特許第6393911号(P6393911)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東海光学株式会社の特許一覧

<>
  • 特許6393911-着色材料の使用条件の決定方法 図000033
  • 特許6393911-着色材料の使用条件の決定方法 図000034
  • 特許6393911-着色材料の使用条件の決定方法 図000035
  • 特許6393911-着色材料の使用条件の決定方法 図000036
  • 特許6393911-着色材料の使用条件の決定方法 図000037
  • 特許6393911-着色材料の使用条件の決定方法 図000038
  • 特許6393911-着色材料の使用条件の決定方法 図000039
  • 特許6393911-着色材料の使用条件の決定方法 図000040
  • 特許6393911-着色材料の使用条件の決定方法 図000041
  • 特許6393911-着色材料の使用条件の決定方法 図000042
  • 特許6393911-着色材料の使用条件の決定方法 図000043
  • 特許6393911-着色材料の使用条件の決定方法 図000044
  • 特許6393911-着色材料の使用条件の決定方法 図000045
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6393911
(24)【登録日】2018年9月7日
(45)【発行日】2018年9月26日
(54)【発明の名称】着色材料の使用条件の決定方法
(51)【国際特許分類】
   H04N 1/46 20060101AFI20180913BHJP
   G06T 1/00 20060101ALI20180913BHJP
【FI】
   H04N1/46
   G06T1/00 510
【請求項の数】14
【全頁数】31
(21)【出願番号】特願2014-125013(P2014-125013)
(22)【出願日】2014年6月18日
(65)【公開番号】特開2016-5159(P2016-5159A)
(43)【公開日】2016年1月12日
【審査請求日】2017年3月31日
(73)【特許権者】
【識別番号】000219738
【氏名又は名称】東海光学株式会社
(74)【代理人】
【識別番号】100099047
【弁理士】
【氏名又は名称】柴田 淳一
(72)【発明者】
【氏名】三浦 仁志
(72)【発明者】
【氏名】小野 信吾
【審査官】 大室 秀明
(56)【参考文献】
【文献】 特開2009−109442(JP,A)
【文献】 特開平04−226420(JP,A)
【文献】 特開2006−319751(JP,A)
【文献】 特開2010−033221(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01J 3/00−4/04
G01J 7/00−9/04
G02C 1/00−13/00
G06T 1/00−1/40
G06T 3/00−5/50
G06T 9/00−9/40
H04N 1/40−1/409
H04N 1/46−1/62
(57)【特許請求の範囲】
【請求項1】
複数種類の見本の色を測定して色のデータを取得する第1の工程と、
各見本の色についてそれぞれ見本の色と同じ、又は人の主観によって同じとみなせる程度の精度で人の視覚に基づ色合わせがなされた色の着色された加工品を用意する第2の工程と、
下記A.B.又はCのうち、Cを含む2以上のデータを取得する第3の工程と、
下記D.又はE.のいずれかの方法で再現色の着色材料の使用条件として複数の着色材料をそれぞれ使用する量を表す数値を算出する第4の工程と、を有することを特徴とする着色材料の使用条件の決定方法。
A.前記第2の工程で用意された加工品の再現色を測定した色のデータ。
B.前記第2の工程で用意された加工品の再現色の見本との一致度合いを人の視覚に基づいて評価したデータ。
C.前記第2の工程で用意された加工品の着色に係る着色材料の使用条件として複数の着色材料をそれぞれ使用する量を表す数値データ。
D.前記第3の工程で取得した前記A.及びB.のうち少なくとも一方のデータを用いて前記第1の工程で得られた色のデータと前記第3の工程で取得した前記C.の数値データとの対応関係を最適化することで再現色を決定し、その結果を利用して再現色の着色材料の前記数値を最適化すること。
E.前記第3の工程で取得した前記A.及びB.のうち少なくとも一方のデータを用いて前記第1の工程で得られた色のデータと前記第3の工程で取得した前記C.の数値データとの対応関係を最適化することで再現色を決定すると同時に再現色の着色材料の前記数値を最適化すること。
【請求項2】
再現色の目標とするねらい値と、理想的な再現色を推定した推定理想値との差を第1のシフト量とし、前記第3の工程で少なくとも上記B.のデータを使用して前記D.又はE.のいずれかの方法で再現色の着色材料の使用条件を算出する際に前記第1のシフト量を最適化してその結果を使用する、又は前記第1のシフト量の最適化と同時に前記第3の工程で少なくとも上記B.のデータを使用して前記D.又はE.のいずれかの方法で再現色の着色材料の使用条件を算出するようにしたことを特徴とする請求項1に記載の着色材料の使用条件の決定方法。
【請求項3】
前記第1のシフト量を最適化する際には前記ねらい値をめざして加工した加工結果と前記推定理想値との差を考慮することを特徴とする請求項2に記載の着色材料の使用条件の決定方法。
【請求項4】
前記色のデータとは色空間における色度座標データであることを特徴とする請求項1〜3のいずれかに記載の着色材料の使用条件の決定方法。
【請求項5】
着色基材、着色材料及び着色加工の方法の少なくとも1つ以上が見本の条件とは異なる条件であって、色度座標が見本の色と同じ又はごく近似するように再現色を調整した加工品を作製する場合において、
見本の色の色度座標を第1の色度座標とし、
人の主観によって見本の色と同じとなるように色合わせをして再現色を調整した加工品を想定し、その想定した加工品の再現色の色度座標を第2の色度座標とし、
前記第1の色度座標と前記第2の色度座標との差を第2のシフト量とし、前記第2のシフト量を前記第1の色度座標の関数として、下記F.又はG.のいずれかの方法で前記第2のシフト量を表す関数を最適化することを特徴とする請求項4に記載の着色材料の使用条件の決定方法。
F.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して前記第2のシフト量を表す関数を最適化する。
G.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数と前記第2のシフト量を表す関数とを同時に最適化する。
【請求項6】
前記色の弁別度合いを表す関数は二次元空間では楕円として、三次元空間では楕円体として表されることを特徴とする請求項1〜5のいずれかに記載の着色材料の使用条件の決定方法。
【請求項7】
前記色の弁別度合いを表す関数とは色度座標上での確率密度の分布状態を表す確率密度関数であることを特徴とする請求項1〜6のいずれかに記載の着色材料の使用条件の決定方法。
【請求項8】
前記確率密度関数は下記一般式で示されることを特徴とする請求項7に記載の着色材料の使用条件の決定方法。
【数1】
【請求項9】
