特許第6394791号(P6394791)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社IHIの特許一覧

<>
  • 特許6394791-可変容量型過給機 図000002
  • 特許6394791-可変容量型過給機 図000003
  • 特許6394791-可変容量型過給機 図000004
  • 特許6394791-可変容量型過給機 図000005
  • 特許6394791-可変容量型過給機 図000006
  • 特許6394791-可変容量型過給機 図000007
  • 特許6394791-可変容量型過給機 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6394791
(24)【登録日】2018年9月7日
(45)【発行日】2018年9月26日
(54)【発明の名称】可変容量型過給機
(51)【国際特許分類】
   F02B 39/00 20060101AFI20180913BHJP
   F02B 37/24 20060101ALI20180913BHJP
   F01D 17/16 20060101ALI20180913BHJP
   F16J 15/08 20060101ALN20180913BHJP
【FI】
   F02B39/00 D
   F02B37/24
   F01D17/16 A
   F01D17/16 F
   !F16J15/08 D
【請求項の数】2
【全頁数】12
(21)【出願番号】特願2017-510052(P2017-510052)
(86)(22)【出願日】2016年3月29日
(86)【国際出願番号】JP2016060237
(87)【国際公開番号】WO2016159004
(87)【国際公開日】20161006
【審査請求日】2017年2月17日
(31)【優先権主張番号】特願2015-71481(P2015-71481)
(32)【優先日】2015年3月31日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100176245
【弁理士】
【氏名又は名称】安田 亮輔
(74)【代理人】
【識別番号】100122781
【弁理士】
【氏名又は名称】近藤 寛
(72)【発明者】
【氏名】小林 高広
(72)【発明者】
【氏名】文野 謙治
(72)【発明者】
【氏名】淺川 貴男
(72)【発明者】
【氏名】崎坂 亮太
(72)【発明者】
【氏名】竹内 和子
【審査官】 種子島 貴裕
(56)【参考文献】
【文献】 特開2013−104413(JP,A)
【文献】 特開平11−229886(JP,A)
【文献】 特開2011−017326(JP,A)
【文献】 特開2009−047027(JP,A)
【文献】 米国特許出願公開第2014/0341761(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F02B 39/00
F01D 17/16
F02B 37/24
F16J 15/08
(57)【特許請求の範囲】
【請求項1】
タービン翼車の周囲に配置されるスクロール流路を形成するタービンハウジングと、
前記スクロール流路と前記タービン翼車とを接続するガス流入路と、
前記スクロール流路に面し前記スクロール流路の内壁の一部を形成するノズルリングを含む可変ノズルユニットと、
前記タービンハウジングと前記ノズルリングとの間に形成され前記スクロール流路と前記ガス流入路の下流部のシュラウド側とを接続する隙間をシールする環状のシール部材と、を有するタービンを備え、
前記シール部材は、
前記隙間に挟み込まれると共に前記タービンハウジングと前記ノズルリングとの間を前記タービン翼車の回転径方向に拡げる方向に付勢する付勢部材であり、前記スクロール流路よりも前記タービン翼車の径方向内側に配置されている、可変容量型過給機。
【請求項2】
前記スクロール流路と前記タービン翼車とを接続し、ノズルベーンが設けられたガス流入路と、
前記タービンハウジングに設けられ、前記シール部材の径方向内側に位置し当該シール部材が嵌め込まれた円柱面と、
前記タービンハウジングに設けられ、前記シール部材の径方向内側で前記円柱面の前記ガス流入路側に位置し、前記ガス流入路側に向かって小径となる縮径面と 、を備える請求項に記載の可変容量型過給機。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、可変容量型過給機に関するものである。
【背景技術】
