請求項2】
目標対象物の位置に向かって自動走行する自走式電子機器であって、
車輪の回転を制御して直線走行および回転動作をさせる走行制御部と、
前記目標対象物から送信された無線信号を受信する信号通信部と、
前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、
制御部とを備え、
前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定し、
前記直線走行では一定の前進距離だけの直進的な前進走行を行い、
前進走行での前記前進距離は可変とし、
現在位置での前記目標対象物までの測定距離が比較的長い場合は、前記前進距離を長く設定し、現在位置での前記目標対象物までの測定距離が所定値よりも短くなった場合は、前記前進距離を短く設定し、前記直線走行において、前記設定された前進距離だけ前進走行を行い、
自動走行中に前記距離測定部によって測定された複数の測定距離に基づいて、自走式電子機器が前記目標対象物から遠ざかる方向に移動していると判定された場合に、
前記制御部が、現在位置で180度の回転動作あるいは90度の回転動作を行わせた後、直線走行と、180度の回転動作と、90度の回転動作とを組み合わせた走行を行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする自走式電子機器。
【請求項3】
前記目標対象物が移動体であり、前記移動体に追随することを特徴とする請求項1または2に記載の自走式電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、自走式電子機器に関し、特に、充電台に自動的に帰還する機能を有する自走式電子機器に関する。
【背景技術】
【0002】
今日、室内を自動的に走行して掃除を行う自走式のロボット掃除機が利用されている。ロボット掃除機は、充電池を備え、充電池の残量が所定値以下となった場合に、室内の所定の位置に固定配置された充電台に帰還し、充電池を充電台に接続することにより充電を行う機能を有するものがある。
【0003】
充電台への帰還方法としては、たとえば、充電台から所定の領域に向かって赤外線信号を送出しておき、ロボット掃除機に備えられた赤外線受信部によって上記赤外線信号を受信した場合に、充電台のある方向を検出して充電台の方向に向かって走行していく。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013−146302号公報
【特許文献2】特開2004−275716号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、従来の充電台への帰還方法では、赤外線信号は、一定幅の指向性を持った無線信号なので、赤外線信号を受信できない領域が存在する。ロボット掃除機が、このような赤外線信号を受信できない位置にいた場合は、壁面に沿った走行(エッジ走行)や、ランダム走行をすることにより、赤外線信号を受信できる位置まで走行する必要があった。
【0006】
すなわち、充電台の存在する方向を検出するまでに、無駄な走行をする場合もあるので、充電台へ帰還するまでの時間がかかる場合が多かった。
そこで、この発明は、以上のような事情を考慮してなされたものであり、充電が必要となった場合に、充電台へ戻るまでの無駄な移動をできるだけ少なくし、充電台へ帰還するまでの時間を短縮することのできる自走式電子機器を提供することを課題とする。
【課題を解決するための手段】
【0007】
この発明は、目標対象物の位置に向かって自動走行する自走式電子機器であって、車輪の回転を制御して直線走行および回転動作をさせる走行制御部と、前記目標対象物から送信された無線信号を受信する信号通信部と、前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、自動走行中に前記距離測定部によって測定された最新の現在位置での測定距離と、自動走行中の過去の複数の測定距離のうち最小の測定距離とを比較して大小関係を判定する距離判定部と、制御部とを備え、前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定し、前記直線走行では一定の前進距離だけの直進的な前進走行を行い、前進走行での前記前進距離は可変とし、現在位置での前記目標対象物までの測定距離が比較的長い場合は、前記前進距離を長く設定し、現在位置での前記目標対象物までの測定距離が所定値よりも短くなった場合は、前記前進距離を短く設定し、前記直線走行において、前記設定された前進距離だけ前進走行を行い、前記距離判定部が、前記現在位置での測定距離が、前記最小の測定距離よりも大きくなったと判定した場合に、前記制御部が、前記現在位置で所定の回転動作を行わせた後、前記目標対象物に近づく方向に直線走行と回転動作を繰り返し行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする自走式電子機器を提供するものである。
【0008】
また、目標対象物の位置に向かって自動走行する自走式電子機器であって、車輪の回転を制御して直線走行および回転動作をさせる走行制御部と、前記目標対象物から送信された無線信号を受信する信号通信部と、前記受信された無線信号に基づいて、前記目標対象物までの距離を測定する距離測定部と、制御部とを備え、前記無線信号は、ブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定し、前記直線走行では一定の前進距離だけの直進的な前進走行を行い、前進走行での前記前進距離は可変とし、現在位置での前記目標対象物までの測定距離が比較的長い場合は、前記前進距離を長く設定し、現在位置での前記目標対象物までの測定距離が所定値よりも短くなった場合は、前記前進距離を短く設定し、前記直線走行において、前記設定された前進距離だけ前進走行を行い、自動走行中に前記距離測定部によって測定された複数の測定距離に基づいて、自走式電子機器が前記目標対象物から遠ざかる方向に移動していると判定された場合に、前記制御部が、現在位置で180度の回転動作あるいは90度の回転動作を行わせた後、直線走行と、180度の回転動作と、90度の回転動作とを組み合わせた走行を行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする自走式電子機器を提供するものである。