前記色の弁別度合いを表す関数とは色度座標上での確率密度の分布状態を表す確率密度関数であり、同確率密度関数は所定のパラメータを有し、前記パラメータを見本の色の色度座標データを変数とした関数として表し、見本の色の色度座標データ、と着色を施した物品の再現色の色度座標データ、及びそれらのデータの差を変数として前記パラメータを表す関数を最適化することで所定の確率密度関数を最適化することを特徴とする請項7又は8に記載の着色材料の使用条件の決定方法。
【請求項10】
着色材料の使用条件を以下の1)又は2)のいずれかとしたことを特徴とする請求項1〜9のいずれかに記載の着色材料の使用条件の決定方法。
1)着色材料毎に調整した浸漬液に物品を浸漬することにより着色する際に、浸漬時間の長短または浸漬液の成分量を説明変数として回帰式を求め、最適化した式に基づいて浸漬時間または浸漬液の成分量を判断する。
2)昇華性色素を溶解又は微粒子分散させた染色用用材を物品に転写して着色する際に、転写量または使用する色素の量を説明変数として回帰式を求め、最適化した式に基づいて転写量または使用する色素の量を判断する。
【請求項11】
彩色される物品はすべて同じ材質であることを特徴とする請求項1〜10のいずれかに記載の着色材料の使用条件の決定方法。
【請求項12】
見本はすべて同じ材質であることを特徴とする請求項1〜11のいずれかに記載の着色材料の使用条件の決定方法。
【請求項13】
見本の色が化体した物品は再現色に着色される物品と異なる材質であることを特徴とする請求項1〜12のいずれかに記載の着色材料の使用条件の決定方法。
【請求項14】
見本の色が化体した物品は再現色に着色される物品と同じ材質であることを特徴とする請求項1〜12のいずれかに記載の着色材料の使用条件の決定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の着色材料を使用して見本の色に合わせて物品に着色を施して人が見本と同じ色であると認識できる再現色を調整するための着色材料の使用条件の決定方法に関するものである。
【背景技術】
【0002】
例えば、多くのカラーバリエーションを持つ物品(工業製品)では、その物品の製造コストが高ければ在庫を持つことは効率が悪いため、注文に応じてその都度彩色を施すことが合理的である。彩色を施す場合には注文に応じた見本を参照し、複数の異なる着色材料を混ぜ合わせたりあるいは重ね合わせることで物品に彩色を施してその見本と同じ色となるように(つまり同一性のあるように)再現色を調整することとなる。
しかし、実際には見本と同一性のある再現色を調整することは難しい。その理由としては、例えば、見本の素材と実際に製造する物品との素材の違いがあること、新しいカラーの種類ができたり、染料の種類が変わったりすること等が挙げられる。更に、表面加工をしている場合、例えばレンズを例に取ると染色加工前に表面処理(ハードコート加工)を行ったり、染色加工後に表面処理(マルチコート加工)を行ったりすることでそれら表面処理がない場合に見本と同一性があったものが違って見えるというケースもある。
【0003】
ところで、人が同じ色であると判断できる範囲、つまり色を弁別可能な範囲は、マクアダム楕円として知られている。特定色群に含まれる色の一つを選ぶと、その選んだ色を中心とした一定範囲に含まれる色は、その選んだ色と互いに混同することが知られている。こうした色の範囲は、デイビッド・マクアダム(David MacAdam)によって詳しく調べられ、その外形状は楕円形で規定できることから、マクアダム楕円(MacAdam ellipsis)と呼ばれる。マクアダム楕円は国際照明委員会(CIE)が設定した色空間内において図示可能であって、例えばL*の値を固定したある明度における色が混同する範囲を、a*b*平面上の楕円として示すことができる。色空間上の位置は色度座標として例えばL*a*b*で示す場合やL*u*v*で示す場合等があるが、以下ではL*a*b*で表示するものとして説明する。L*は明度、a*は赤/マゼンタと緑の間の位置、b*は黄色と青の間の位置を示す。ここに、マクアダム楕円の形・大きさ・向きを色度座標の領域別に求めることを、本発明においては「マクアダム楕円の分布を推定する」というものとする。
例えば、ある見本の色についてその色度座標に対応したマクアダム楕円がわかれば再現色がマクアダム楕円内にあるように分光測色計や分光光度計で物体の反射光や透過光を測定することで客観的に見本の色と同一の範囲に含まれる色であることとなる。そして、そのような色となるように着色材料の使用条件を決定することができる。そのため、もし考えられるすべての見本の色についてマクアダム楕円を取得できるのであれば、見本の再現色を調整した物品についてマクアダム楕円内にあるかどうかで客観的に見本と同一性のある再現色を調整できたかどうかを判断することができる。マクアダム楕円について言及した先行技術の一例として特許文献1を挙げる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−189333号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、実際には数多くのマクアダム楕円の分布を推定することは容易ではない。通常あるマクアダム楕円分布を推定するためには見本毎に数多くのサンプル(見本の色)を採取しなければならないからである。また、現状においてすべての種類の色にこのような推定ができているわけではなく、更に、このように採取した結果も人種や年齢など個人の条件によって異なり、色を観察する環境によっても変わるものである。そのため、従来ではマクアダム楕円のような色の弁別度合いを表す関数を利用して見本と同一性のある再現色を調整するということは極めて困難であった。
本発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的は、数多くの見本の色を採取しなくとも色の弁別度合いを表す関数を推定することができ、その結果このような関数を利用してその見本と同一性のある再現色を調整することが可能となる着色材料の使用条件の決定方法を提供することである。
【課題を解決するための手段】
【0006】
上記課題を解決するために手段1では、複数種類の見本の色を測定して色のデータを取得する第1の工程と、人の視覚に基づいて各見本の色について人の主観によってそれぞれ見本の色と同じ又は同じとみなせる程度の精度で色合わせをして物品に着色を施した加工品を作製する第2の工程と、下記A.B.又はCのいずれか1以上のデータを取得する第3の工程と、下記D.又はE.のいずれかの方法で再現色の着色材料の使用条件を算出する第4の工程と、を有するようにしたことをその要旨とする。
A.前記第2の工程で着色を施した加工品の再現色を測定した色のデータ。
B.前記第2の工程で着色を施した加工品の再現色の見本との一致度合いを人の視覚に基づいて評価したデータ。
C.前記第2の工程で着色を施した着色材料の使用条件のデータ。
D.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して再現色の着色材料の使用条件を最適化すること。
E.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数と再現色の着色材料の使用条件とを同時に最適化すること。