【0002】
従来、下記特許文献1に記載の可変容量型過給機が知られている。この過給機は、タービンハウジングと排気ノズルの後部排気導入壁とに嵌合し固定される環状のシール体を有している。このシール体によってタービンハウジングと後部排気導入壁との間の隙間がシールされ、スクロール流路からのリークが抑えられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−112195号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
この種の可変容量型過給機の性能を向上するために、スクロール流路を形成する部品同士の隙間のシール性を高め、スクロール流路のシール性を向上することが望まれる。特許文献1の過給機では、スクロール流路を流動する排気ガスの周方向の温度分布の影響で、シール体の温度変形にも周方向の不均一が生じ、シール体のシール性能が低下する可能性がある。従って、スクロール流路のシール性には、更に改善の余地がある。
【0005】
本開示は、タービンのスクロール流路のシール性を向上する可変容量型過給機を説明する。
【課題を解決するための手段】
【0006】
本開示の一態様に係る可変容量型過給機は、タービン翼車の周囲に配置されるスクロール流路を形成するタービンハウジングと、スクロール流路に面しスクロール流路の内壁の一部を形成するノズルリングを含む可変ノズルユニットと、タービンハウジングとノズルリングとの隙間をシールする環状のシール部材と、を有するタービンを備え、シール部材は、上記隙間に挟み込まれると共にタービンハウジングとノズルリングとをタービン翼車の回転軸線方向に付勢する皿バネ構造をなし、スクロール流路よりもタービン翼車の径方向内側に配置されている。
【発明の効果】
【0007】
本開示の可変容量型過給機によれば、タービンのスクロール流路のシール性を向上することができる。
【図面の簡単な説明】
【0008】
図1】第1実施形態に係る可変容量型過給機の断面図である。
図2図1におけるスクロール流路の近傍を拡大して示す断面図である。
図3】(a)はシール部材の平面図、(b)はそのIII-III断面図である。
図4】第2実施形態に係る可変容量型過給機のスクロール流路の近傍を拡大して示す断面図である。
図5】(a)はシール部材の平面図、(b)はそのV-V断面図、(c)はシール部材の弾性変形を示す断面図である。
図6】シール部材の変形例を示す断面図である。
図7】変形例に係る可変容量型過給機のシール部材の近傍を拡大して示す断面図である。
【発明を実施するための形態】
【0009】
本開示の一態様に係る可変容量型過給機は、タービン翼車の周囲に配置されるスクロール流路を形成するタービンハウジングと、スクロール流路に面しスクロール流路の内壁の一部を形成するノズルリングを含む可変ノズルユニットと、タービンハウジングとノズルリングとの隙間をシールする環状のシール部材と、を有するタービンを備え、シール部材は、上記隙間に挟み込まれると共にタービンハウジングとノズルリングとをタービン翼車の回転軸線方向に付勢する皿バネ構造をなし、スクロール流路よりもタービン翼車の径方向内側に配置されている。
【0010】
上記隙間では、シール部材を回転軸線方向に挟み込む挟持部と、スクロール流路との間において、当該隙間がスクロール流路側で狭くなるように段差部が形成されているようにしてもよい。
【0011】
シール部材の回転軸線方向の両端部のうち少なくとも一方の端部は、湾曲形状をなすように折り返されていることとしてもよい。
【0012】
本開示の別の態様に係る可変容量型過給機は、タービン翼車の周囲に配置されるスクロール流路を形成するタービンハウジングと、スクロール流路に面しスクロール流路の内壁の一部を形成するノズルリングを含む可変ノズルユニットと、タービンハウジングとノズルリングとの隙間をシールする環状のシール部材と、を有するタービンを備え、シール部材は、上記隙間に挟み込まれると共にタービンハウジングとノズルリングとの間をタービン翼車の回転径方向に拡げる方向に付勢する付勢部材であり、スクロール流路よりもタービン翼車の径方向内側に配置されている。
【0013】
以下、図面を参照しながら、本開示の可変容量型過給機の実施形態について説明する。なお、各図面においては、構成要素の特徴を誇張して描写する場合があるため、図面上の各部位の寸法比は必ずしも実物とは一致しない。
【0014】
(第1実施形態)