【0009】
さらに、前記無線信号は、Bluetooth拡張仕様の一つで超低電力で通信可能なブルートゥース ローエナジーの規格で定められたBLE信号であり、前記信号通信部が受信したBLE信号の受信強度に基づいて、前記距離測定部が、前記目標対象物までの距離を測定することを特徴とする。
これによれば、受信したBLE信号に基づいて、目標対象物までの距離を測定しているので、走行方向に障害物があるか否かにかかわらず、自走式電子機器がBLE信号を受信できる距離内にいる限り、自走式電子機器と目標対象物との間の直線距離を算出することができる。
【0010】
また、前記自走式電子機器が前記目標対象物から遠ざかる方向に移動していると判定された場合に、前記制御部が、180度の回転動作あるいは90度の回転動作を行わせ、直線走行と、180度の回転動作と、90度の回転動作とを組み合わせた走行を行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする。
これによれば、直線走行と、180度の回転動作と、90度の回転動作とを組み合わせた走行を行っているので、壁に沿った走行やランダム走行を行うことによって目標対象物に近づける場合に比べて、無駄な走行を減少させることができ、目標対象物の近傍領域に移動するまでの時間を短縮することができる。
【0011】
また、前記自走式電子機器が前記目標対象物から遠ざかる方向に移動していると判定された場合に、前記制御部が、上記判定をした現在位置で一定方向の90度の回転動作を行わせ、直線走行と、前記一定方向と同一方向の90度の回転動作とを組み合わせた走行を行うことによって、前記目標対象物の所定の近傍領域にまで移動させることを特徴とする。
これによれば、直線走行と、一定方向の90度の回転動作とを組み合わせた走行を行っているので、壁に沿った走行やランダム走行を行うことによって目標対象物に近づける場合に比べて、無駄な走行を減少させることができ、目標対象物の近傍領域に移動するまでの時間を短縮することができる。
【0012】
また、前記回転動作の角度は、ランダムに生成された任意の角度、あるいは、予め設定された固定値のどちらでもよい。
また、前記目標対象物は移動体でもよく、自走式電子機器は、その移動体に追随するようにしてもよい。
【0013】
また、前記自走式電子機器は、充電池および掃除機能を備えた自走式掃除機であり、前記目標対象物は充電台であり、前記制御部が、前記自走式掃除機の充電池の電池残量が所定値以下に減少した場合に、充電台へ帰還する必要があると判断し、前記自走式掃除機を前記充電台に帰還させる機能を実行させることを特徴とする。
これによれば、自走式掃除機から充電台までの距離を測定し、その測定距離に基づいて、直線走行と回転動作とを繰り返し行わせて、自走式掃除機を充電台まで帰還させるので、自走式掃除機の充電台への帰還処理にかかる時間を短縮することができる。
【発明の効果】
【0014】
この発明によれば、自走式電子機器から目標対象物までの距離を測定し、その測定距離に基づいて目標対象物に近づく方向に直線走行と回転動作とを繰り返し行っているので、自走式電子機器の無駄な走行を減少させ、自走式電子機器が目標対象物の所定の近傍領域に移動するまでの時間を短縮させることができる。
【図面の簡単な説明】
【0015】
図1】この発明の自走式掃除機の一実施例の構成ブロック図である。
図2】この発明の自走式掃除機の一実施例の概略を示す斜視図である。
図3(a)】この発明の目標距離と測定距離との関係の説明図である。
図3(b)】この発明の目標距離と測定距離との関係の説明図である。
図4】この発明の第1実施形態の帰還処理の概略説明図である。
図5】この発明の第1実施形態の帰還処理の概略説明図である。
図6】この発明の第1実施形態の帰還処理の概略説明図である。
図7】この発明の第1実施形態の帰還処理の概略説明図である。
図8】この発明の第1実施形態の帰還処理と接続動作の概略説明図である。
図9(a)】この発明の第1実施形態の帰還処理のフローチャートである。
図9(b)】この発明の第1実施形態の帰還処理のフローチャートである。
図10】この発明の第2実施形態の帰還処理の概略説明図である。
図11】この発明の第2実施形態の帰還処理の概略説明図である。
図12】この発明の第2実施形態の帰還処理の概略説明図である。
図13】この発明の第2実施形態の帰還処理のフローチャートである。
【発明を実施するための形態】
【0016】
以下、図に示す実施例に基づいて、この発明を説明する。
なお、これによって、この発明が限定されるものではない。
【0017】
<自走式電子機器の構成>
この発明の自走式電子機器は、目標対象物の位置に向かって自動走行する電子機器である。
以下に、この発明の自走式電子機器の一実施例として、充電池および掃除機能を備えた「自走式掃除機」の構成について説明する。また、この場合、上記目標対象物は、充電台とする。
ただし、この発明は、少なくとも充電池を備え、自動走行制御を行って、自動走行によって目標対象物の近傍領域にまで移動する機能を有する電子機器であればよく、自走式掃除機に限定するものではない。また、目標対象物も、充電台に限定するものではない。
【0018】
たとえば、自走式電子機器には、空気吸引を行い清浄化した空気を排気する自走式空気清浄機、イオンを発生させる自走式イオン発生機、ユーザに対して必要な情報を提示する機能やユーザが要求した機能を実行する自走式ロボット等も含まれる。目標対象物としては、後述する信号通信部を有するあらゆる有体物が含まれる。
【0019】
図1に、この発明の自走式掃除機の一実施例の構成ブロック図を示す。
図1において、この発明の自走式掃除機(以下、掃除機またはクリーナとも呼ぶ)は、主として、制御部11、充電池12、電池残量検出部13、信号通信部14、超音波センサ15、距離測定部16、距離判定部17、赤外線受信部18、走行制御部21、車輪22、吸気口31、排気口32、集塵部33、障害検知部34、入力部35、記憶部41、充電台接続部51を備える。
【0020】