【0007】
このような構成においては、例えば、第3の工程でAを実行した場合には、第4の工程のD.では第1の工程と第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して着色材料の使用条件を最適化する。あるいは第4の工程のE.では第1の工程と第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数と再現色の着色材料の使用条件とを同時に最適化する。これによって、見本の色と同じと判断される領域が推定され、その領域にあるとする着色材料の使用条件が最適化されるため、以後の着色においてはこの最適化した着色材料の使用条件を適用して着色をすることでどのような見本の色であっても人の主観において同一とみなされる再現色の加工品を得ることができる。この例は主として下記の実施の形態1に対応する。
【0008】
また、例えば、第3の工程でAとBを実行した場合には、第4の工程のD.では第1の工程と第3の工程で得られたデータ群とに基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して着色材料の使用条件を最適化する。あるいは第4の工程のE.では第1の工程と第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数と再現色の着色材料の使用条件とを同時に最適化する。これによって、見本の色と同じと判断される領域が推定され、その領域にあるとする着色材料の使用条件が最適化されるため、以後の着色においてはこの最適化した着色材料の使用条件を適用して着色をすることでどのような見本の色であっても人の主観において同一とみなされる再現色の加工品を得ることができる。また、手段1よりも当初に作製する加工品を決定するまでの試作品が大幅に少なくできる。この例は主として下記の実施の形態4に対応する。
【0009】
更に、実施の形態4に対応する内容として、D.又はE.のいずれかの方法で再現色の着色材料の使用条件を算出する際に、再現色の目標とするねらい値と、理想的な再現色を推定した推定理想値との差を第1のシフト量とし、最適化した前記第1のシフト量の結果を使用することがよい。あるいは第1のシフト量の最適化と同時にD.又はE.のいずれかの方法で再現色の着色材料の使用条件を算出するよい。このように再現色の目標とするねらい値を設定し、推定理想値との差を第1のシフト量として得ることで、再現色の目標とするねらい値をそれほど正確に決定しなくとも求めようとする着色材料の使用条件を正確に推定することができる。この際にねらい値をめざして加工した加工結果と、見本の色との一致度合いを人の主観によって評価した結果を考慮して、つまり加工結果がよいほど第1のシフト量を小さく、加工結果が悪いほど(見本の色との違いが大きいほど)第1のシフト量を大きくして最適化することがよい。
【0010】
また、例えば、第3の工程でCを実行した場合には、第4の工程のD.では第1の工程で得られたデータ群と第3の工程で得られた各加工品毎の使用条件に基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して着色材料の使用条件を最適化する。あるいは第4の工程のE.では第1の工程で得られたデータ群と第3の工程で得られた各加工品毎の使用条件に基づいて色の弁別度合いを表す関数と再現色の着色材料の使用条件とを同時に最適化する。これによって、見本の色と同じと判断される領域が推定され、その領域にあるとする着色材料の使用条件が最適化されるため、以後の着色においてはこの最適化した着色材料の使用条件を適用して着色をすることでどのような見本の色であっても人の主観において同一とみなされる再現色の加工品を得ることができる。この例は主として下記の実施の形態2に対応する。
【0011】
ここに「人の視覚に基づいて」とあるのは色覚に異常のない通常の視覚の持ち主の視覚に基づくという意味である。「人の視覚に基づいて見本の色と同じ色となるように再現色を調整する」という条件は、当業者が見本と同一性のある色とみなせるまで人が最適な加工品を模索することであり、その場合に見本の色と加工品の再現色は機械的な測定によって必ずしも同一の測定結果とはならない。一方、「見本の色と同じとみなせる程度の精度で色合わせをして物品に着色を施した加工品を作製する」という条件は必ずしも人の視覚による判断を必須としない(してもよい)。また、その場合には最適な加工品を模索することまでを要求するものではなく、見本の色を測定して得られた分光透過率または色度座標L*a*b*をできるだけ再現する条件で加工品に着色したり(その場合には着色基材が異なっていれば人の視覚に基づくと両者は違って見えることが多い)、過去に使用していた種類の着色材料を使用したりして、まったく違う色ではないが同一とまではいえない可能性が高いものでよい。このような緩やかで妥協的な条件であると当初に作製する加工品を決定するまでの試作品が大幅に少なくできるためよい。
【0012】
また、「複数種類の見本」とあるのは、この発明は前提として最適化計算を行うために複数の見本の色を前提としているためである。見本は多いほど計算上正確さが増すが、2つ以上の見本があれば理論上計算は可能である。「見本の色」とは製品の発注者と受注者が同一物(またはその複製)として参照するサンプルの色をいう。必ずしも製品に着色されているとは限らない。
測定する方法としては、例えば、分光輝度測定、分光透過率測定、分光反射率測定などの機械的な分光測定が挙げられ、分光センサ以外でも人間の目に対応する分光感度とほぼ同一の感度を持つ三つのセンサを用いる刺激値直読法なども含む。具体的な装置としては、分光測色計や分光光度計が使用されることとなる。測定して得られる「色のデータ」とは例えば色空間における色度座標データである。
また、「着色材料の使用条件」とは、例えば任意の色を調整するための加法混合によって色を混合する際の着色材料の使用量や割合をいう。着色材料は、例えば着色剤を混ぜ合わせた状態で物品の表面に塗ったり、あるいは着色材料ごとに順に塗り重ねたりすることで求める彩色に調整可能である。また、塗る以外の手法、例えば、浸漬液への物品の浸漬(ディップ法)や吹きつけや気相転写等で着色を施すこともよい。気相転写とは染料をレンズ面に昇華させ、加熱にて定着させる手法である。
【0013】
また、「色の弁別度合いを表す関数」とは、例えば色空間についての関数であることがよい。色空間とは立方的に表現される色の空間である。色空間を定量的に表現するためいくつかの表色系が規定されている。例えば、CIE(国際照明委員会)表色系では、RGB表色系、L*a*b*表色系、L*u*v*表色系等がある。
更に、「色空間についての関数」とは、色空間を規定する条件を使用した色度座標上での確率密度の分布状態を表す確率密度関数であって、下記数1のn変量正規分布の確率密度関数の一般式で示されるものがよい。
【0014】
【数1】
【0015】
ここに、「確率密度関数」とは連続的なデータ列とそのデータに対応して生じる結果の確率の関係を表す関数であり、例えば上記数1の式においてn=3の場合のL*a*b*で表現される三次元空間マクアダム楕円体、あるいはn=2の場合の平面のマクアダム楕円の正規分布の確率密度関数が挙げられる。確率密度関数には正規分布以外にもカイ二乗分布、t分布等様々なものがあるが、確率密度関数として正規分布以外の関数を使用することも可能である。「確率密度関数の最適化」とはここでは所定の彩色等を行なって得られた結果が最もありふれたものであるようにすることであり、より具体的には最尤推定を行ってパラメータを最適化することである。