図1に示される可変容量型過給機1は、例えば、船舶や車両の内燃機関に適用されるものである。図1に示されるように、可変容量型過給機1は、タービン2とコンプレッサ3とを備えている。タービン2は、タービンハウジング4と、タービンハウジング4に収納されたタービン翼車6と、を備えている。タービンハウジング4は、タービン翼車6の周囲において周方向に延びるスクロール流路16を有している。コンプレッサ3は、コンプレッサハウジング5と、コンプレッサハウジング5に収納されたコンプレッサ翼車7と、を備えている。コンプレッサハウジング5は、コンプレッサ翼車7の周囲において周方向に延びるスクロール流路17を有している。
【0015】
タービン翼車6は回転軸14の一端に設けられており、コンプレッサ翼車7は回転軸14の他端に設けられている。タービンハウジング4とコンプレッサハウジング5との間には、軸受ハウジング13が設けられている。回転軸14は、軸受15を介して軸受ハウジング13に回転可能に支持されている。回転軸14、タービン翼車6及びコンプレッサ翼車7が一体の回転体12として回転軸線H周りに回転する。
【0016】
タービンハウジング4には、排気ガス流入口(図示せず)及び排気ガス流出口10が設けられている。内燃機関(図示せず)から排出された排気ガス(流体)が、排気ガス流入口を通じてタービンハウジング4内に流入する。そして、排気ガスは、スクロール流路16を通じてタービン翼車6に流入し、タービン翼車6を回転させる。その後、排気ガスは、排気ガス流出口10を通じてタービンハウジング4外に流出する。
【0017】
コンプレッサハウジング5には、吸入口9及び吐出口(図示せず)が設けられている。上記のようにタービン翼車6が回転すると、回転軸14を介してコンプレッサ翼車7が回転する。回転するコンプレッサ翼車7は、吸入口9を通じて外部の空気を吸入し、この空気を圧縮して、スクロール流路17を通じて吐出口から吐出する。吐出口から吐出された圧縮空気は、前述の内燃機関に供給される。
【0018】
以下の説明において、単に「軸線方向」、「径方向」、「周方向」等と言うときには、それぞれ、タービン翼車6の回転軸線方向、回転径方向、回転周方向を意味するものとする。また、「上流」、「下流」などと言うときには、スクロール流路16における排気ガスの上流、下流を意味するものとする。
【0019】
図1図3を参照しながら、タービン2について更に説明する。タービン2は可変容量型タービンである。スクロール流路16とタービン翼車6とを接続するガス流入路21には、可動のノズルベーン23が設けられている。複数のノズルベーン23が回転軸線Hを中心とする円周上に配置されている。各々のノズルベーン23は回転軸線Hに平行な軸線周りに回動する。上記のようにノズルベーン23が回動することで、タービン2に導入される排気ガスの流量に応じてガス流路の断面積が最適に調整される。
【0020】
このためタービン2は、ノズルベーン23を駆動するための可変ノズルユニット25を備えている。可変ノズルユニット25は、タービンハウジング4の内側に嵌め込まれており、タービンハウジング4と軸受ハウジング13とで挟み込まれて固定される。可変ノズルユニット25は、上記ノズルベーン23と、第1ノズルリング31と、第2ノズルリング(コントロールクリアランスプレート)32と、を有している。第1ノズルリング31及び第2ノズルリング32は、ノズルベーン23を軸線方向に挟んで位置している。第1ノズルリング31と第2ノズルリング32とは、それぞれ回転軸線Hを中心とするリング状を成しており、タービン翼車6を周方向に囲むように配置されている。第1ノズルリング31と第2ノズルリング32とで挟まれた領域が前述のガス流入路21を構成する。第1ノズルリング31には、各ノズルベーン23の回動軸23aが回転可能に挿通されており、第1ノズルリング31は各ノズルベーン23を片持ちで軸支している。また、第1ノズルリング31の軸受ハウジング13側の面には、周方向に延びる段差75が形成されている。各ノズルベーン23の回動軸23aは、上記段差75よりも径方向内側の位置において第1ノズルリング31に挿通されている。第1ノズルリング31と第2ノズルリング32とは、軸線方向に延びる複数の連結ピン35で連結されている。この連結ピン35が高精度の寸法に作製されることで、ガス流入路21の軸線方向の寸法精度が確保されている。
【0021】