また、掃除を行う部屋などの所定の位置に充電台100を固定設置する。充電台100と自走式掃除機1を接続することにより、自走式掃除機1は充電台と接触した状態で充電台からの電力の供給を受け、自走式掃除機1の充電池12を充電する。また、自走式掃除機1は、充電台100から離れ自動走行しながら掃除機能を実行する。
【0021】
この発明の自走式掃除機1は、設置された場所の床面を自走しながら、床面上の塵埃を含む空気を吸い込み、塵埃を除去した空気を排気することにより床面上を掃除する掃除ロボットである。この発明の自走式掃除機1は、掃除が終了すると、自律的に充電台100に帰還する機能を有する。
図2に、この発明の自走式掃除機の一実施例の概略斜視図を示す。
【0022】
図2において、本発明の自走式掃除機1は、円盤形の筐体2を備え、この筐体2の内部および外部に、回転ブラシ、サイドブラシ10、集塵部33、電動送風機、複数の駆動輪からなる車輪22、信号通信部14、赤外線受信部18、図1に示したその他の構成要素が設けられている。
図2において、赤外線受信部18が配置されている部分を前方部、従動輪である後輪が配置されている部分を後方部、筐体内部に信号通信部14や集塵部33が配置されている部分を中間部と呼ぶ。
【0023】
筐体2は、吸気口31を有する平面視円形の底板と、筐体2に収容する集塵部33を出し入れする際に開閉する蓋部3を中央部分に有している天板2bと、底板および天板2bの外周部に沿って設けられた平面視円環形の側板2cとを備えている。また、底板には一対の駆動輪および後輪の下部を筐体2内から外部へ突出させる複数の孔部が形成され、天板2bにおける前方部と中間部との境界付近には排気口32が形成されている。なお、側板2cは、前後に二分割されており、側板前部はバンパーとして機能する。
【0024】
自走式掃除機1は、一対の駆動輪が同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに逆方向に回転することにより静止した状態で旋回する。例えば、掃除機1は、掃除領域の周縁に到達した場合および進路上の障害物に衝突した場合、駆動輪が停止し、一対の駆動輪を互いに逆方向に回転して向きを変える。これにより、掃除機1は、設置場所全体あるいは所望範囲全体に障害物を避けながら自走する。
【0025】
また、自走式掃除機1は、後述するように、信号通信部14によって、充電台100の信号通信部102から出射される無線信号を受信して充電台100との距離を測定し、たとえば掃除が終了した場合、充電池12の充電残量が少なくなった場合、あるいは設定された掃除タイマーの設定時間が経過した場合に、測定距離が短くなるように、自動的に目標対象物である充電台に近づく方向に向かって、直線的な走行と回転動作とを繰り返して進行し、充電台100の近傍領域にまで帰還する。
ただし、障害物があれば、それを避けながら、充電台100の方向へ移動する。
【0026】
以下、図1に示す各構成要素を説明する。
図1の制御部11は、掃除機1の各構成要素の動作を制御する部分であり、主として、CPU、ROM、RAM、I/Oコントローラ、タイマー等からなるマイクロコンピュータによって実現される。
CPUは、ROM等に予め格納された制御プログラムに基づいて、各ハードウェアを有機的に動作させて、この発明の掃除機能、走行機能などを実行する。
【0027】
充電池12は、掃除機1の各機能要素に対して電力を供給する部分であり、主として、掃除機能および走行制御を行うための電力を供給する部分である。たとえば、リチウムイオン電池、ニッケル水素電池、Ni−Cd電池、などの充電池が用いられる。
充電池12の充電は、掃除機1と充電台100とを接続した状態で行われる。
掃除機1と充電台100との接続は、互いの接続部(51,101)である露出した充電端子どうしを接触させることにより行う。
【0028】
電池残量検出部13は、充電池の残りの容量(電池残量)を検出する部分であり、たとえば、フル充電状態に対して、現在の残容量をパーセント(%)で表した数値を出力する。ここで検出された電池残量(%)に基づいて、充電台100の方へ帰還するべきか否かを判断し、帰還する場合は、後述するような帰還処理を実行する。
【0029】
走行制御部21は、自走式掃除機1の自律走行の制御をする部分であり、主として上記した車輪22の回転を制御して、主として直線走行および回転動作をさせることによって、自動的に移動させる部分である。
車輪を駆動させることにより、掃除機1の前進、後退、回転、静止などの動作を行わせる。
後述するように、自走式電子機器の帰還処理を行うために回転動作をする場合、その回転動作の角度は、ランダムに生成された任意の角度、あるいは、予め設定された固定値のいずれかであってもよい。
【0030】
集塵部33は、室内のゴミやちりを集める掃除機能を実行する部分であり、主として、図示しない集塵容器と、フィルタ部と、集塵容器およびフィルタ部を覆うカバー部とを備える。
また、吸気口31と連通する流入路と、排気口32と連通する排出路とを有し、吸気口31から吸い込まれた空気を流入路を介して集塵容器内に導き、集塵後の空気を排出路を介して排気口32から外部へ放出する。
吸気口31および排気口32は、それぞれ掃除のための空気の吸気および排気を行う部分であり、前記したような位置に形成される。
【0031】
障害検知部34は、掃除機1が走行中に、室内の机やいすなどの障害物に接触又は近づいたことを検知する部分であり、たとえば、マイクロスイッチ、超音波センサ、赤外線測距センサなどからなる接触センサや非接触センサ、又は障害物センサが用いられ、筐体2の側板2Cの前部に配置される。
CPUは、障害検知部34から出力された信号に基づいて、障害物の存在する位置を認識する。認識された障害物の位置情報に基づいて、その障害物を避けて次に走行すべき方向を決定する。
【0032】
入力部35は、ユーザが、掃除機1の動作を指示入力する部分であり、掃除機1の筐体表面に、操作パネル、あるいは操作ボタンとして設けられる。
あるいは、入力部35としては、掃除機本体とは別に、リモコンユニットを設け、ユーザがこのリモコンユニットに設けられた操作ボタンを押すことにより、赤外線や無線電波信号を送出し、無線通信により動作の指示入力をしてもよい。
入力部35としては、たとえば、電源スイッチ、起動スイッチ、主電源スイッチ、充電要求スイッチ、その他のスイッチ(運転モードスイッチ,タイマースイッチ)などが設けられる。
【0033】