確率密度関数を最適化する手法は複数考えられるが、例えば見本の色の色度座標データを変数とした関数として表し、見本の色の色度座標データ、と着色を施した物品の再現色の色度座標データ、及びそれらのデータの差を変数としてパラメータを表す関数を最適化することで所定の確率密度関数を最適化することができる。また、着色材料の使用条件を着色材料毎に調整した浸漬液への物品の浸漬時間の長短とし、浸漬時間を説明変数として回帰式を求め、最適化した式に基づいて浸漬時間を判断するようにすることがよい。
【0016】
また、着色基材、着色材料及び着色加工の方法の少なくとも1つ以上が見本の条件とは異なる条件であって、色度座標が見本の色と同じ又はごく近似するように再現色を調整した加工品を作製する場合においては、見本の色の色度座標を第1の色度座標とし、人の主観によって見本の色と同じとなるように色合わせをして再現色を調整した加工品を想定し、その想定した加工品の再現色の色度座標を第2の色度座標とし、前記第1の色度座標と前記第2の色度座標との差を第2のシフト量とし、前記第2のシフト量を前記第1の色度座標の関数として、下記F.又はG.のいずれかの方法で前記第2のシフト量を表す関数を最適化することことがよい。
F.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数を最適化し、その結果を利用して前記第2のシフト量を表す関数を最適化する。
G.前記第1の工程と前記第3の工程で得られたデータ群に基づいて色の弁別度合いを表す関数と前記第2のシフト量を表す関数とを同時に最適化する。
このように測定した色度座標との差をシフト量として、これを考慮して計算することで、見本の条件と実際に着色を施す物品との条件が異なる場合であっても正確な着色材料の使用条件を決定することができる。この内容は下記の実施の形態2〜4、特に実施の形態2に対応するものである。
【0017】
彩色される物品はすべて同じ材質であることがより正確な計算においてよい。また、見本と加工品がすべて同じ材質であることがより正確な計算においてよい。また、見本と加工品が異なる材質であってもよい。実際には見本と加工品が異なる材質であることが多く上記のように色度座標との差をシフト量とすることで計算は可能である。
また、必ずしも最適化計算においては測定したすべての見本のデータを使用する必要はない。
この発明を適用すべき物品は着色が可能であれば特に限定されるものではなく、透明なレンズのようなものでもよい。
【発明の効果】
【0018】
本発明では、数多くの見本の色を採取しなくとも色の弁別度合いを表す関数を推定することができ、その結果見本と同一性のある再現色を調整することが可能となる着色材料の使用条件を容易に決定することができる。
【図面の簡単な説明】
【0019】
図1】見本と1回の等色実験に基づいて推定したマクアダム楕円の推定分布状態を説明する説明図。
図2】見本と2回の等色実験に基づいて推定したマクアダム楕円の推定分布状態を説明する説明図。
図3】既存のマクアダム楕円の分布状態を説明する説明図。
図4】実施の形態1においてa*b*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図5】実施の形態1においてL*a*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図6】実施の形態1においてL*b*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図7】実施の形態2においてシフト量の規則性を推定するイメージを推定する説明図。
図8】実施の形態2においてa*b*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図9】実施の形態2においてL*a*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図10】実施の形態2においてL*b*平面におけるマクアダム楕円体の推定分布状態を説明する説明図。
図11】実施の形態3において加工条件である染料への浸漬時間を修正するイメージを説明するグラフ。
図12】実施の形態4において初期ねらい値と加工結果値と推定理想値と真の理想値の関係のイメージを説明する説明図。
図13】実施の形態4においてシフト量の規則性を推定するイメージを説明する説明図。
【発明を実施するための形態】
【0020】
以下、図面に基づいて本発明の具体的な実施の形態の説明をする。
<マクアダム楕円の推定>
まず、以下の実施の形態の説明の前提として色度座標値を変数とする2変量正規分布の(同時)確率密度関数を設定し、そのパラメータを表す関数を最適化してマクアダム楕円の分布を推定する計算の概要について説明する。実際の着色した見本ではなく、その代わりに簡単に様々な色を作り出せることから3種類のLED(発光ダイオード)の使用を想定したシミュレーションを行なった。以下の、実施の形態ではこの「マクアダム楕円の分布を推定する」ことを前提とした計算がされることとなる。
1.計算の前提
L*=50に固定したa*b*平面上(二次元平面上)の、既知のマクアダム楕円の分布を推定するシミュレーションを行った。a*b*平面上に81個の色座標を設定した(見本の色のデータ)。L*値はすべて50で固定である。次に、各色に関して、人によるバラツキをともなった等色実験を行ってデータを作り出した(再現色のデータ)。それらデータをもとにマクアダム楕円の分布状態を推定するシミュレーションを行った。
【0021】
a)L*a*b*色度座標の算出
まず、L*a*b*色度座標の算出手法についてその概略を説明する。
目に入った光は、目の網膜細胞にある3種類の錐体に当たり、これらが出した電気信号(刺激)が脳に伝達されて色を感じる。3種類の錐体はそれぞれ、
S錐体:450nmの波長に最も反応する
M錐体:535nmの波長に最も反応する
L錐体:570nmの波長に最も反応する
この3種の刺激によって起こる興奮を三刺激値XYZと呼ぶ。三刺激値XYZは以下の数2の式で算出される。数2の式は三刺激値XYZを、各波長の反射率又は透過率T(λ)、照明の強度P(λ)、等色関数x(λ)、y(λ)、z(λ)の値を元に、次式により算出する。可視光の範囲を積分の添え字(vis)で表している。
【0022】
【数2】
【0023】
上記数2の式により比刺激値X/Xn、Y/Yn、Z/Znを求める。比刺激値X/Xn、Y/Yn、Z/Znが求まるとこれに基づいて、下記数3のように各色についてL*a*b*が算出できる。比刺激値の分母であるXn、Yn、Znは、完全拡散反射面の三刺激値である。完全拡散反射面においては全波長でT(λ)=1である。レンズのような透明体を透過する光に関しては、全波長でT(λ)=1となる完全透過物体を想定できるため、上で示したYとkを求める式の関係から、Yn=100となる。これらの値でX、Y、Zを割ることは、規格化と呼ばれる処理に相当する。
【0024】
【数3】
【0025】
b)マクアダム楕円を示す同時密度関数について