可変ノズルユニット25は、タービン2の外部からの駆動力をノズルベーン23に伝達するための駆動力伝達部(図示せず)、駆動リング28、及び複数のレバー29を有している。駆動リング28は、回転軸線Hを中心とする円周上に延在している。駆動リング28は、駆動力伝達部(図示せず)からの駆動力を受けて回転軸線H周りに回動する。レバー29は各ノズルベーン23に対応して設けられ、駆動リング28の内側で円周上に配置されている。駆動リング28の内周側には、レバー29と同数の溝が形成されている。各レバー29の一端は駆動リング28の各溝に噛み合っており、各レバー29の他端は各ノズルベーン23の回動軸23aに固定されている。タービン2の外部からの駆動力が駆動力伝達部27に入力されると、駆動リング28が回転軸線H周りに回動する。そして、駆動リング28の回動に伴って各レバー29が回動し、回動軸23aを介して各ノズルベーン23が回動する。
【0022】
次に、タービンハウジング4内における可変ノズルユニット25の配置について説明する。タービン翼車6を周方向に覆うシュラウド41は、タービンハウジング4の内周面の一部として形成されている。シュラウド41よりも径方向外側の位置に、可変ノズルユニット25の第2ノズルリング32が嵌め込まれている。第2ノズルリング32とタービンハウジング4との間には隙間Gが生じている。
【0023】
第2ノズルリング32はスクロール流路16に面しており、第2ノズルリング32がスクロール流路16の内壁の一部を形成している。すなわち、タービンハウジング4の内周面42と第2ノズルリング32の外側端面34の一部とで、スクロール流路16の内壁面が形成されている。また、タービンハウジング4の内周面上において、スクロール流路16の内壁面を形成する内周面42とシュラウド41との間には、回転軸線Hに直交する平面44が形成されている。平面44は、隙間Gを空けて第2ノズルリング32の外側端面34に対面している。なお、以下では、外側端面34のうち、スクロール流路16の内壁面を形成する部分を外側端面34aとし、平面44に対面する部分を外側端面34bとして、両者を区別して呼ぶ場合がある。
【0024】
隙間Gは、スクロール流路16とガス流入路21の下流部とを接続している。隙間Gからの排気ガスのリークを抑えるために、隙間Gにはガスケットとして環状のシール部材45が設置されている。シール部材45は、外側端面34と平面44とで軸線方向に挟み込まれている。図3にも示されるように、シール部材45は、回転軸線Hを中心とする円周に沿って延在しており、回転軸線Hを中心軸とする皿バネ構造をなしている。すなわち、シール部材45は、回転軸線Hを中心軸とする円錐面を含む構造をなす。シール部材45は、例えば耐熱ステンレス鋼などからなる。シール部材45は、皿バネ構造による弾性力によって、外側端面34と平面44とを軸線方向に遠ざける方向に付勢している。また、シール部材45は、弾性力によって外側端面34と平面44とに密着し、隙間Gを封止するシール性を発揮する。
【0025】
タービン2の温度に応じて隙間Gの軸線方向の寸法が変動するのに対し、シール部材45は、皿バネ構造による弾性変形によって隙間Gの寸法変動に追従し隙間Gのシール性を維持する。なお、可変ノズルユニット25全体の軸線方向の熱膨張特性と、タービンハウジング4の軸線方向の熱膨張特性との差異に起因して、タービン2が高温になるほど隙間Gの軸線方向の寸法は小さくなり、タービン2が低温になるほど隙間Gの軸線方向の寸法は大きくなる。
【0026】
シール部材45のうち、軸線方向の両端部45a,45bは、湾曲形状をなすように折り返されている。この構造により、外側端面34及び平面44に対してシール部材45が鋭角部で接触することが避けられる。よって、端部45aと外側端面34との接触面積、及び端部45bと平面44との接触面積が大きくなり隙間Gのシール性が高くなる。また、上記構造によれば、上記のような隙間Gの寸法変動にシール部材45が追従するときに、端部45a,45bが外側端面34,平面44上を円滑に摺動する。なお、両方の端部45a,45bが上記のように湾曲形状に形成されることは必須ではなく、何れか一方が湾曲形状であってもよい。
【0027】
図2にも示されるとおり、シール部材45はスクロール流路16にはみださない位置に配置されている。具体的には、スクロール流路16は内周面42と外側端面34aとで仕切られ、隙間Gを含まない領域である。スクロール流路16の領域の境界線16aの一部を図2中に破線で示している。上記の領域として規定されるスクロール流路16の外にシール部材45全体が位置している。具体的には、スクロール流路16よりも径方向内側にシール部材45全体が配置されている。すなわち、シール部材45は、外側端面34bと平面44とで挟み込まれており、境界線16aから径方向外側にははみだしていない。なお、平面44の径方向の幅は周方向で不均一であるが、シール部材45が境界線16aから径方向外側にはみださないという位置関係が、周方向全体で成立している。