記憶部41は、掃除機1の各種機能を実現するために必要な情報や、プログラムを記憶する部分であり、RAMやROM等の半導体素子、ハードディスク、フラッシュメモリ等の記憶媒体が用いられる。
記憶部41には、主として、目標距離42、最小測定距離43、現在測定距離44、電池情報45などが記憶される。以下の実施例では、目標距離をky_x、最小測定距離をky_min、現在測定距離をky_tmpとする。
電池情報45には、電池残量検出部13によって検出された電池残量(%)や、充電台への帰還を決定するために検出された電池残量と比較する判定値(残量しきい値)などが含まれる。
この発明では、掃除機1が自ら充電台100へ帰還する処理を実行するが、制御部11が、充電台と接触した状態に帰還する必要があると判断した場合に、その帰還処理を実行する。
【0034】
充電台と接触した状態に帰還する必要があると判断する場合とは、充電池12の電池残量が少なくなってきた場合、ユーザにより充電要求スイッチが押し下げられた場合、あるいはユーザがリモコンを利用して帰還指示入力を行った場合等がある。
たとえば、電池残量検出部13によって検出された充電池の電池残量が、電池情報45として記憶されている残量しきい値以下に減少した場合に、充電台へ帰還する必要があると判断し、自走式掃除機を充電台に帰還させる機能(帰還処理)を実行する。
あるいは、自動走行中に、充電要求スイッチが押し下げられた場合に、充電台へ帰還する必要があると判断し、帰還処理を実行する。
【0035】
目標距離42は、帰還処理において、自走式掃除機1が、充電台100の近傍にまで戻ってきたと判断するための距離であり、予め、記憶部41に記憶される。
たとえば、充電台100の信号通信部102と自走式掃除機1の信号通信部14との間の現在測定距離(ky_tmp)44が、記憶部41に記憶された目標距離(ky_x)42よりも短い場合(ky_x>ky_tmp)、自走式掃除機1は、充電台100まで戻ってきたと判断する。
【0036】
現在測定距離(ky_tmp)44は、自走式掃除機1の現在位置と、充電台100との間の距離を測定したものであり、最小測定距離(ky_min)43は、距離測定部16によって測定された現在測定距離44のうち最小値を記憶したものである。
新たに測定された現在測定距離44が、記憶部41に記憶された最小測定距離43よりも小さくなった場合には、この新たに測定された現在測定距離44が、最小測定距離43に置き換えられる。
【0037】
図3に、記憶部に記憶される目標距離と測定距離との関係の説明図を示す。
図3(a)は、自走式掃除機1が、充電台100から十分離れた位置にいる場合(ky_tmp>ky_x)を示している。
図3(b)は、自走式掃除機1が、充電台100の所定の近傍領域にまで戻ってきた場合(ky_tmp<ky_x)を示している。
図3において、現在測定距離44は、充電台100の信号通信部102と自走式掃除機1の信号通信部14との間の距離の現在の測定値ky_tmpとして示している。
【0038】
また、目標距離ky_xは、信号通信部102を中心とする円の半径を示しており、この円の中に自走式掃除機1の信号通信部14が入ったときに、自走式掃除機1が充電台100の近傍に帰還したと判断するものとする。
すなわち、自走式掃除機1が、この円の中にまで戻ってきた場合、所定の動作を行うことにより、相互の接続部(51,101)を接続させることができるものとし、目標距離ky_xは、そのような距離が予め設定される。たとえば、目標距離ky_xとしては、30cm程度が設定される。
【0039】
後述するこの発明の帰還処理は、図3(a)に示すように、現在測定距離(ky_tmp)44が十分に長い位置に存在する自走式掃除機1が、図3(b)に示すように、自走式掃除機1が、ky_tmp<ky_xとなる位置に戻ってくるまでの処理を示している。
【0040】
図1の信号通信部14は、目標対象物である充電台100の信号通信部102から送信された無線信号を受信(検出)する部分である。信号通信部14の素子としては、送信される無線信号を受信できる一般的なデバイスが利用できる。
以下の実施例では、充電台100から送信される無線信号としては、たとえば、ブルートゥース ローエナジー(BLE:Bluetooth Low Energy)の規格で定められた信号を用いるものとする。以下、この信号を、BLE信号と呼ぶ。
充電台からBLE信号が送信される場合は、信号通信部14も、BLEによる通信が可能な受信デバイスが用いられる。この発明では、信号通信部14が受信したBLE信号に含まれる送信側の信号送出レベルと、受信側で実際に受信した信号の受信強度に基づいて、目標対象物までの距離を測定することを特徴とする。
【0041】
BLEは、今日、近距離無線通信の一つの通信方式として用いられるブルートゥースの新しい規格であり、2.4GHz帯の電波を利用した無線通信を行うものである。
BLEは、最大通信速度が1Mbpsであり、省電力性を特徴とする。
【0042】
この発明では、BLE信号の送信デバイスからなる信号通信部102から出力される無線信号を、信号通信部14によって受信することにより、信号通信部102と信号通信部14との距離ky_tmpを測定する。
たとえば、信号通信部102から出力されるBLE信号内に含まれる送信側の信号送出レベル情報と、受信側で実際に受信した信号の受信信号強度を比較することにより、伝送による信号の伝送損失を求め、その伝送損失に基づいて距離を演算することにより上記距離ky_tmpを計算すればよい。
あるいは、計測しておいたBLE信号の受信強度と距離との関係テーブルを記憶部に予め記憶しておき、受信したBLE信号の測定値と関係テーブルの受信強度とを比較することによって、距離を求めてもよい。
【0043】
また、BLE信号は、指向性を有する赤外線とは異なる波長の長い電波であるため、信号通信部102から、360度のあらゆる方向に送信される。
したがって、赤外線を遮るような障害物が、充電台100と自走式掃除機1との間にあったとしても、BLE信号を受信することができ、両者(1,100)間の距離を測定することができる。
【0044】
超音波センサ15は、部屋の壁や机などの対象物までの距離を検出するものであり、超音波を発信する送波器と、対象物からの反射波を受信する受波器とから構成される。