ある特定のa*b*色度座標値をもつ参照光源に関して(ここではL*=50)、多数回の等色実験の結果として得られるa*b*色度座標の分布を、2変量正規分布であると仮定する。するとa*b*平面上のマクアダム楕円は、下記数4の2変量正規分布の同時密度関数f(X)の値が同一となる点を結んだ曲線として表すことができる。
また、ここで、ある色度座標a*、b*におけるマクアダム楕円を考える。その楕円の中心座標を、μ=a*、μ=b*とする。中心座標は平均ベクトルを意味する。そして標準偏差σ、σおよび相関係数ρを、a*、b*の関数として以下の数5の3つの多項式で表す。
【0026】
【数4】
【0027】
【数5】
【0028】
数4においてΣの分散共分散行列と行列式は数6で逆行列は数7で表される。
【0029】
【数6】
【0030】
【数7】
【0031】
その結果、数4の式におけるexp内の式は以下の数8で表すことができる。
【0032】
【数8】
【0033】
2.見本の色となる色度座標の決定
本来1つずつ色度座標を測定する見本について、ここでは目標となる81個の光の色度座標を前もって以下の表1のようにa*とb*がそれぞれ4ずつ異なる位置で定めることとする。すべてL*=50である。この座標は上記数4の式におけμa=a*、μ=b*を決定するものである。
【0034】
【表1】
【0035】
3.再現色の決定
再現色については見本の色の81個の値の一つ一つを参照光源として等色実験を行うシミュレーションをして得た。等色実験では3種類のLEDの光量を調節し(L*、a*、b*)参照光源と同じ色に見えるように、被験者が操作光源のRGB各色のLEDの光の強度を自由に調整し、参照光源の色と視覚的に一致させるようにした。被験者は光源を直接観察するのではなく、それぞれの光源の光を完全拡散反射面で反射させ、その反射光を観察するものとした。このとき、光源を操作する自由度を2に限定する。すなわち、被験者はRGB個別の光の強度を加減することができるが、RGBのどれか一つを増減させるたびに他の2つを自動的に減増させて、常にL*=50の状態を保つことを想定した。そのためには、操作光源の輝度を測定してリアルタイムでL*、a*、b*の値を算出し、L*=50を保つようなフィードバック制御を想定した。
【0036】
4.マクアダム楕円の分布の推定
等色実験を行った結果、得られた再現色となる81個のL*a*b*色度座標は、見本となる参照光源の設定値とは少しずつ異なった値となる。この値のズレに基づいて、2変量正規分布の標準偏差と相関係数であるσ(a*、b*)、σ(a*、b*)、ρ(a*、b*)の関数形を最尤推定する。そのためには、2変量正規分布の同時密度関数にもとづく対数尤度の和を最大にする条件で、それぞれの関数の定数と係数を下記数9の式によって最適化する。尚、計算は複雑であるためコンピュータで実行される。
【0037】
【数9】
【0038】
上記の最適化の結果、得られた数5の式におけるσ、σ、ρの定数と係数を表2及び表3に示す。表2は各一回の等色実験の結果で得られた再現色に基づく結果であり、表3は各二回の等色実験の結果で得られた再現色に基づく結果である。
そして、表2及び表3の結果を数4の2変量正規分布の同時密度関数に適用することでをL*=50におけるa*b*平面上のマクアダム楕円を推定できる。ここで、図1は表1に基づいて、図2は表3に基づいている。図1及び図2に描いた楕円は、2変量正規分布の同時密度関数を表す式f(X)のexp内の(X−μ)Σ−1(X−μ)の値が1となる点を結んだ曲線である。これは1変量正規分布において、平均値から標準偏差の分だけ増減した値に相当する。楕円の中心を黒丸で表した。楕円の中心と結んだ白丸は、等色実験の結果得られたL*a*b*色度座標を表す。比較のために、このような最適化による推定ではなく実際に多くの等色実験の結果に基づいてσ、σ、ρを推定した場合のマクアダム楕円を図3で示す。
この図1又は図2のように、81の見本についてそれぞれわずかに1つ(又は2つ)の加工レンズを作製するだけで、図3のように数多くの等色実験を行って得たマクアダム楕円に近い分布となっている。
【0039】
【表2】
【0040】
【表3】
【0041】
<実施の形態1>
実施の形態1ではレンズを物品としてこれに着色してカラーレンズを作製することを例として説明したものである。カラーレンズを作製するための着色材料としてここではシアン(C)、マゼンタ(M)、イエロー(Y)の3種類の染料を用い所定の染料液を調整した。これら染料液への浸漬時間(着色材料の使用条件)を決定する場合を例としたものである。見本レンズも加工レンズも共に同じ基材(例えば、アクリル系基材)とした。また、カラーレンズを作製するための着色材料も見本レンズと加工レンズと同じ種類のシアン(C)、マゼンタ(M)、イエロー(Y)の染料を用いた同じ染料液を使用した。
【0042】
1.見本レンズと加工レンズのL*a*b*色度座標
実施の形態1では多くのカラーレンズからランダムに49種類の見本レンズを選択した。そして、各見本レンズと同じ材質の無色のレンズに対して主観的に同じ色になるように49種類の着色を施した加工レンズを作製した。これらのレンズについて分光光度計で分光透過率を測定した。但し、分光透過率は波長ごとの透過率データであるため、そのままでは情報量が多すぎて扱いにくいため、上記の数2と数3の式に基づいて計算し、各レンズについてL*a*b*色度座標を得た。
2.マクアダム楕円体の推定
実施の形態1ではL*は固定されていないため、推定するのはL*a*b*三次元空間のマクアダム楕円体となる。上記の<マクアダム楕円の推定>に倣ってL*a*b*座標の確率密度に基づく尤度を最大とする条件により実施した。
【0043】
マクアダム楕円体を3変量正規分布において確率密度が一定の値となる曲面であると考える。3変量正規分布の同時密度関数f(X)は数10となる。
σをa*の分散、σをb*の分散、σをL*の分散とする。ρはa*とb*の相関係数とする(σσρがa*とb*の共分散であるともいえる)。これらの値がL*a*b*空間の領域によって異なるので、それぞれをL*a*b*の下記数11の式で示す2次関数(多項式)で表す。
尚、推定する変数をある程度整理したほうが、推定計算の安定収束に有利なため、以下の条件を加えた。
a)L*とa*の相関およびL*とb*の相関は考えないことにして、ρaL=ρbL=0とした。
b)ρの値はL*によらないものとした。
【0044】
【数10】
【0045】
【数11】
【0046】
数10においてΣの分散共分散行列と行列式は数12で表される。また、数10の式におけるexp内の式は以下の数13で表すことができる。
【0047】
【数12】
【0048】
【数13】
【0049】
3.最適化計算
3変量正規分布の同時密度関数f(X)において、X=(a*、b*、L*)であり、a*、b*、L*はそれぞれ加工したレンズの色空間上の色度座標である。平均ベクトルはμ=(μ、μ、μであり、μ、μ、μの値はそれぞれ見本レンズの色空間上の色度座標である。
ここで最尤法により、全カラーの密度関数の積Πf(X)を最大にする条件から、マクアダム楕円の分布を表す式を最適化する。実際には積の対数をとり、Σln(f(X))を最大にする最適化計算を行った。その結果として数11の式におけるσ、σ、ρの定数と係数を表3に示す。また、表4の値を数11の式の3変量正規分布の同時密度関数に適用することでa*b*L*の三次元マクアダム楕円体を表すことができる。図4図6にそれぞれa*b*平面、a*L*平面、b*L*平面に表れるマクアダム楕円の推定分布を図示する。図4ではL*方向に、図5ではb*方向に、図6ではa*方向に手前から奥に向かって重複した状態の楕円の最外郭が図示されている。