【0028】
また、隙間Gのうちシール部材45が挟み込まれた部分を挟持部47と称する。挟持部47とスクロール流路16との間において、外側端面34bには段差部49が形成されている。この段差部49の存在により、隙間Gは、スクロール流路16に近い側が狭く、遠い側が広くなっている。そしてシール部材45は、スクロール流路16から見て段差部49よりも遠い位置で挟持されている。
【0029】
続いて、上記タービン2を備えた可変容量型過給機1による作用効果について説明する。タービン2では、スクロール流路16の内壁がタービンハウジング4と第2ノズルリング32とで形成され、タービンハウジング4と第2ノズルリング32との隙間Gを封止するシール部材45が設けられている。シール部材45は、スクロール流路16内にはみださないように配置されている。この構造によれば、シール部材45は、スクロール流路16を流動する排気ガスに晒されず、スクロール流路16内の排気ガスの温度の影響を比較的受けにくい。よって、排気ガスの周方向の温度分布に起因するシール部材45の周方向の温度差が低減される。従って、シール部材45に発生する、周方向に不均一な熱変形が抑えられる。その結果、シール部材45のシール性が高められ、可変容量型過給機1の性能向上が図られる。また、皿バネ構造のシール部材45は、リング状の平板を厚み方向にプレス加工することによって比較的容易に作製することができるので、生産コストが抑えられる。また、皿バネ構造の特性として、シール部材45には応力が極端に集中する部位がないので、シール部材45は耐久性に優れる。
【0030】
また、外側端面34bに段差部49が形成されており、スクロール流路16から見て段差部49の奥側にシール部材45が位置している。この構造により、挟持部47においてシール部材45の設置スペースを確保しながら、シール部材45よりもスクロール流路16に近い位置では隙間Gを狭くすることができる。よって、シール部材45に対する排気ガスの温度の影響をより低減することができる。また、シール部材45が皿バネ構造であるので、シール部材45が弾性変形によって隙間Gの軸線方向の寸法変動に追従し、隙間Gのシール性が維持される。
【0031】
また、第1ノズルリング31の径方向外側の縁部とタービンハウジング4との間の隙間G2から、第1ノズルリング31のノズルベーン23へ対向する方向と反対側の方向へ漏れる排気ガスを考慮して、遮熱板61と軸受ハウジング13の間にシール部材63を設ける構造にしてもよい。このシール部材63は、シール部材45と同様の皿バネ構造にしてもよい。この構造により、相乗的に排気ガスのシール性を高めることができる。遮熱板61は、第1ノズルリング31の径方向内側に位置しタービン翼車6と軸受ハウジング13との間に配置されている。
【0032】
(第2実施形態)
本開示の第2実施形態に係る可変容量型過給機101について説明する。本実施形態の説明において、第1実施形態の構成要素と同一又は同等の構成要素については、図面に同一の符号を付して重複する説明を省略する。
【0033】
図4に示されるように、可変容量型過給機101は、前述のシール部材45に代えてシール部材55を備えている点で第1実施形態の可変容量型過給機1とは異なっている。図5にも示されるように、シール部材55の断面は、軸線方向の線対称軸を有し平面44側に開口したC字状をなしている。シール部材55は、回転軸線Hを中心とする環状をなし、円柱面34dと円柱面44dとの間に径方向に挟み込まれている。つまり、シール部材55は径方向内側において、タービンハウジング4と当接する。円柱面34dは、第2ノズルリング32の段差部49に形成され、回転軸線Hを円柱軸とする円柱面である。円柱面44dはタービンハウジング4においてシュラウド41の裏面側に形成され、回転軸線Hを円柱軸とする円柱面である。
【0034】
図5(c)に二点鎖線で示されるように、シール部材55は、C字断面の両端部55a,55bの間隔を開く方向に弾性力を発揮する。従って、シール部材55が円柱面34dと円柱面44dとの間に圧入され挟み込まれると、シール部材55は、円柱面34dと円柱面44dとの間隔を径方向に拡げる方向に付勢する付勢部材としても機能する。また、シール部材55は、上記弾性力によって円柱面34dと円柱面44dとに密着し、隙間Gを封止するシール性を発揮する。
【0035】