超音波センサ15は、主として、壁などの障害物までの距離の測定に用いられる。
【0045】
距離測定部16は、受信された無線信号に基づいて、目標対象物である充電台100までの距離を測定する部分である。具体的には、信号通信部14によって受信されたBLE信号を用い、BLE信号の受信強度を検出し、自走式掃除機1と充電台100との距離を計算する。
【0046】
距離判定部17は、距離測定部16によって計算された距離と、比較対象となる距離との大小関係を判定する部分である。
たとえば、自動走行中に、距離測定部16によって測定された最新の現在位置での測定距離と、自動走行中の過去の複数の測定距離のうち最小の測定距離とを比較して大小関係を判定する部分である。
自走式電子機器が目標対象物から遠ざかる方向に移動していると判断した場合、すなわち、現在位置での測定距離が、最小の測定距離よりも大きくなったと判定した場合(ky_tmp>ky_min)は、後述するように、現在位置で所定の回転動作を行わせた後、目標対象物である充電台に近づく方向に、直線走行と回転動作を繰り返し行うことによって、充電台の所定の近傍にまで移動させる。
【0047】
また、後述するように、充電台100の近傍にまで帰還してきたことを判断するための目標距離(ky_x)と、距離測定部16によって計算された現在の測定距離(ky_tmp)とを比較し、ky_tmp<ky_xの場合には、自走式掃除機1は、充電台100の近傍に帰還したと判断する。
【0048】
赤外線受信部18は、充電台の赤外線送信部106から出力された赤外線信号を受信する部分であり、赤外線信号は、自走式掃除機の帰還処理および充電台への接続処理に用いられる。
充電台接続部51は、充電池12を充電させるための電力を入力するための端子である。
この充電台接続部51と、充電台100の掃除機接続部101とを物理的に接触させることにより、充電台100の電力供給部104から与えられる電力を、充電池12に供給し充電する。
充電台接続部51は、掃除機接続部101と接触させるために、掃除機1本体の側面に露出した状態で形成される。
自走式掃除機1は上記のように、充電台の近傍に帰還した後、赤外線受信部18によって受信された赤外線を利用して、充電台接続部51と掃除機接続部101とを接触させるように、接続処理を行う。
【0049】
この発明の自走式掃除機1は、以上のような構成に加えて、他にも必要な構成や機能を備えてもよい。
たとえば、掃除中あるいは静止状態において、イオンを発生する構成(イオン発生器)を備えて、除菌や消臭(または脱臭)を行うようにしてもよい。
また、掃除処理を実行する時間を設定するタイマースイッチを設け、タイマースイッチの入(ON)操作がされた場合には、予め設定された時間(たとえば60分間)のカウントを開始し、その設定時間が経過するまで掃除処理を実行するようにしてもよい。
この設定時間が経過した後は、掃除処理を中止し、自動的に充電台に帰還するようにしてもよい。
【0050】
<充電台の構成>
図1において、充電台100は、主として、掃除機接続部101、信号通信部102、制御部103、電力供給部104、赤外線送信部106とを備え、室内の壁などに配置された商用電源105のコンセントからのAC電源電力の供給を受ける。
電力供給部104は、商用電源105からの交流電力を受け入れ、掃除機1を充電することのできる直流電力に変換し、掃除機接続部101に与える部分である。
【0051】
赤外線送信部106は、赤外線信号を送信する部分である。
信号通信部102は、無線信号を送信(発信)する部分である。たとえば、BLEの規格に基づいた信号を送信するBLEの通信デバイスが用いられる。
充電台100の制御部103は、充電台の各種機能を実現する部分であり、主として、BLE信号の通信処理や赤外線信号の発信処理と、充電電力の供給制御を行う。制御部103は、CPU、ROM、RAM、I/Oコントローラ、タイマー等からなるマイクロコンピュータにより実現できる。
【0052】
<第1実施形態>
ここでは、自走式掃除機が充電台へ帰還する処理の第1実施形態について説明する。
第1実施形態では、自走式掃除機1の現在位置と充電台100との間の距離を測定しながら、目標対象物から遠ざかる方向に移動していると判定された場合に、180度の回転動作あるいは90度の回転動作を行わせ、直線走行と、180度回転と、90度回転とを組み合わせた走行を繰り返し実行することにより、自走式掃除機1を充電台のある方向へ進行させ、上記した目標距離42の円内にまで移動させる帰還方法を示す。
帰還処理の説明をわかりやすくするために、走行する空間内に障害物は存在しないものとする。
【0053】
まず、図4から図7に、第1実施形態の帰還処理の概略説明図を示す。
図4(a)は、充電台100の位置と、この実施例における自走式掃除機1の初期位置とを示している。ここで、充電台100の信号通信部102を円の中心と考え、自走式掃除機1が帰還したと判断する距離(目標距離:ky_x)を、その円の半径とする。
【0054】
また、自走式掃除機1の距離測定部16が、信号通信部14が受信したBLE信号を用いて、自走式掃除機1の初期位置と充電台100との現在の距離(図4(a)の破線で示した直線)を算出し、その距離を、最小測定距離43を示す変数ky_minに記憶する。
この初期位置で測定した距離を、仮の最小測定距離(ky_min)とする。
図4に示す自走式掃除機1の丸印は、走行の前方方向を示しているものとし、通常の直線的な前進走行をする場合は、この丸印の前方に向かって進行するものとする。
このような初期位置から、自走式掃除機1が、目標距離(ky_x)を半径とする円の中に入るようになるまで、以下に示すような帰還処理を実行する。
【0055】
図4(b)において、自走式掃除機1は、一定距離だけ前進し、その位置での自走式掃除機1と充電台100との距離を測定し、現在測定距離44(ky_tmp)に記憶する。
図4(b)では、図の左ややななめ下方向へ進行するものとする。そして、現在測定距離44(ky_tmp)と、最小測定距離43(ky_min)とを比較する。
【0056】
図4(c)は、上記2つの距離の比較の結果、ky_tmp>ky_minとなった場合、すなわち、自走式掃除機1が移動することによって、測定距離が遠くなった場合を示している。