【0050】
【表4】
【0051】
4.CMY浸漬時間の最適設定量
a*b*L*の三次元マクアダム楕円体を推定できれば、各カラーに関してこれ以後に加工するレンズの見た目の色を見本レンズにより近づけるためのCMY浸漬時間の最適設定を算出することができる。具体的には加工条件のCMY浸漬時間とL*a*b*色度座標の対応関係を利用する。L*の値をCMY浸漬時間の関数として表し、その値が加工品のL*a*b*測定値と一致するように最適化する。すなわちCMY浸漬時間を説明変数としてL*を回帰する式を求める。同様にa*とb*を回帰する式を求める。その式に基づいて理想値のL*a*b*を実現するためのCMY浸漬時間を求める。ここでは回帰式の説明は実施の形態1では省略する。CMY浸漬時間の最適設定量するための詳しい回帰式の設定手法については実施の形態2で説明する。
【0052】
<実施の形態2>
実施の形態2もレンズを物品としてこれに着色してカラーレンズを作製することを例として説明したものである。但し、実施の形態1と違い見本レンズがアクリル系基材であるのに対して、加工レンズをウレタン系基材とした。また、カラーレンズを作製するための着色材料として、見本レンズとは異なる種類のシアン(C)、マゼンタ(M)、イエロー(Y)の3種類の染料を用い染料液を調整した。
1.見本レンズと加工レンズのL*a*b*色度座標
実施の形態2でも実施の形態1と同様に多くのカラーレンズからランダムに49種類の見本レンズを選択した。そして、各見本レンズと主観的に同じ色になるように49種類の着色を施した加工レンズを作製した。実施の形態1と同様に上記の数2と数3の式に基づいて計算し、各見本レンズについてL*a*b*色度座標を得た。
【0053】
2.理想値の推定
実施の形態2では基材や染料の種類の違いから機械測定で得られたL*a*b*色度座標が一致したとしても、人が目視した場合に見本レンズと加工レンズの色が一致しないことが多い。これは逆の言い方をすると見本レンズと加工レンズの色が見た目はよく一致していたとしても機械測定するとL*a*b*色度座標が一致しないということになる。これは検査環境での色の感じ方をL*a*b*色度座標に正確に反映できないからである。
そこで、「理想値」のレンズを想定する。理想値のレンズとは、ここでは「見本レンズとはやや異なるある特定のL*a*b*色度座標の特性をもったレンズ」であり、その「特定のL*a*b*色度座標」が「理想値」である。更に言えば理想値のレンズは加工レンズと同じ素材で同じ染料を使用して理想値を与えたレンズである。このようなレンズを作製すれば、見本レンズと加工レンズの色が良く一致することが想定される。このイメージを図示すると図7のごとくである。
【0054】
見本レンズと加工レンズのL*a*b*色度座標に基づいて理想値を推定する方法を説明する。49種類のレンズの各カラーについて、以下の数14の式のように見本レンズのL*a*b*値から理想値にかけてのシフト量を多項式で表す。この実施例ではL*の値が小さいカラーが少ないため、L*ではなく、ln(100−L*)を用いて収束を良くするための工夫をした。
ここで「理想値=見本レンズのL*a*b*値+シフト量」の関係にある。理想値を推定するには、理想値を最適化すれば良く、そのためにはシフト量を表す多項式の係数を最適化すれば良い。ここでL*、a*、b*は見本レンズのL*a*b*値である。定数と係数の初期値は、すべて0とした。最適化して得た結果を表5に示す。
【0055】
【数14】
【0056】
【表5】
【0057】
3.最適化計算
3変量正規分布の同時密度関数をf(X)で表す。X=(a*、b*、L*)であり、a*、b*、L*は分析対象となる49種類のカラーについての色空間上の加工レンズの色度座標を表す。
平均ベクトルはμ=(μ、μ、μであり、μ、μ、μは理想値の推定値である。それは49種類の見本レンズを測定して得た色度座標に上記数14で得られたシフト量の推定値を加えた値である。ここで3つのシフト量はそれぞれ見本レンズの色度座標a*、b*、L*の関数として表される。ここで最尤法により、全カラーの密度関数の積Πf(X)を最大にする条件から、シフト量を表す式とマクアダム楕円の分布を表す式の最適化を同時に行なう。実際には下記数15の式によって積の対数をとり、Σln(f(X))の尤度を最大にする最適化計算を行った。
数15の式におけるf(X)は上記の数10の同時密度関数の式である。最適化して求めたマクアダム楕円の分布を表す式のσ、σ、ρの定数と係数を表6に示す。図8図10にそれぞれa*b*平面、a*L*平面、b*L*平面に表れるマクアダム楕円の推定分布を図示する。
【0058】
【数15】
【0059】
【表6】
【0060】
4.CMY浸漬時間の最適設定量
見本レンズに関するL*a*b*3次元空間での理想値がわかれば(推定できれば)、各カラーに関してこれ以後に加工するレンズについて見た目の色を見本レンズにより近づけるためのCMY浸漬時間の最適設定を算出することが可能となる。具体的には加工条件のCMY浸漬時間とL*a*b*色度座標の対応関係を利用する。L*の値をCMY浸漬時間の関数として表し、その値が加工品のL*a*b*測定値と一致するように最適化する。すなわちCMY浸漬時間を説明変数としてL*を回帰する式を求めた。同様にa*とb*を回帰する式を求める。その式に基づいて理想値のL*a*b*を実現するためのCMY浸漬時間を求めた。
実施の形態2では回帰式としてランベルト・ベールの法則を利用した。ランベルト・ベールの法則により、ある波長の透過率は次式で表されることが知られている。
exp(定数+係数a・C浸漬時間+係数b・M浸漬時間+係数c・Y浸漬時間)
ここでは複数染料の交互効果などを考慮して、係数a〜cの3個だけでなく、3次までの項と2次の交互効果を表す項を設定した(複雑になるのでその式の記載は省略)。すると、各波長の透過率を定数と9個の係数からなる式で最適化することができる。そのためには、CMYそれぞれの浸漬時間(条件)を様々に変えて複数のレンズを試作し、複数レンズの試作測定の結果を元に、各波長の定数と係数9個を最適化することができる。その最適化計算ができると、CMY各浸漬時間から各波長の透過率を算出し、さらにL*a*b*色度座標を算出することができる。この対応関係を利用すると、所望するL*a*b*色度座標を得るためのCMY各浸漬時間を最適化計算により決定できる。このような方法に基づいて理想値のL*a*b*を実現するためのCMY浸漬時間を求めた。尚、後述する段落0062の比刺激値X/Xn、Y/Yn、Z/Znを回帰する式から理想値のL*a*b*を実現するためのCMY浸漬時間を求めることもできる。
【0061】
<実施の形態3>
実施の形態3もレンズを物品としてこれに着色してカラーレンズを作製することを例として説明したものである。但し、上記実施の形態とは異なり各カラーの見本レンズのみ分光透過率を測定してL*a*b*色度座標を得るようにし、加工レンズ側については分光透過率を測定せず、着色に使用したCMYの各浸漬時間を説明変数としてL*a*b*をそれぞれ回帰する数式を設定した。尚、実施の形態2と同様に見本レンズをアクリル系基材とし加工レンズをウレタン系基材とした。また、カラーレンズを作製するための着色材料として、見本レンズとは異なる種類のシアン(C)、マゼンタ(M)、イエロー(Y)の3種類の染料を用い染料液を調整した。