また、タービン2の温度に応じて隙間Gの径方向の寸法(円柱面34dと円柱面44dとの距離)が変動するが、シール部材55は、弾性変形によって隙間Gの寸法変動に追従し隙間Gのシール性を維持する。なお、第2ノズルリング32の径方向の熱膨張特性と、タービンハウジング4の径方向の熱膨張特性との差異に起因して、タービン2が高温になるほど隙間Gの径方向の寸法は大きくなり、タービン2が低温になるほど隙間Gの径方向の寸法は小さくなる。
【0036】
また、第2ノズルリング32には、段差部49よりも径方向内側に位置する支持部位57が存在している。シール部材55は、この支持部位57によって軸線方向に支持されている。従って、シール部材55は、隙間Gを通じて作用するスクロール流路16からの圧力にも抵抗する。
【0037】
続いて、上記タービン102を備えた可変容量型過給機101による作用効果について説明する。タービン102では、スクロール流路16の内壁がタービンハウジング4と第2ノズルリング32とで形成され、タービンハウジング4と第2ノズルリング32との隙間Gを封止するシール部材55が設けられている。シール部材55は、スクロール流路16内にはみださないように配置されている。この構造によれば、シール部材55は、スクロール流路16内の排気ガスの温度の影響を比較的受けにくい。よって、排気ガスの周方向の温度分布に起因するシール部材55の周方向の温度差が低減される。従って、シール部材55に発生する、周方向に不均一な熱変形が抑えられ、その結果、シール部材55のシール性が高められ、可変容量型過給機101の性能向上が図られる。また、断面C字のシール部材55は、リング状の平板を厚み方向にプレス加工することによって比較的容易に作製することができるので、生産コストが抑えられる。
【0038】
また、外側端面34bに段差部49が形成されており、スクロール流路16から見て段差部49の奥側にシール部材55が位置している。この構造により、挟持部47においてシール部材55の設置スペースを確保しながら、シール部材55よりもスクロール流路16に近い位置では隙間Gを狭くすることができる。よって、シール部材55に対する排気ガスの温度の影響をより低減することができる。また、シール部材55が径方向の弾性力を発揮する構造であるので、シール部材55が弾性変形によって隙間Gの径方向の寸法変動に追従し、隙間Gのシール性が維持される。
【0039】
また、隙間Gの径方向の寸法変動は軸線方向の寸法変動に比較して算出し易い。すなわち、隙間Gの軸線方向の寸法変動は、タービンハウジング4の熱膨張特性に加えて、多数の部品を含む可変ノズルユニット25全体としての熱膨張特性を考慮する必要がある。これに対し、隙間Gの径方向の寸法変動は、タービンハウジング4の熱膨張特性に加えて、第2ノズルリング32の熱膨張特性のみを考慮すればよい。ここで、タービン102は、シール部材55を径方向に挟み込む構造を採用しているので、隙間Gの径方向の寸法変動に追従させるためのシール部材55の特性は比較的設計し易い。
【0040】
続いて、可変容量型過給機101の変形例について説明する。前述のように、シール部材55を円柱面34dと円柱面44dとの両方に密着させるためには、シール部材55をタービンハウジング4の円柱面44dに圧入すると共に、第2ノズルリング32の円柱面34dにも圧入する必要がある。この組立方法に鑑みれば、シール部材55の断面形状を図6(a)のようにしてもよい。すなわち、シール部材55の断面における径方向内側の端部55bを径方向外側に向けて湾曲させてもよい。この構成によれば、シール部材55がタービンハウジング4の円柱面44dに圧入される際に、シール部材55の端部55bが円滑に円柱面44dを摺動し、シール部材55が円滑に挿入される。
【0041】
また、同様の理由により、シール部材55の断面形状を図6(b)のようにしてもよい。すなわち、図6(b)におけるシール部材55の断面は、全体としてS字をなしている。シール部材55の径方向内側の部分55cにおいてはタービンハウジング4側に凸になるように湾曲している。シール部材55の径方向外側の部分55dにおいては可変ノズルユニット25側に凸になるように湾曲している。この構成によれば、シール部材55がタービンハウジング4の円柱面44dにも、第2ノズルリングの円柱面34dにも、円滑に圧入される。
【0042】
さらに、同様の理由により、シール部材55の断面形状を図6(c)のようにしてもよい。すなわち、図6(c)におけるシール部材55の断面は、全体としてV字をなしている。この構成によれば、シール部材55がタービンハウジング4の円柱面44dにも、第2ノズルリングの円柱面34dにも、円滑に圧入される。また、V字の段数は問わず、例えば、図6(d)のようにしてもよく、一体形成だけでなく、複数要素による同等形状としてもよい。