この場合、このまま前進すると、充電台100からさらに遠ざかることになるので、充電台100に近づくために、図4(b)の測定位置に静止した状態で、180度回転する。
図4(b)と図4(c)の自走式掃除機1の位置は同一とする。
【0057】
図4(c)のように、180度回転することによって、自走式掃除機1の前進方向は、図4(b)とは逆方向となる。
図4(d)において、図4(b)の説明で示したのと同様に、自走式掃除機1は、一定距離だけ前進してその位置での充電台100までの距離を測定し、現在測定距離(ky_tmp)として記憶することを繰り返す。
【0058】
このとき、ky_tmp≦ky_minの場合、すなわち、自走式掃除機1は、前回までの最小測定距離ky_minよりも現在測定距離ky_tmpの方が短いか同一である場合、充電台100に近づく方向に向かって進行していると考えられる。
したがって、現在の前進方向と同じ方向に、直線的な走行を継続させる。
また、ky_tmp<ky_minとなった場合は、ky_tmpの値を、新たな最小測定距離43と考えて、ky_minに代入する。
【0059】
図5(a)は、充電台100に近づくように、図4(d)と同様の方向に走行した場合を示している。この位置で現在測定距離44(ky_tmp)が、最小測定距離43(ky_min)に設定されている。
【0060】
図5(b)は、図5(a)の位置からさらに一定距離前進した場合を示している。このとき、ky_tmp>ky_minとなったとする。
すなわち、図5(a)の位置に比べて、充電台100から遠ざかる方向に進行したとする。このまま同じ方向に前進すると、充電台100からますます遠ざかってしまうので、進行方向を180度変更する。
【0061】
図5(c)は、図5(b)の位置に静止して、180度回転した状態を示している。これにより、自走式掃除機1の進行方向は、図5(a)や図5(b)とは逆方向(図の左ややななめ下方向)となる。
図5(d)は、図5(c)の位置から、一定距離だけ前進した場合を示している。ここでは、図5(a)と同一位置まで戻ったものとする。ただし、図5(a)の位置に戻るためには、図5(c)のような180度回転した状態を経ずに、図5(b)の状態から一定距離だけ後進するようにしてもよい。
【0062】
次に、図6(a)に示すように、図5(d)の位置に静止した状態で、90度左方向(時計と反対回り)に回転する。この場合、90度の回転により、自走式掃除機1の前進方向は、図の下方向となる。ただし、90度右方向への回転でもよい。
図6(b)に示すように、一定距離だけ前進した後、現在測定距離ky_tmpを測定する。図6(b)の場合は、ky_tmp>ky_minとなるので、自走式掃除機1は、充電台100から遠ざかる方向に進行したことになる。
【0063】
この場合、このまま前進すると充電台100からますます遠ざかってしまうので、図6(c)に示すように、図6(b)の位置に静止して、180度回転する。これにより、自走式掃除機1の前進方向は、充電台に近づく方向(図の上方向)となる。
図6(d)に示すように、一定距離だけ前進して、距離測定を繰り返す。
ky_tmp<ky_minとなるように進行している場合は、ky_tmpの値を、新たなky_minとして設定し、同方向への前進を継続する。
これにより、自走式掃除機1は、次第に、充電台のある方向に近づいていく。
図4図5の説明では省略したが、ky_tmpを測定するごとに、ky_tmpと、目標距離ky_xとを比較してもよい。ky_tmp>ky_xであれば、上記したような走行を継続して行う。
【0064】
図7(a)は、上記のような走行を継続した結果、現在測定距離ky_tmpが、目標距離ky_xよりも小さくなった場合(ky_tmp<ky_x)を示している。
このとき、自走式掃除機1は、充電台100の信号通信部102を中心とする半径ky_xの円の領域内に入ったと判断できるので、自走式掃除機1は、充電台100まで帰還したと考え、帰還処理を終了する。
この後、自走式掃除機1の充電台接続部51と、充電台100の掃除機接続部101とを接触させるために、自走式掃除機1は、所定の走行および回転動作を行う。
【0065】
以上が、第1実施形態の帰還処理の一つの実施例である。
自走式掃除機の初期位置は、図4(a)に示す位置にあるとは限らないため、帰還のための実際の直線走行の進行方向と回転動作は種々の場合が存在する。
ただし、充電台から遠ざかるような走行をした場合に、180度の回転動作や、90度の回転動作を含めて、直線走行と回転動作を繰り返し行うことにより、徐々に、充電台のある方向に向かって進行することができる。
特に、最短で、2回の直線移動をすることにより、充電台の近傍に帰還することが可能である。
このような帰還処理では、自走式掃除機1がBLE信号の受信が可能な距離内にいる限り、従来の帰還処理のような壁面に沿った走行やランダム走行をする必要がなく、無駄な走行動作を減らすことができ、充電台への帰還処理にかかる時間を短縮することができる。
【0066】
図8に、自走式掃除機1が充電台の近傍に戻ってきたときの充電台への接続動作の説 明図を示す。
ここでは、充電台100の赤外線送信部106と、自走式掃除機1の赤外線受信部18とを利用する。
充電台100から、指向性を持った赤外線を送信し、その赤外線を受光できる所定の領域を領域Aとする。この場合、充電台100の近傍にまで戻ってきた自走式掃除機1が、赤外線を受信した場合、所定の領域Aに戻ってきたと判断し、その位置で静止し、その後、互いの接続部(51,101)を接続させるための一連の処理を行うようにしてもよい。
このように、BLE信号を用いた距離測定に加えて、赤外線の受信処理を行うようにすれば、より確実に、充電台への帰還処理を行うことができる。
【0067】
(第1実施形態の帰還処理のフローチャート)
図9(a),(b)に、この発明の第1実施形態の帰還処理のフローチャートを示す。
図9(a)のステップS1において、ユーザが入力部35を用いて、所定の目標距離42を入力し、目標距離を示す変数ky_xに設定する。あるいは、予め、目標距離42を固定的に変数ky_xに記憶しておいてもよい。
【0068】
ステップS2において、信号通信部14によってBLE信号を受信し、受信したBLE信号を用いて、距離測定部16が自走式掃除機1と充電台100との距離を算出する。この測定距離を、初期位置の距離として、最小測定距離ky_minに記憶させる。