1.見本レンズのL*a*b*色度座標
実施の形態1でも実施の形態1及び2と同様にランダムに49種類の見本レンズを選択した。そして、各見本レンズと同じ材質の無色のレンズに対して主観的に同じ色になるように49種類の着色を施した加工レンズを作製した。各見本レンズについてのみL*a*b*色度座標を得た。
【0062】
2.加工レンズのCMY浸漬時間に基づく回帰式
3刺激値XYZそれぞれの値はeαC、eβM、eγYの値に概ね比例すると考えられる。ここに、eαCはシアン(C)の染料液につけた時間を表し、eβMはマゼンタ(M)の染料液につけた時間を表し、eγYはイエロー(Y)の染料液につけた時間を表す。αβγは染料液の濃度を示す係数である。各波長の透過率T(λ)はランベルト・ベールの法則によりeαC、eβM、eγYに比例し、それに照明の強度P(λ)と等色関数x(λ)、y(λ)、z(λ)の値を乗じて、可視光の範囲について積算することにより3刺激値XYZを求めるからである。
そこで、3つの比刺激値X/Xn、Y/Yn、Z/Znを回帰する式を設定し、それらの係数を最適化した。ランベルト・ベールの法則によれば指数関数(exp)の内部は一次式となるが、ここでは複数染料の交互効果などを考慮して、3次までの項と2次の交互効果を表す項を設定した。より直接的にL*やa*やb*それぞれの値をCMY浸漬時間で回帰する式などは設定しない。それは、比刺激値からL*a*b*色度座標を算出する式は非線形性が強いからである。ここでは一例として、数16としてX/Xnの例を示す。他のY/Yn、Z/Znを回帰する式も同様である。ただし、定数と係数はそれぞれの比刺激値で異なる。
【0063】
【数16】
【0064】
3.加工条件最適化のイメージ
CMY設定量とL*a*b*色度座標の関係は、ある程度滑らかになるはずである。ところが実際はそうとも限らない。例えば、生産条件として設定されたM染料浸漬時間と見本のa*の値は比例するはずであるが、実際には図11のように不規則性となる場合がある。それは、目視による色の判定に限界があるためである。1つの設定量と1つの色度座標の関係に注目すれば不規則性を発見するのは容易であるが、3次元空間の数十の点配置され、かつそれらがきれいに並んでいない場合は難しい。また、図11の点線で表すような規則性を推定するにあたっても、マクアダム楕円の分布を考慮する必要がある。そうしないと、目視による弁別の精度が粗い領域における見本レンズと加工レンズの違いが、推定結果に大きく影響してしまう。本実施の形態4によれば、このような不規則性を改善することができる。
【0065】
4.最適化計算
3変量正規分布の同時密度関数をf(X)で表す。X=(a*、b*、L*)であり、a*、b*、L*はそれぞれ加工レンズのL*a*b*色度座標であり、それらの値はそれぞれCMY設定量の関数である。具体的には、比刺激値X/Xn、Y/Yn、Z/Znを経由して算出するL*、a*、b*の値である。
平均ベクトルはμ=(μ、μ、μであり、μ、μ、μの値もCMY設定量の関数である。
ここで最尤法により、全カラーの密度関数の積Πf(X)を最大にする条件から、比刺激値X/Xn、Y/Yn、Z/ZnをCMY浸漬時間で回帰する式の最適化と、マクアダム楕円の分布を表す式の最適化を同時に行なう。実際には積の対数をとり、Σln(f(X))を最大にする最適化計算を行った。表7に比刺激値X/Xn、Y/Yn、Z/ZnをCMY浸漬時間で回帰した結果を示す。
【0066】
【表7】
【0067】
5.CMY浸漬時間の最適設定量
上記の回帰式を利用して、各色に関するΔL*、Δa*、Δb*をそれぞれできるだけ近づけるためのCMY浸漬時間の最適設定を算出した。その結果を表8に示す。表8においては実際にはアーバングリーン、スカイグレーといった個別の名前や濃さを表す記号で色を区別するが、この表では複雑な表記を避けて単に番号で表す。但し、浸漬時間をマイナスにはできないので、最適化計算にあたっては非負の条件を課した。人の視覚に頼った条件出しでは、10秒単位の設定が限界だが、本発明の手法によれば1秒単位の設定が可能となる。このように、当初設定したCMY浸漬時間を改善して精度の良い条件設定を行うことができるため、以後のレンズを作製する際には加工バラツキの影響で見本の色から離れる割合を抑えることができる。
【0068】
【表8】
【0069】
<実施の形態4>
実施の形態4でも実施の形態2及び3と同様、見本レンズと生産品の基材と染料が異なるものとした。また、加工は気相転写によるものとする。実施の形態3では試作品のL*a*b*色度座標を算出しなかったが、実施の形態4では実施の形態2と同様に算出するようにした。また、CMY設定量は浸漬時間ではなく、昇華染料をセットする量が単位量の何倍かを表す数値として表した。昇華染料の使用量(単位量)は、例えば昇華性色素を溶解又は微粒子分散させた染色用用材を物品に転写して着色する際の転写量または使用する色素の量で表すことができる。尚、実施の形態2及び3と同様に見本レンズをアクリル系基材とし加工レンズをウレタン系基材とした。また、カラーレンズを作製するための着色材料として、見本レンズとは異なる種類のシアン(C)、マゼンタ(M)、イエロー(Y)の3種類の染料を用い染料液を調整した。尚、実施の形態4はこの方法が正しいことを検証するためのシミュレーションであり、当初に理想値を設定している。そして、計算上求めた推定理想値と実際の理想値との差を検証するようにしている。
【0070】
1.初期ねらい値の設定
加工レンズを作製する前提として、見本レンズ毎に初期ねらい値を定め、その初期ねらい値を狙ってまず加工レンズを作製する。初期ねらい値を設定する最も大きな理由は、多くの試作品を作製して人の視覚に基づいて見本の色と同じ色となるようにするのは無駄であるため、その無駄を回避するためである。つまり、概ね見本レンズと同じあるいは同じとみなせる程度色の近い状態で(若干妥協的な状態で)で試作をして加工レンズを作製し、そのようにして作製した加工レンズがどの程度の見本レンズと違うのかを評価できるのであれば、その評価を計算に反映させて以後に加工するレンズの着色材料の使用条件は十分正確に決定できるからである。
初期ねらい値を目標として、段落0060で示したような手法で染料の使用割合を決定する。つまり、ある目標とするL*a*b*色度座標が得られるように染料の使用割合を決定してレンズを加工する。しかし、そのような条件で加工したレンズであっても、必ずねらった通りのL*a*b*が得られるのではない。加工したレンズを測定して得られたL*a*b*色度座標のことを「加工結果値」とする。そして、本実施の形態では次のように初期ねらい値を設定するようにした。
【0071】
ランベルト・ベールの法則により、ある波長の透過率は次式で表されることが知られている。
exp(定数+係数a・C設定量+係数b・M設定量+係数c・Y設定量)
そこで、CMYそれぞれの設定量を様々に変えて複数のレンズを試作し、複数レンズの試作測定の結果を元に、各波長の定数と係数a〜cを最適化することができる。尚、ここではパラメータとして定数と係数a〜cの4つを使用する例で説明したが、より精度を上げるならばパラメータが多くなる式を設定することも可能である。