【0043】
以上、本開示の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。各実施形態の構成を適宜組み合わせて使用してもよい。例えば、実施形態では、挟持部47よりもスクロール流路16側で隙間Gが狭くなるようにする段差部49が第2ノズルリング32の外側端面34に設けられているが、このような段差部は、タービンハウジング4の平面44に設けられてもよい。
【0044】
図7は、変形例に係る可変容量型過給機のシール部材55の近傍を拡大して示す断面図である。本発明の可変容量型過給機には、この変形例の構造が採用されてもよい。当該変形例において、第1又は第2実施形態と同一又は同等の構成要素には図面に同一の符号を付して重複する説明を省略する。
【0045】
図7に示されるように、変形例に係るタービンハウジング4には、円柱面44dに連続するように円錐面71(縮径面)が設けられている。円錐面71は、シール部材55の径方向内側のガス流入路21側に位置し、ガス流入路21側に向かって小径となる形状をなす。すなわち、円錐面71は、円柱面44dの軸受ハウジング13側に位置し、軸受ハウジング13側に向かって小径になっている。また、第2ノズルリング32の内周側の一部には、上記の円錐面71に対面する円錐内壁面72が設けられている。
【0046】
ここで、上記の円錐面71による作用効果について説明する。シール部材55を円柱面34dと円柱面44dとの両方に密着させるためには、シール部材55を円柱面44dと円柱面34dとの両方に圧入してもよい。シール部材55を、軸受ハウジング13側からタービンハウジング4側に向けて円柱面44dに圧入する際には、円錐面71がガイドとなって、シール部材55の端部55bが円滑に円柱面44dに案内される。よって、径方向に弾性力をもつシール部材55を容易に組み込むことができる。
【0047】
また、第2ノズルリング32のうち、タービンハウジング4に対面する外側端面34bの一部に、シール部材55の円滑な挿入に十分な軸方向長さを確保するために、タービンハウジング4側に突出する段部73が設けられてもよい。また、タービンハウジング4の平面44には、上記の段部73に対面する面を含み第2ノズルリング32側と反対側に凹む溝74が、外側端面34bとの適切な距離を確保するために設けられてもよい。
【0048】
以上のように、タービンハウジング4は、回転軸線Hに直交する平面44(ハウジング平面)と、平面44の径方向内側に位置し、回転軸線Hを中心とする円柱面をなし、シール部材の径方向内側に当接する円柱面44d(ハウジング円柱面)と、円柱面44dの第2ノズルリング32側に隣接して設けられ、回転軸線Hを中心とする円錐面をなし、円柱面44dから離れるに従って小径になるように設けられた円錐面71(縮径面)と、を有し、第2ノズルリング32は、回転軸線Hに直交し平面44に対面する外側端面34b(ノズルリング平面)と、外側端面34bの径方向内側に位置し、回転軸線Hを中心とする円柱面をなし、シール部材の径方向外側に当接する円柱面34d(ノズルリング円柱面)と、円錐面71に対面し回転軸線Hを中心とする円錐面をなす円錐内壁面72(ノズルリング円錐面)と、を有し、外側端面34bには、タービンハウジング4側に突出する段部73が設けられており、平面44には、段部73に対面する面74aを含み第2ノズルリング32側と反対側に凹む溝74が設けられている、といったような図7に例示する構成を採用してもよい。
【0049】
また、可変容量型過給機は、スクロール流路16とタービン翼車6とを接続し、ノズルベーン23が設けられたガス流入路21と、 タービンハウジング4に設けられ、シール部材55の径方向内側のガス流入路21側に位置し、ガス流入路21側に向かって小径となる円錐面71(縮径面)と 、を備えてもよい。
【符号の説明】
【0050】
1,101 可変容量型過給機
2 タービン
4 タービンハウジング
6 タービン翼車
16 スクロール流路
25 可変ノズルユニット
32 第2ノズルリング(ノズルリング)
34b 外側端面(ノズルリング平面)
34d 円柱面(ノズルリング円柱面)
44 平面(ハウジング平面)
44d 円柱面(ハウジング円柱面)
45,55 シール部材
45a,45b 端部
47 挟持部
49 段差部
71 円錐面(縮径面)
72 円錐内壁面(ノズルリング円錐面)
73 段部
74 溝
G 隙間
H 回転軸線
図1
図2
図3
図4
図5
図6
図7