【0069】
ステップS3において、自走式掃除機1の現在の前方方向に向かって、一定距離だけ前進走行を行う。一定距離としては、特に一意的に限定するものではないが、精度を高くするためには、できるだけ短い距離が好ましく、たとえば、10cm〜20cm程度の距離を設定すればよい。
また、一定距離は固定値ではなく、可変としてもよい。たとえば、測定距離が比較的長い場合は、一定距離を長く設定し、充電台に近づいたために測定距離が所定値よりも短くなった場合に、一定距離を短く設定してもよい。
【0070】
ステップS4において、障害検知部34によって障害物が検知されたか否かを、チェックする。障害物が検知された場合は、ステップS5へ進み、そうでない場合は、ステップS6へ進む。障害物が検出された場合とは、自走式掃除機本体の側面が物体に接触した場合や、超音波センサ15によって前進方向に物体を検出した場合を含む。
【0071】
ステップS5において、所定の方向転換を行い、ステップS2へ戻る。所定の方向転換は、たとえば、障害物が検知された位置で静止して、障害物を避けることができる程度の角度だけ回転すればよい。
回転動作は、たとえば、30度、60度、90度、180度というように予め設定された角度の他、ランダムな角度で、回転するようにしてもよい。ステップS2へ戻った後は、上記した一連の処理を繰り返す。
【0072】
ただし、ランダムな角度等で回転する場合、超音波センサに15を用いて、その回転後の前方方向に、障害物がないことを確認した後に、その前方方向へ走行することが好ましい。
また、障害物が壁の場合は、ランダムな角度で方向転換してもよいが、壁ぎわまで走行した後、その壁に沿った走行をするようにしてもよい。
【0073】
ステップS6において、信号通信部14によって受信したBLE信号を用いて、距離測定部16が、自走式掃除機1と充電台100との距離を算出する。この測定距離は、現在の測定距離を示す変数ky_tmpに記憶させる。
【0074】
ステップS7において、ky_min<ky_tmpか否かを、チェックする。すなわち、自走式掃除機1がいる現在の位置で測定した現在測定距離ky_tmpが、今までに測定された距離のうち最小の距離(最小測定距離ky_min)よりも大きいか否かを、チェックする。ky_min<ky_tmpの場合はステップS8へ進み、そうでない場合は、ステップS9へ進む。
【0075】
ステップS8において、進行方向を、充電台から遠ざからない方向に変更するために、現在の位置で、180度の回転動作をする。
ステップS9において、最小測定距離ky_minに、現在測定距離ky_tmpを代入し、最小測定距離を更新する。
ステップS10において、ステップS3と同様に、一定距離だけ、前進させる。
【0076】
ステップS11において、ステップS4と同様に、障害物の検出チェックを行う。障害物がある場合は、ステップS12へ進み、ステップS5と同様に、方向転換処理を行い、ステップS2へ戻る。
障害物のない場合は、ステップS13へ進み、ステップS6と同様に、現在測定距離ky_tmpを測定し、記憶する。
【0077】
ステップS14において、ステップS7と同様に、ky_min<ky_tmpをチェックし、自走式掃除機1が、前回までの最小測定距離ky_minよりも充電台100に近づいた場合(ky_min≧ky_tmp)、ステップS9へ戻り、ステップS9からS13までの処理を繰り返す。
一方、自走式掃除機1が、一定距離の走行によって、前回までの最小測定距離ky_minよりも充電台100から遠ざかる方向に進行した場合(ky_min<ky_tmp)、ステップS15へ進み、ステップS8と同様に、180度の回転動作を行う。
【0078】
ステップS16において、ステップS3と同様に一定距離の走行を行い、ステップS17において、ステップS4と同様の障害物検出処理を行う。
障害物がある場合は、ステップS18へ進み、ステップS5と同様に方向転換を行って、ステップS2へ戻る。
一方、障害物がない場合は、図9(b)のステップS19へ進み、現在位置に静止して、左方向に90度回転する。ただし、右方向への90度回転をしてもよい。
ここで、90度回転するのは、すでに、180度回転した方向から現在位置まで進行してきたので、再度180度回転した場合には、すでに通ってきた過去の位置に戻ることになるからである。
したがって、回転角度としては、180度以外の角度を選択すればよいが、その後の進路を明確に設定するために、上記のように、たとえば90度の回転を選択すればよい。このような90度回転をした後は、新たな直線上における走行が行われることになる。
【0079】
ステップS20において、現在位置での測定距離を、最小測定距離の仮の初期値(ky_min)として設定記憶する。
ステップS21において、ステップS3と同様に、一定距離だけ前進する。この後、ステップS22からS26までは、ステップS4からS8までと同様の処理を、繰り返し行う。
【0080】
ステップS27において、ステップS9と同様に、現在測定距離ky_tmpを、新しい最小測定距離ky_minに更新した後、ステップS28からS31まで、上記したステップS10からステップS13までの処理と、同様の処理を行う。
【0081】
ステップS32において、ky_tmp<ky_xをチェックする。
現在測定距離ky_tmpが、目標距離ky_xよりも小さくなった場合は、自走式掃除機1が充電台の所定の近傍にまで戻ったと判断し、帰還処理を終了する。
一方、現在測定距離ky_tmpが、目標距離ky_xよりも大きい場合は、まだ帰還途中であるので、ステップS28に戻り、ステップS28からS31までの処理を繰り返す。
以上の帰還処理を実行すれば、壁に沿った走行などの無駄な走行を減らすことができ、充電台までの帰還処理にかかる時間を短縮することができる。
【0082】
<第2実施形態>
図10から図12に、この発明の帰還処理の第2実施形態の説明図を示す。
第2実施形態では、目標対象物である充電台までの距離を測定しながら、自走式電子機器が充電台から遠ざかる方向に移動していると判定された場合に、上記判定をした現在位置で、一定方向の90度の回転動作を行わせ、直線走行と、上記一定方向と同一方向の90度の回転動作とを組み合わせた走行を行うことによって、自走式電子機器を充電台の近傍領域にまで移動させる。