【0072】
2.初期ねらい値に基づく加工結果値
L*a*b*色度座標の初期ねらい値を実現するための加工を行っても、その結果には加工誤差をともなう。そこで、加工したレンズを測定してL*a*b*色度座標を算出して得た値を「加工結果値」と呼ぶことにする。また、加工したレンズと見本レンズを比較して、色の一致度合いを人の主観的な目視によってA〜Eの5段階で判定し、併せてよく一致したA判定を除くB〜E判定について「見本とくらべてどのように色が異なるか」を「赤が薄い」「黄がかかった」等の言葉で評価するようにした。各レンズについてこの判定を行い判定結果を利用する。
3.理想値とシフト量の設定
初期ねらい値のL*a*b*色度座標、加工したレンズのL*a*b*色度座標及び加工したレンズの視覚評価の結果に基づいて理想値を推定する方法を説明する。49種類のカラーについて、初期ねらい値から理想値にかけてのシフト量を上記実施の形態2の数14の式と同様に多項式で表す。実施の形態2とは異なりL*、a*、b*は初期ねらい値となる。ここで、図12に示すように「理想値(推定)=初期ねらい値+シフト量」の関係にある。理想値を推定するには、理想値を最適化すれば良く、そのためにはシフト量を表す多項式の係数を最適化すれば良い。初期ねらい値と加工結果値と理想値の関係のイメージを図示すると図13のごとくである。
【0073】
4.偏差倍率の算出
上記実施の形態1の方法によれば、初期ねらい値のL*、a*、b*をもとに、それぞれのカラー領域におけるマクアダム楕円体を構成するσ、σ、σ、ρを求めることができた。そして、それらに基づいて「理想値と加工結果値の色度差」が標準偏差の何倍に相当するかを算出することができる。その値を「偏差倍率」と呼ぶことにする。偏差倍率は要は理想値と加工結果値(又は初期ねらい値)との間隔が近いのか遠いのかを数値で示したもので、数値が小さいほど両者は近く加工結果に誤差が少ないといえる。偏差倍率は3変量正規分布を表す式(数10の式)のexp内の(x−μ)Σ−1(x−μ)の平方根より算出できる。
【0074】
5.色の一致度合いの判定
上記のように人が見本レンズと加工レンズを目視してA〜Eの判定を行ったものとする。表9に判定毎にこの式に代入される係数と定数を示す。ここで、各式に現れる係数と定数は経験的にわかっている。すなわち、過去に蓄積した経験的なデータに基づいてロジスティック回帰分析によりこれらの数値を得ることができるからである。どのような判定結果になるかを確率で示すことができる。そのために上記の「偏差倍率」を導入して下記のような式を設定する。
理想値と加工結果値の色度差の偏差倍率が小さいとA〜B判定、大きいとD〜E判定になりやすい。また、悪い判定結果ほど、区別が曖昧になる。その傾向はロジスティック関数で表すことができる。

A判定される確率=1/(1+exp(係数A・(偏差倍率−定数A))
B判定される確率=1/(1+exp(係数B・(偏差倍率−定数B))−A判定される確率
C判定される確率=1/(1+exp(係数C・(偏差倍率−定数C))−A〜B判定される確率
D判定される確率=1/(1+exp(係数D・(偏差倍率−定数D))−A〜C判定される確率
E判定される確率=1−A〜D判定される確率
また、A〜E判定される偏差倍率と確率値の関係は表10の通りである。
【0075】
【表9】
【0076】
【表10】
【0077】
6.理想値の推定
測定データと評価データに基づいて、全データの対数尤度の和を計算する。各データの対数尤度とは、そのデータの判定結果(A〜Dのどれか一つに判定されている)に判定される数17の確率の式に、理想値と加工結果値の色度差の偏差倍率を代入して得られた確率の対数をとったものである。数17の式において、各サンプルiがA〜E判定される確率の式には、各カラーの見本レンズの色度座標をシフトした理想値(μ)から加工レンズの色度座標(x)までの距離にもとづく偏差倍率が含まれる。その偏差倍率は、3変量正規分布を表す式(数10の式)のexp内の(x−μΣ−1(x−μ)より算出されるので、シフト量を表す多項式の定数と係数を変動させると数17の式の値が変動する。数17の式に示した全データの対数尤度の和を最大にする条件に基づいて、シフト量を表す多項式の定数と係数を最適化した。その結果を表11に示す。また、表11の結果に基づいて算出したレンズ毎の設定した理想値、初期ねらい値、加工結果値、推定した(計算した)理想値の各L*、a*、b*を表12に示す。このようにしてL*、a*、b*の推定理想値が求まるので上記実施の形態と同様に各カラーに関してこれ以後に加工するレンズの見た目の色を見本レンズにより近づけるための例えばCMY浸漬時間の最適設定を算出することができる。
【0078】
【数17】
【0079】
【表11】
【0080】
【表12】
【0081】
7.推定結果の検証
本実施の形態5はシミュレーションであるため、理想値が前もって設定されている。そこで、表13に理想値に対する初期ねらい値、加工結果値、推定理想値の各加工レンズの偏差倍率を示す。これによって、上記の計算の正確さが検証できる。偏差倍率の平均値は、初期ねらい値では1.80、加工結果値では誤差を含むので悪化して2.23、実際に設定した理想値と計算で推定した推定理想値は0.59となった。初期ねらい値と比較すると、推定値では理想値からのズレが約1/3になった。この推定値に基づいて染色加工する際にも加工バラツキは発生するが、それを考慮にいれてもほとんどのカラーにおいてA〜B判定に相当する加工結果を得ることが期待できる。
【0082】
【表13】
【0083】
尚、この発明は、次のように変更して具体化することも可能である。
・例えば上記実施の形態では1カラーあたりレンズを1枚加工する例を示したが、初めは49種類のレンズを試作せず、近い色を適当にまびいて20〜30種類で推定すると効率が良い(つまりすべてのデータを使用しなくともよい。)。推定の精度を確認するためには、推定理想値を実現するためのCMYの浸漬時間の設定で全カラーのレンズを試作することになるが、その結果を先のデータに加えて同じ要領で理想値を推定するとよい。すなわち精度確認のために行った加工の結果も、理想値推定のための最適化計算に利用することにより、毎回の加工結果に加工バラツキが加わっても推定の精度が上がっていくからである。
・複数のパラメータとなる関数を最適化する計算においては、上記実施の形態2や3等では同時に計算をするようにしていたが、同時でなくある最適化の結果を利用して次のパラメータを最適化するような手法でもよい。
・実施の形態2や3において着色材料の使用条件をCMYの浸漬時間としていたが、これを昇華染料の使用量とするようにしてもよい。逆に実施の形態4の着色材料の使用条件をCMYの浸漬時間としてもよい。
・確率密度関数には正規分布以外にもカイ二乗分布、t分布等様々なものがあり、確率密度関数として正規分布以外の関数を使用することも可能である。
・上記見本レンズの数は適宜変更可能である。
・上記各実施の形態ではレンズを例に取ったが、レンズ以外の物品に適用することも可能である。
その他本発明の趣旨を逸脱しない態様で実施することは自由である。

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13