上記一定方向は、左方向および右方向のいずれでもよいが、両方向を混在させるのではなく、予め設定したどちらか一方の方向を用いるものとする。
図10(a)に、自走式掃除機1の初期位置と、充電台100までの初期距離を示す。ここでは、測定された初期距離は、最小測定距離ky_minとして記憶される。図10(a)では、左ややななめ下方向が、自走式掃除機の前進方向とする。
【0083】
ここでは、以下のような直線的な走行と、左方向への90度の回転動作とを利用して、自走式掃除機1が、目標距離ky_xよりも充電台に近い位置に帰還するものを示す。
図10(b)において、一定距離だけ前進し、その位置での充電台までの距離を測定し、現在測定距離ky_tmpとして記憶する。
【0084】
図10(b)において、自走式掃除機1は充電台100から遠ざかる方向に移動したので、図10(c)に示すように、図10(b)の位置で静止して、90度左回転をする。これにより、前進方向は、右下方向となる。
この位置での測定距離を、最小測定距離ky_minとして記憶する。
【0085】
図10(d)において、図10(c)の位置からさらに一定距離だけ前進して、その位置での充電台100までの距離を測定し、現在測定距離ky_tmpとして記憶する。
図10(d)の前進走行によって、充電台から遠ざかる方向に移動したので、図11(a)に示すように、図10(d)の現在位置で静止して、90度左回転をする。これにより、右ややななめ上が、前進方向となる。この位置での測定距離を、最小測定距離ky_minとして記憶する。
【0086】
図11(b)において、さらに一定距離だけ前進し、その位置での充電台までの距離を測定し、現在測定距離ky_tmpとして記憶する。
図11(b)では、前進した位置でのky_tmpは、ky_minよりも小さくなっているので、自走式掃除機1は、充電台に近づく方向に移動している。そこで、ky_minにky_tmpを代入して、更新する。
【0087】
図11(c)において、さらに一定距離だけ前進し、同様に、現在測定距離ky_tmpの測定を繰り返し行う。
図11(c)では、充電台までの距離が徐々に短くなっていき、最も右側の位置のky_tmpが、その前回位置での最小測定距離ky_minよりも大きくなっている。これ以上、同方向に前進をし続けると、充電台からますます遠ざかる方向に移動することになる。
そこで、図11(d)に示すように、自走式掃除機1は、図11(c)の最も右側の位置で、90度左回転をする。
これにより、前進方向は、左上方向となる。この位置での測定距離を、最小測定距離ky_minとして記憶する。
【0088】
次に、図12に示すように、一定距離毎に前進を繰り返し、現在測定距離ky_tmpが、目標距離ky_xよりも短くなるか否かをチェックする。
図12では、ky_tmp<ky_xとなったので、自走式掃除機1が充電台100まで帰還したと考え、帰還処理を終了する。この後は、上記したように、2つの接続部(51,101)どおしを接触させる動作を行わせる。
【0089】
以上のように、図10(a)の場合は、直線的な前進走行と、3回の90度の左回転動作とによって、自走式掃除機1は、充電台の近傍にまで戻ってくることができ、壁に沿った走行やランダム走行をすることなく、無駄な走行を防止して、充電台に帰還するまでの時間を短縮することができる。
【0090】
図10から図12の説明は、最悪の場合の帰還処理を示したものであるが、90度の回転動作を右方向への回転に予め設定していた場合は、2回の右方向回転動作と直線的な前進走行とによって充電台まで帰還することができ、上記よりも短い時間で帰還することができる。
【0091】
図13に、第2実施形態の帰還処理のフローチャートを示す。
図9のフローチャートと同じ処理には、同一のステップ番号を付与している。
図13において、ステップS1からステップS7までの一連の処理は、図9と同一の処理である。
【0092】
ステップS7において、ky_min<ky_tmpとなった場合は、ステップS40に進む。この場合は、図10(b)のように、充電台から遠ざかる方向に前進した場合に対応する。
ステップS40では、現在位置に制した状態で、90度の左回転をする。その後、ステップS2へ戻り、一連の処理を繰り返す。
一方、ky_min≧ky_tmpの場合は、充電台に近づく方向に移動したので、ステップS41へ進む。
【0093】
ステップS41では、ステップS32と同様に、ky_tmp<ky_xをチェックする。
ky_tmp<ky_xの場合、自走式掃除機1は、目標とする充電台の近傍にまで戻ってきたと判断し、帰還処理を終了する。
一方、ky_tmp≧ky_xの場合、まだ帰還途中であるので、ステップS2へ戻って、一連の処理を繰り返す。
【0094】
<第3実施形態>
進行方向に障害物がある場合、そのまま直進することができないので、その障害物を回避するように、進行方向を変更する必要がある。そこで、障害検知部34によって障害物を検知した進行方向とは異なる方向(たとえば、90度左方向、90度右方向)への回転動作を行って、さらにその方向への前進走行をしてもよい。
あるいは、180度の回転動作を行ってもよい。また、回転角度は、90度と180度に限るものではなく、他の角度を利用してもよい。
【0095】
<第4実施形態>
上記実施例では、目標対象物を、固定設置された充電台としたが、固定設置されたものに限る必要はなく、信号通信部を有する移動体であってもよい。この場合、自走式電子機器は、移動体との距離を測定しながら、移動体に追随していくことができる。
【符号の説明】
【0096】
11 制御部、 12 充電池、 13 電池残量検出部、 14信号通信部、 15 超音波センサ、 16 距離測定部、 17 距離判定部、 18 赤外線受信部、 21 走行制御部、 22 車輪、 31 吸気口、 32 排気口、 33 集塵部、 34 障害検知部、35 入力部、 41 記憶部、 42 目標距離、 43 最小測定距離、 44 現在測定距離、 45 電池情報、 100 充電台、 101 掃除機接続部、 102 信号通信部、 103 制御部、 104 電力供給部、 105 商用電源、 106 赤外線送信部
図1
図2
図3(a)】
図3(b)】
図4
図5
図6
図7
図8
図9(a)】
図9(b)】
図10
図11
図12
図13